278 Commits

Author SHA1 Message Date
Tim Ruffing
1ad5185cd4 Merge bitcoin-core/secp256k1#1465: release: prepare for 0.4.1
672053d801 release: prepare for 0.4.1 (Jonas Nick)

Pull request description:

ACKs for top commit:
  sipa:
    ACK 672053d801
  real-or-random:
    ACK 672053d801
  hebasto:
    ACK 672053d801

Tree-SHA512: de78fd4588061ffc9b869d86c6d639dce06ed215c0614a888827054014c073a97b106268e5d5773967f9407c70ddc0f27326ee9c858dce5d52af7f33d2d46b69
2023-12-21 16:51:32 +01:00
Jonas Nick
672053d801 release: prepare for 0.4.1 2023-12-21 15:46:34 +00:00
Jonas Nick
1a81df826e Merge bitcoin-core/secp256k1#1380: Add ABI checking tool for release process
74a4d974d5 doc: Add ABI checking with `check-abi.sh` to the Release Process (Hennadii Stepanov)
e7f830e32c Add `tools/check-abi.sh` (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK 74a4d974d5 it compares the right commits now
  jonasnick:
    re-Concept ACK 74a4d974d5

Tree-SHA512: bcca5246837f899d43ced3b0099a8e123f4fd2db7d15684bda22657649521db0c87f76696bfbd93b4dfdec6c4851e99c26c7e37cc5a1a78e9b1a296850a067fe
2023-12-20 22:10:45 +00:00
Hennadii Stepanov
74a4d974d5 doc: Add ABI checking with check-abi.sh to the Release Process 2023-12-20 17:38:18 +00:00
Hennadii Stepanov
e7f830e32c Add tools/check-abi.sh
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-12-20 17:37:39 +00:00
Tim Ruffing
77af1da9f6 Merge bitcoin-core/secp256k1#1455: doc: improve secp256k1_fe_set_b32_mod doc
3928b7c383 doc: improve secp256k1_fe_set_b32_mod doc (Coding Enthusiast)

Pull request description:

  As discussed in #1453
  This only changes the `secp256k1_fe_impl_set_b32_mod` comment since I think `secp256k1_fe_set_b32_limit` doc is clear enough.

ACKs for top commit:
  sipa:
    ACK 3928b7c383
  theStack:
    ACK 3928b7c383

Tree-SHA512: ad62c1b72d6a487473b182e6aadc7765711385add8c6576bf15c2015db82721f19e3d635f7a29316c2ee7e3c73bc55e2cd4f46ec13180be93d6fe8641f47e7d2
2023-12-11 09:20:12 +01:00
Coding Enthusiast
3928b7c383 doc: improve secp256k1_fe_set_b32_mod doc 2023-12-08 14:58:38 +03:30
Tim Ruffing
5e9a4d7aec Merge bitcoin-core/secp256k1#990: Add comment on length checks when parsing ECDSA sigs
e02f313b1f Add comment on length checks when parsing ECDSA sigs (Tim Ruffing)

Pull request description:

  I claim the check can be removed but I don't want to touch this
  stable and well-tested code.

  On the way, we fix grammar in another comment.

ACKs for top commit:
  sipa:
    ACK e02f313b1f
  RandyMcMillan:
    ACK e02f313

Tree-SHA512: f82691a8f5db82a1e9683e52ce8e952ebd56b476a2817c5a876ce4638254b7b4ac93175318fb59598ed5532f33433951d75afea03724ef4419c3e1bd12ca8c20
2023-12-07 09:26:38 +01:00
Tim Ruffing
4197d667ec Merge bitcoin-core/secp256k1#1431: Add CONTRIBUTING.md
0e5ea62207 CONTRIBUTING: add some coding and style conventions (Jonas Nick)
1a432cb982 README: update first sentence (Jonas Nick)
0922a047fb docs: move coverage report instructions to CONTRIBUTING (Jonas Nick)
76880e4015 Add CONTRIBUTING.md including scope and guidelines for new code (Jonas Nick)

Pull request description:

  Following offline discussions, this PR documents the scope of the library and the requirements for adding new modules. I think this fixes most of #997. It also updates the README very slightly.

  In addition, I added some coding conventions that I remembered explaining to new contributors in the past year. Even though it's far from exhaustive, I think this is an easy improvement to the CONTRIBUTING.md. Feel free to suggest more conventions.

ACKs for top commit:
  sipa:
    ACK 0e5ea62207
  real-or-random:
    ACK 0e5ea62207

Tree-SHA512: ffdbab22982fd632de92e81bd135f141ac86e24cc0dcfc0e1ae12b0d2a2e4f91377ab2c0cc440cb919889eaed8bfc1447b880fa1430fd771b956f2af0fe3766e
2023-12-07 09:16:50 +01:00
Jonas Nick
0e5ea62207 CONTRIBUTING: add some coding and style conventions 2023-12-06 17:20:09 +00:00
Tim Ruffing
e2c9888eee Merge bitcoin-core/secp256k1#1451: changelog: add entry for "field: Remove x86_64 asm"
d2e36a2b81 changelog: add entry for "field: Remove x86_64 asm" (Jonas Nick)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK d2e36a2b81

Tree-SHA512: c4bffb921c58185b0a43546977449f3c53c21230d6d32cf5d5ccf563b196ec3d0370a0b87de5b334e5190ff91da598dd0bbebbb5c9d7bef9ec8c0679c3b6c702
2023-12-06 18:16:41 +01:00
Jonas Nick
d2e36a2b81 changelog: add entry for "field: Remove x86_64 asm" 2023-12-05 20:51:24 +00:00
Jonas Nick
1a432cb982 README: update first sentence
libsecp256k1 has become more than a library for just ECDSA and key tweaking.
2023-12-05 20:48:12 +00:00
Jonas Nick
0922a047fb docs: move coverage report instructions to CONTRIBUTING 2023-12-04 20:08:33 +00:00
Jonas Nick
76880e4015 Add CONTRIBUTING.md including scope and guidelines for new code 2023-12-04 20:08:25 +00:00
Tim Ruffing
d3e29db8bb Merge bitcoin-core/secp256k1#1450: Add group.h ge/gej equality functions
04af0ba162 Replace ge_equals_ge[,j] calls with group.h equality calls (Pieter Wuille)
60525f6c14 Add unit tests for group.h equality functions (Pieter Wuille)
a47cd97d51 Add group.h ge/gej equality functions (Pieter Wuille)

Pull request description:

  This pull requests removes the test-only functions `ge_equals_ge` and `ge_equals_gej`, and replaces them with proper group.h functions `secp256k1_ge_eq_var` and `secp256k1_gej_eq_ge_var` (mimicking the existing `secp256k1_gej_eq_var` function).

  This drops some of the arbitrary and undocumented magnitude restristrictions these functions have, makes them properly tested on their own, and makes their semantics cleaner (I'm always left checking whether `ge_equals_ge` does a `CHECK` internally or whether it returns a value...).

ACKs for top commit:
  real-or-random:
    utACK 04af0ba162
  stratospher:
    ACK 04af0ba.

Tree-SHA512: 49bc409ffa980144d1305c9389a846af45f0a97bfec19d016929056aa918c6a9f020dbe8549f5318fa8e6a4108621cc3cce60331aa0634f84619a1104d20a62a
2023-12-02 10:18:05 +01:00
Pieter Wuille
04af0ba162 Replace ge_equals_ge[,j] calls with group.h equality calls 2023-12-01 16:10:20 -05:00
Pieter Wuille
60525f6c14 Add unit tests for group.h equality functions 2023-12-01 16:10:15 -05:00
Pieter Wuille
a47cd97d51 Add group.h ge/gej equality functions 2023-12-01 16:06:29 -05:00
Jonas Nick
10e6d29b60 Merge bitcoin-core/secp256k1#1446: field: Remove x86_64 asm
f07cead0ca build: Don't call assembly an optimization (Tim Ruffing)
2f0762fa8f field: Remove x86_64 asm (Tim Ruffing)

Pull request description:

ACKs for top commit:
  sipa:
    utACK f07cead0ca
  theStack:
    ACK f07cead0ca
  jonasnick:
    ACK f07cead0ca

Tree-SHA512: df7f895ab8ab924c5f8f01c35d0cd2f65d5c947c5ab5325787d169c5b202834ab8aa5d85dedb25839fff3f518097fe8cf8e837d3c1918e5f039ddd6ddf4187da
2023-12-01 18:49:48 +00:00
Tim Ruffing
07687e811d Merge bitcoin-core/secp256k1#1393: Implement new policy for VERIFY_CHECK and #ifdef VERIFY (issue #1381)
bb4672342e remove VERIFY_SETUP define (Sebastian Falbesoner)
a3a3e11acd remove unneeded VERIFY_SETUP uses in ECMULT_CONST_TABLE_GET_GE macro (Sebastian Falbesoner)
a0fb68a2e7 introduce and use SECP256K1_SCALAR_VERIFY macro (Sebastian Falbesoner)
cf25c86d05 introduce and use SECP256K1_{FE,GE,GEJ}_VERIFY macros (Sebastian Falbesoner)
5d89bc031b remove superfluous `#ifdef VERIFY`/`#endif` preprocessor conditions (Sebastian Falbesoner)
c2688f8de9 redefine VERIFY_CHECK to empty in production (non-VERIFY) mode (Sebastian Falbesoner)

Pull request description:

  As suggested in #1381, this PR reworks the policy for VERIFY_CHECK and when to use #ifdef VERIFY, by:
  - redefining VERIFY_CHECK to empty in production (non-VERIFY) mode
  - removing many then superflous #ifdef VERIFY blocks (if they exclusively contained VERIFY_CHECKs)
  - introducing uppercase macros around verify_ functions and using them for better readabiliy

  What is _not_ included yet is the proposed renaming from "_check" to "_assert":
  > And while we're touching this anyway, we could consider renaming "check" to "assert", which is a more precise term. (In fact, if we redefine VERIFY_CHECK to be empty in production, we have almost reimplemented assert.h...)

  This should be easy to achieve with simple search-and-replace (e.g. using sed), but I was hesitant as this would probably case annoying merge conflicts on some of the open PRs. Happy to add this if the rename if desired (#1381 didn't get any feedback about the renaming idea yet).

ACKs for top commit:
  stratospher:
    ACK bb46723.
  real-or-random:
    utACK bb4672342e

Tree-SHA512: 226ca609926dea638aa3bb537d29d4fac8b8302dcd9da35acf767ba9573e5221d2dae04ea26c15d80a50ed70af1ab0dca10642c21df7dbdda432fa237a5ef2cc
2023-12-01 12:59:41 +01:00
Sebastian Falbesoner
bb4672342e remove VERIFY_SETUP define
This define was seemingly introduced for VERIFY mode code with side
effects (for setup purposes), that should just be executed without any
checks. The same can be achieved by putting it in an `#if VERIFY` block,
so we can remove it.
2023-12-01 01:36:32 +01:00
Sebastian Falbesoner
a3a3e11acd remove unneeded VERIFY_SETUP uses in ECMULT_CONST_TABLE_GET_GE macro
As the fields r->x and r->y are set immediately after (three lines
below), there is no need to clear them.
2023-12-01 01:36:32 +01:00
Sebastian Falbesoner
a0fb68a2e7 introduce and use SECP256K1_SCALAR_VERIFY macro
By providing an uppercase variant of these verification functions,
it is better visible that it is test code.
2023-12-01 01:36:29 +01:00
Sebastian Falbesoner
cf25c86d05 introduce and use SECP256K1_{FE,GE,GEJ}_VERIFY macros
By providing an uppercase variant of these verification functions, it is
better visible that it is test code and surrounding `#ifdef VERIFY`
blocks can be removed (if there is no other code around that could
remain in production mode), as they don't serve their purpose any more.

At some places intentional blank lines are inserted for grouping and
better readadbility.
2023-12-01 00:54:58 +01:00
Sebastian Falbesoner
5d89bc031b remove superfluous #ifdef VERIFY/#endif preprocessor conditions
Now that the `VERIFY_CHECK` compiles to empty in non-VERIFY mode, blocks
that only consist of these macros don't need surrounding `#ifdef VERIFY`
conditions anymore.

At some places intentional blank lines are inserted for grouping and
better readadbility.
2023-12-01 00:54:41 +01:00
Sebastian Falbesoner
c2688f8de9 redefine VERIFY_CHECK to empty in production (non-VERIFY) mode
As suggested in issue #1381, this will make things simpler and
improve code readability, as we don't need to force omitting of
evaluations on a case-by-case basis anymore and hence can remove
lots of `#ifdef VERIFY`/`#endif` lines (see next commit). Plus,
VERIFY_CHECK behaves now identical in both non-VERIFY and coverage mode,
making the latter not special anymore and hopefully decreasing
maintenance burden. The idea of "side-effect safety" is given up.

Note that at two places in the ellswift module void-casts of return
values have to be inserted for non-VERIFY builds, in order to avoid
   "variable ... set but not used [-Wunused-but-set-variable]"
warnings.
2023-12-01 00:22:40 +01:00
Tim Ruffing
5814d8485c Merge bitcoin-core/secp256k1#1438: correct assertion for secp256k1_fe_mul_inner
dcdda31f2c Tighten secp256k1_fe_mul_inner's VERIFY_BITS checks (Russell O'Connor)
8e2a5fe908 correct assertion for secp256k1_fe_mul_inner (roconnor-blockstream)

Pull request description:

  Based on the surrounding asserts, 112 bits before this line, and 61 bits after this line, this assertion should be 113 bits.  Notably the commensurate line in secp256k1_fe_sqr_inner is correctly assert to be 113 bits.

ACKs for top commit:
  real-or-random:
    ACK dcdda31f2c tested with asm disabled

Tree-SHA512: c35170e37d9a6d1413dd625032028129ab2eccee7da86697ab9641b68ad78efd7251953d51e7acaefd14888d3fd61877f9f05349c44f6fc0133ce9b3921b0e1a
2023-11-27 09:45:09 +01:00
Tim Ruffing
c1b4966410 Merge bitcoin-core/secp256k1#1445: bench: add --help option to bench_internal
1ddd76af0a bench: add --help option to bench_internal (Sebastian Falbesoner)

Pull request description:

  While coming up with commands for running the benchmarks for issue https://github.com/bitcoin-core/secp256k1/issues/726#issuecomment-1824625653, I noticed that in contrast to `bench{_ecmult}`, `bench_internal` doesn't have a help option yet and figured it would be nice to have one. A comparable past PR is https://github.com/bitcoin-core/secp256k1/pull/1008. Benchmark categories appear in the same order as they are executed, the concrete benchmark names in parantheses per category are listed in alphabetical order.

ACKs for top commit:
  real-or-random:
    utACK 1ddd76af0a
  siv2r:
    ACK 1ddd76a, tested the `--help` option locally, and it works as expected.

Tree-SHA512: d117641a5f25a7cbf83881f3acceae99624528a0cbb2405efdbe1a3a2762b4d6b251392e954aaa32f6771069d31143743770fccafe198084c12258dedb0856fc
2023-11-24 14:50:05 +01:00
Tim Ruffing
f07cead0ca build: Don't call assembly an optimization
because we don't know whether it's an optimization.
2023-11-24 08:11:33 +01:00
Tim Ruffing
2f0762fa8f field: Remove x86_64 asm
Widely available versions of GCC and Clang beat our field asm on -O2.
In particular, GCC 10.5.0, which is Bitcoin Core's current compiler
for official x86_64 builds, produces code that is > 20% faster for
fe_mul and > 10% faster for signature verification (see #726).

These are the alternatives to this PR:

We could replace our current asm with the fastest compiler output
that we can find. This is potentially faster, but it has multiple
drawbacks:
 - It's more coding work because it needs detailed benchmarks (e.g.,
   with many compiler/options).
 - It's more review work because we need to deal with inline asm
   (including clobbers etc.) and there's a lack of experts reviewers
   in this area.
 - It's not unlikely that we'll fall behind again in a few compiler
   versions, and then we have to deal with this again, i.e., redo the
   benchmarks. Given our history here, I doubt that we'll revolve
   this timely.

We could change the default of the asm build option to off. But this
will also disable the scalar asm, which is still faster.

We could split the build option into two separate options for field
and scalar asm and only disable the field asm by default. But this
adds complexity to the build and to the test matrix.

My conclusion is that this PR gets the low-hanging fruit in terms of
performance. It simplifies our code significantly. It's clearly an
improvement, and it's very easy to review. Whether re-introducing
better asm (whether from a compiler or from CryptOpt) is worth the
hassle can be evaluated separately, and should not hold up this
improvement.

Solves #726.
2023-11-24 08:11:08 +01:00
Sebastian Falbesoner
1ddd76af0a bench: add --help option to bench_internal 2023-11-24 02:33:40 +01:00
Tim Ruffing
e72103932d Merge bitcoin-core/secp256k1#1441: asm: add .note.GNU-stack section for non-exec stack
33dc7e4d3e asm: add .note.GNU-stack section for non-exec stack (fanquake)

Pull request description:

  With this in place, we no-longer see warnings like the following:
  ```bash
  /usr/lib/gcc-cross/arm-linux-gnueabihf/12/../../../../arm-linux-gnueabihf/bin/ld: warning: field_10x26_arm.o: missing .note.GNU-stack section implies executable stack
  /usr/lib/gcc-cross/arm-linux-gnueabihf/12/../../../../arm-linux-gnueabihf/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
  ```

  Should close #1434.

ACKs for top commit:
  sipa:
    utACK 33dc7e4d3e
  real-or-random:
    utACK 33dc7e4d3e

Tree-SHA512: f75ded8d971f54d1e871bcc4d815ba367b3e154eea2f18309ecaf9053e22f986bfffcf28418367f8055b65a5a0b245fee045adfcb63a2196df5e2f3aa6c97b89
2023-11-16 09:46:16 +01:00
Tim Ruffing
ea47c82e01 Merge bitcoin-core/secp256k1#1442: Return temporaries to being unsigned in secp256k1_fe_sqr_inner
10271356c8 Return temporaries to being unsigned in secp256k1_fe_sqr_inner (roconnor-blockstream)

Pull request description:

  These temporaries seem to been inadvertently changed to signed during a refactoring.  Generally, bit shifting is frowned upon for signed values.

ACKs for top commit:
  sipa:
    utACK 10271356c8
  real-or-random:
    utACK 10271356c8

Tree-SHA512: a9fefe4b146163209662cd435422beb3c9561eb9e83110454184f70df2292992f39ec1971143428e039a80cad2f6285db74de2f059e877ad8756ff739269b67a
2023-11-16 09:45:49 +01:00
Russell O'Connor
dcdda31f2c Tighten secp256k1_fe_mul_inner's VERIFY_BITS checks
These changes bring the checks to the same values used at the corresponding positions in secp256k1_fe_sqr_inner.
2023-11-14 12:07:00 -05:00
roconnor-blockstream
10271356c8 Return temporaries to being unsigned in secp256k1_fe_sqr_inner
These temporaries seem to been inadvertently changed to signed during a refactoring.  Generally, bit shifting is frowned upon for signed values.
2023-11-14 09:29:21 -05:00
fanquake
33dc7e4d3e asm: add .note.GNU-stack section for non-exec stack
With this in place, we no-longer see warnings like the following:
```bash
/usr/lib/gcc-cross/arm-linux-gnueabihf/12/../../../../arm-linux-gnueabihf/bin/ld: warning: field_10x26_arm.o: missing .note.GNU-stack section implies executable stack
/usr/lib/gcc-cross/arm-linux-gnueabihf/12/../../../../arm-linux-gnueabihf/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
```

Should close #1434.
2023-11-13 14:49:35 +00:00
Tim Ruffing
c891c5c2f4 Merge bitcoin-core/secp256k1#1437: ci: Ignore internal errors of snapshot compilers
8185e72d29 ci: Ignore internal errors in snapshot compilers (Hennadii Stepanov)

Pull request description:

  It was discussed on today's IRC meeting.

ACKs for top commit:
  real-or-random:
    ACK 8185e72d29

Tree-SHA512: 0f41ca8303bd3d6efefcd3a544c7bd7dfcf464c57c779c876da4a77cacd262e6c963449d493fdf5a641b0d10b655c8c67fe8a147145b6533328d7bf5344313e1
2023-11-08 20:50:55 +01:00
Hennadii Stepanov
8185e72d29 ci: Ignore internal errors in snapshot compilers 2023-11-08 17:51:52 +00:00
Tim Ruffing
40f50d0fbd Merge bitcoin-core/secp256k1#1184: Signed-digit based ecmult_const algorithm
355bbdf38a Add changelog entry for signed-digit ecmult_const algorithm (Pieter Wuille)
21f49d9bec Remove unused secp256k1_scalar_shr_int (Pieter Wuille)
115fdc7232 Remove unused secp256k1_wnaf_const (Pieter Wuille)
aa9f3a3c00 ecmult_const: add/improve tests (Jonas Nick)
4d16e90111 Signed-digit based ecmult_const algorithm (Pieter Wuille)
ba523be067 make SECP256K1_SCALAR_CONST reduce modulo exhaustive group order (Pieter Wuille)
2140da9cd5 Add secp256k1_scalar_half for halving scalars (+ tests/benchmarks). (Pieter Wuille)

Pull request description:

  Using some insights learned from #1058, this replaces the fixed-wnaf ecmult_const algorithm with a signed-digit based one. Conceptually both algorithms are very similar, in that they boil down to summing precomputed odd multiples of the input points. Practically however, the new algorithm is simpler because it's just using scalar operations, rather than relying on wnaf machinery with skew terms to guarantee odd multipliers.

  The idea is that we can compute $q \cdot A$ as follows:
  * Let $s = f(q)$, for some function $f()$.
  * Compute $(s_1, s_2)$ such that $s = s_1 + \lambda s_2$, using `secp256k1_scalar_lambda_split`.
  * Let $v_1 = s_1 + 2^{128}$ and $v_2 = s_2 + 2^{128}$ (such that the $v_i$ are positive and $n$ bits long).
  * Computing the result as $$\sum_{i=0}^{n-1} (2v_1[i]-1) 2^i A + \sum_{i=0}^{n-1} (2v_2[i]-1) 2^i \lambda A$$ where $x[i]$ stands for the *i*'th bit of $x$, so summing positive and negative powers of two times $A$, based on the bits of $v_1.$

  The comments in `ecmult_const_impl.h` show that if $f(q) = (q + (1+\lambda)(2^n - 2^{129} - 1))/2 \mod n$, the result will equal $q \cdot A$.

  This last step can be performed in groups of multiple bits at once, by looking up entries in a precomputed table of odd multiples of $A$ and $\lambda A$, and then multiplying by a power of two before proceeding to the next group.

  The result is slightly faster (I measure ~2% speedup), but significantly simpler as it only uses scalar arithmetic to determine the table lookup values. The speedup is due to the fact that no skew corrections at the end are needed, and less overhead to determine table indices. The precomputed table sizes are also made independent from the `ecmult` ones, after observing that the optimal table size is bigger here (which also gives a small speedup).

ACKs for top commit:
  jonasnick:
    ACK 355bbdf38a
  siv2r:
    ACK 355bbdf
  real-or-random:
    ACK 355bbdf38a

Tree-SHA512: 13db572cb7f9be00bf0931c65fcd8bc8b5545be86a8c8700bd6a79ad9e4d9e5e79e7f763f92ca6a91d9717a355f8162204b0ea821b6ae99d58cb400497ddc656
2023-11-07 23:18:59 +01:00
roconnor-blockstream
8e2a5fe908 correct assertion for secp256k1_fe_mul_inner
Based on the surrounding asserts, 112 bits before this line, and 61 bits after this line, this assertion should be 113 bits.  Notably the commensurate line in secp256k1_fe_sqr_inner is correctly assert to be 113 bits.
2023-11-06 17:40:17 -05:00
Pieter Wuille
355bbdf38a Add changelog entry for signed-digit ecmult_const algorithm 2023-11-04 15:55:12 -04:00
Pieter Wuille
21f49d9bec Remove unused secp256k1_scalar_shr_int 2023-11-04 15:55:12 -04:00
Pieter Wuille
115fdc7232 Remove unused secp256k1_wnaf_const 2023-11-04 15:55:12 -04:00
Jonas Nick
aa9f3a3c00 ecmult_const: add/improve tests
* add test case for a=infinity

  The corresponding ecmult_const branch was not tested before this commit.

* add test for edge cases
2023-11-04 15:55:12 -04:00
Pieter Wuille
4d16e90111 Signed-digit based ecmult_const algorithm 2023-11-04 15:55:12 -04:00
Pieter Wuille
ba523be067 make SECP256K1_SCALAR_CONST reduce modulo exhaustive group order 2023-11-04 15:54:08 -04:00
Pieter Wuille
2140da9cd5 Add secp256k1_scalar_half for halving scalars (+ tests/benchmarks).
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-11-04 15:54:08 -04:00
Tim Ruffing
1f1bb78b7f Merge bitcoin-core/secp256k1#1430: README: remove CI badge
5dab0baa80 README: remove CI badge (Jonas Nick)

Pull request description:

ACKs for top commit:
  sipa:
    utACK 5dab0baa80
  real-or-random:
    utACK 5dab0baa80

Tree-SHA512: 56730fa8067cc48b8e5af6fc21b0cd6c47f615c5ebba9edcf29ca5eaf7b2359662a9af219612e80688d8f8939649c7c3c26136c0442ba47d56251a0d92cf984a
2023-10-23 17:49:43 +02:00
Jonas Nick
5dab0baa80 README: remove CI badge
We're not solely using cirrus anymore and github already displays the CI status
at a different location.
2023-10-22 11:50:09 +00:00
Tim Ruffing
b314cf2833 Merge bitcoin-core/secp256k1#1426: ci/cirrus: Add native ARM64 jobs
fa4d6c76b6 ci/cirrus: Add native ARM64 persistent workers (MarcoFalke)
2262d0eaab ci/cirrus: Bring back skeleton .cirrus.yml without jobs (Tim Ruffing)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK fa4d6c76b6
  hebasto:
    re-ACK fa4d6c76b6, only last two commits have been squashed since my recent [review](https://github.com/bitcoin-core/secp256k1/pull/1426#pullrequestreview-1636119941).

Tree-SHA512: d1fee99d54a41a4126f7eb72695a56137c925dc9ce7cd692a60ea1262ac0789bbd6aa4e4dfc030f0d97d06aeeae0724a5f2d794a85ff533c6cf3cd215f6a4b7a
2023-09-20 23:14:07 +00:00
MarcoFalke
fa4d6c76b6 ci/cirrus: Add native ARM64 persistent workers
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-09-20 17:09:54 +00:00
Tim Ruffing
ee7aaf213e Merge bitcoin-core/secp256k1#1395: tests: simplify random_fe_non_zero (remove loop limit and unneeded normalize)
c45b7c4fbb refactor: introduce testutil.h (deduplicate `random_fe_`, `ge_equals_` helpers) (Sebastian Falbesoner)
dc5514144f tests: simplify `random_fe_non_zero` (remove loop limit and unneeded normalize) (Sebastian Falbesoner)

Pull request description:

  `random_fe_non_zero` contains a loop iteration limit that ensures that we abort if `random_fe` ever yielded zero more than ten times in a row. This construct was first introduced in PR #19 (commit 09ca4f32) for random non-square field elements and was later refactored into the non-zero helper in PR #25 (commit 6d6102fe). The copy-over to the exhaustive tests happened recently in PR #1118 (commit 0f864207).

  This case seems to be practically irrelevant and I'd argue for keeping things simple and removing it (which was already suggested in https://github.com/bitcoin-core/secp256k1/pull/1118#discussion_r1067259954); if there's really a worry that the test's random generator is heavily biased towards certain values or value ranges then there should consequently be checks at other places too (e.g. directly in `random_fe` for 256-bit values that repeatedly overflow, i.e. >= p).

  Also, the _fe_normalize call is not needed and can be removed, as the result of `random_fe` is already normalized.

ACKs for top commit:
  real-or-random:
    utACK c45b7c4fbb
  siv2r:
    ACK `c45b7c4` (reviewed the changes and tests for both the commits passed locally).

Tree-SHA512: 4ffa66dd0b8392d7d0083a71e7b0682ad18f9261fd4ce8548c3059b497d3462db97e16114fded9787661ca447a877a27f5b996bd7d47e6f91c4454079d28a8ac
2023-09-14 15:06:41 +02:00
Tim Ruffing
ba9cb6f378 Merge bitcoin-core/secp256k1#1424: ci: Bump major versions for docker actions
d9d80fd155 ci: Bump major versions for docker actions (Hennadii Stepanov)

Pull request description:

  See:
  - https://github.com/docker/build-push-action/releases/tag/v5.0.0
  - https://github.com/docker/setup-buildx-action/releases/tag/v3.0.0

ACKs for top commit:
  real-or-random:
    ACK d9d80fd155

Tree-SHA512: b1266e46cd02f8e893b4ce3b4bf51f7fb2ea7c6ae54a5c24a4bc5df4f6e97e99afaf90cf598d4321e8b83a250ba5fd7d43c34d53a8cc71f70f6c6e05cc973d6f
2023-09-13 14:49:13 +02:00
Hennadii Stepanov
d9d80fd155 ci: Bump major versions for docker actions
https://github.com/docker/build-push-action/releases/tag/v5.0.0
https://github.com/docker/setup-buildx-action/releases/tag/v3.0.0
2023-09-12 10:18:39 +01:00
Tim Ruffing
4fd00f4bfe Merge bitcoin-core/secp256k1#1422: cmake: Install libsecp256k1.pc file
421d84855a ci: Align Autotools/CMake `CI_INSTALL` directory names (Hennadii Stepanov)
9f005c60d6 cmake: Install `libsecp256k1.pc` file (Hennadii Stepanov)

Pull request description:

  This PR allows downstream projects to use pkg-config to search for the libsecp256k1 library that is built with CMake.

  Addressed https://github.com/bitcoin-core/secp256k1/discussions/1419#discussioncomment-6922896:
  > We could just ship the pkg-config file also in CMake builds.

ACKs for top commit:
  real-or-random:
    ACK 421d84855a I compared the generated pc files and they match in autotools and CMake

Tree-SHA512: 8e54eb7c76bc727ab18715258c06cc2a419c6c04892a2bd7bfe34392f9a3223f673ff84d2d21b00b3c222b357f02296ec49c872532d98ea0a2f17ef1ed6b6ac1
2023-09-12 10:14:48 +02:00
Hennadii Stepanov
421d84855a ci: Align Autotools/CMake CI_INSTALL directory names 2023-09-07 20:58:28 +01:00
Hennadii Stepanov
9f005c60d6 cmake: Install libsecp256k1.pc file
This change allows downstream projects to use pkg-config to search for
the libsecp256k1 library that is built with CMake.
2023-09-07 20:47:57 +01:00
Tim Ruffing
2262d0eaab ci/cirrus: Bring back skeleton .cirrus.yml without jobs 2023-09-05 13:45:43 +02:00
Jonas Nick
b10ddd2bd2 Merge bitcoin-core/secp256k1#1416: doc: Align documented scripts with CI ones
b0f7bfedc9 doc: Do not mention soname in CHANGELOG.md "ABI Compatibility" section (Hennadii Stepanov)
bd9d98d353 doc: Align documented scripts with CI ones (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  sipa:
    ACK b0f7bfedc9
  real-or-random:
    ACK b0f7bfedc9

Tree-SHA512: 99cbc065cf9610923a863bac34e607ce4f2b1fe71fc32cb96fed33203e42c914ef29924cd9eade89859f63fdd95ffb214c5a2a1066bfca9c202e85aec5f7c16e
2023-09-04 17:27:23 +00:00
Tim Ruffing
49be5be9e8 Merge bitcoin-core/secp256k1#1390: tests: Replace counting_illegal_callbacks with CHECK_ILLEGAL_VOID
70303643cf tests: add CHECK_ERROR_VOID and use it in scratch tests (Jonas Nick)
f8d7ea68df tests: Replace counting_illegal_callbacks with CHECK_ILLEGAL_VOID (Jonas Nick)
a1d52e3e12 tests: remove unnecessary test in run_ec_pubkey_parse_test (Jonas Nick)
875b0ada25 tests: remove unnecessary set_illegal_callback (Jonas Nick)

Pull request description:

  Fixes #1167

ACKs for top commit:
  siv2r:
    reACK 7030364 (tests pass locally)
  real-or-random:
    reACK 70303643cf

Tree-SHA512: 0ca1f1c92a1c3a93b412433e53e882be56f3c7c55d4cbf12683ab7d9b8a916231b6508270099bfed0bfaa9d0af19cb8fdf0fe3274112ab48d33a0bd2356f2fa7
2023-09-04 18:58:57 +02:00
Tim Ruffing
cbf3053ff1 Merge bitcoin-core/secp256k1#1417: release cleanup: bump version after 0.4.0
9b118bc7fb release cleanup: bump version after 0.4.0 (Jonas Nick)

Pull request description:

  based on #1415

ACKs for top commit:
  sipa:
    ACK 9b118bc7fb
  hebasto:
    ACK 9b118bc7fb
  real-or-random:
    ACK 9b118bc7fb

Tree-SHA512: 76df87c41bdc3379df4e88619645f5110010d7713ebe20bad3e7c99472bd62b90f4bd3c6b558ad5a23119acc4734e39383d96a9800e4a43dfadc086ef66fd0ab
2023-09-04 18:37:41 +02:00
Jonas Nick
9b118bc7fb release cleanup: bump version after 0.4.0 2023-09-04 16:27:38 +00:00
Jonas Nick
199d27cea3 Merge bitcoin-core/secp256k1#1415: release: Prepare for 0.4.0
16339804c9 release: Prepare for 0.4.0 (Tim Ruffing)
d9a85065a9 changelog: Catch up in preparation of release (Tim Ruffing)

Pull request description:

ACKs for top commit:
  hebasto:
    re-ACK 16339804c9.
  sipa:
    ACK 16339804c9
  jonasnick:
    ACK 16339804c9

Tree-SHA512: 9b29edc8beece44cb8456de9844bf22e13f41b43bb5567b3f37dcbdcb7cd5ca6a976a0f805973ddfa7666509aa452247a4d8297e3cfb362acaf4f0fa942daa21
2023-09-04 16:26:47 +00:00
Jonas Nick
70303643cf tests: add CHECK_ERROR_VOID and use it in scratch tests 2023-09-04 16:19:49 +00:00
Jonas Nick
f8d7ea68df tests: Replace counting_illegal_callbacks with CHECK_ILLEGAL_VOID
This commit also explicitly initializes shortpubkey. For some reason, removing
surrounding, unrelated lines results in gcc warnings when configured with
--enable-ctime-tests=no --with-valgrind=no.
2023-09-04 16:19:40 +00:00
Tim Ruffing
16339804c9 release: Prepare for 0.4.0 2023-09-04 18:18:24 +02:00
Tim Ruffing
d9a85065a9 changelog: Catch up in preparation of release 2023-09-04 18:18:19 +02:00
Hennadii Stepanov
b0f7bfedc9 doc: Do not mention soname in CHANGELOG.md "ABI Compatibility" section
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-09-04 17:05:53 +01:00
Hennadii Stepanov
bd9d98d353 doc: Align documented scripts with CI ones 2023-09-04 16:05:29 +01:00
Tim Ruffing
0b4640aedd Merge bitcoin-core/secp256k1#1413: ci: Add release job
8659a01714 ci: Add `release` job (Hennadii Stepanov)
f9b38894ba ci: Update `actions/checkout` version (Hennadii Stepanov)

Pull request description:

  This PR introduces a new "Release" job that conducts sanity checks as defined in [`doc/release-process.md`](https://github.com/bitcoin-core/secp256k1/blob/master/doc/release-process.md#sanity-checks).

ACKs for top commit:
  sipa:
    ACK 8659a01714
  real-or-random:
    ACK 8659a01714

Tree-SHA512: 84e03fa07f8c41aec0f6d1ccb4ac3643e85d370ef7e388b335365deadb555f2d9ef7e5d80e1255a18e790a774e04ca66f265b9441402b183d4c535a97688f20f
2023-09-04 16:27:14 +02:00
Hennadii Stepanov
8659a01714 ci: Add release job
The new job runs checks outlined in the `doc/release-process.md`.
2023-09-04 15:04:37 +01:00
Hennadii Stepanov
f9b38894ba ci: Update actions/checkout version 2023-09-04 14:58:01 +01:00
Jonas Nick
a1d52e3e12 tests: remove unnecessary test in run_ec_pubkey_parse_test
This test tested whether setting the callback works correctly which should be
tested in the context tests.
2023-09-04 12:52:19 +00:00
Jonas Nick
875b0ada25 tests: remove unnecessary set_illegal_callback 2023-09-04 12:50:32 +00:00
Tim Ruffing
727bec5bc2 Merge bitcoin-core/secp256k1#1414: ci/gha: Add ARM64 QEMU jobs for clang and clang-snapshot
2635068abf ci/gha: Let MSan continue checking after errors in all jobs (Tim Ruffing)
e78c7b68eb ci/Dockerfile: Reduce size of Docker image further (Tim Ruffing)
2f0d3bbffb ci/Dockerfile: Warn if `ulimit -n` is too high when running Docker (Tim Ruffing)
4b8a647ad3 ci/gha: Add ARM64 QEMU jobs for clang and clang-snapshot (Tim Ruffing)
6ebe7d2bb3 ci/Dockerfile: Always use versioned clang packages (Tim Ruffing)

Pull request description:

  Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1392.

  This PR also has a few tweaks to the Dockerfile, see individual commits.

  ---

  I'll follow up soon with a PR for ARM64/gcc. This will rely on Cirrus CI.

ACKs for top commit:
  hebasto:
    ACK 2635068abf.

Tree-SHA512: d290bdd8e8e2a2a2b6ccb1b25ecdc9662c51dab745068a98044b9abed75232d13cb9d2ddc2c63c908dcff6a12317f0c7a35db3288c57bc3b814793f7fce059fd
2023-09-04 08:59:14 +02:00
Tim Ruffing
2635068abf ci/gha: Let MSan continue checking after errors in all jobs 2023-09-03 11:31:35 +02:00
Tim Ruffing
e78c7b68eb ci/Dockerfile: Reduce size of Docker image further
- No need to have wget installed
 - Clean up rm -rf /var/lib/apt/lists/, see
   https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#apt-get
2023-09-03 11:31:35 +02:00
Tim Ruffing
2f0d3bbffb ci/Dockerfile: Warn if ulimit -n is too high when running Docker
The underlying issue does not affect our CI hosts, but is an issue on my
development machine (Arch Linux). In particular, this affects the vanilla
configuration of Docker on systemd, which has effectively no limit:
11400a3f5a/pkg/docker-engine/common/systemd/docker.service (L31)

I hope this saves future generations some precious hours of their life.
2023-09-03 11:31:35 +02:00
Tim Ruffing
4b8a647ad3 ci/gha: Add ARM64 QEMU jobs for clang and clang-snapshot 2023-09-03 11:31:35 +02:00
Tim Ruffing
6ebe7d2bb3 ci/Dockerfile: Always use versioned clang packages
This commit switches to a new strategy to make sure we're installing the
most recent LLVM packages. Before this commit, we used the unversioned
LLVM packages (e.g., `clang` instead of `clang-18`), which are supposed
to provide the latest snapshot, but this is broken for arm64 [1],
which we want to add in a later PR.

Anyway, the new approach is cleaner because it does not require us to
fiddle with the installed `clang` package by removing a symlink.

[1] https://github.com/llvm/llvm-project/issues/64790

Co-authored-by: Hennadii Stepanov <32963518+hebasto@users.noreply.github.com>
2023-09-03 11:29:44 +02:00
Tim Ruffing
65c79fe2d0 Merge bitcoin-core/secp256k1#1412: ci: Switch macOS from Ventura to Monterey and add Valgrind
c223d7e33d ci: Switch macOS from Ventura to Monterey and add Valgrind (Hennadii Stepanov)

Pull request description:

  This PR switches the macOS native job from Ventura to Monterey, which allows to support Valgrind.

  Both runners--`macos-12` and `macos-13`--have the same clang compilers installed:
  - https://github.com/actions/runner-images/blob/main/images/macos/macos-12-Readme.md
  - https://github.com/actions/runner-images/blob/main/images/macos/macos-13-Readme.md

  But Valgrind works fine on macOS Monterey, but not on Ventura.

  See: https://github.com/bitcoin-core/secp256k1/issues/1392#issuecomment-1693685610.

  The Homebrew's Valgrind package is cached once it has been built (as it was before https://github.com/bitcoin-core/secp256k1/pull/1152). Therefore, the `actions/cache@*` action is needed to be added to the list of the allowed actions.

  https://github.com/bitcoin-core/secp256k1/pull/1412#issuecomment-1695716350:
  > By the way, this solves #1151.

ACKs for top commit:
  real-or-random:
    ACK c223d7e33d I tested that a cttest failure makes CI fail: https://github.com/real-or-random/secp256k1/actions/runs/6010365844

Tree-SHA512: 5e72d89fd4d82acbda8adeda7106db0dad85162cca03abe8eae9a40393997ba36a84ad7b12c4b32aec5e9230f275738ef12169994cd530952e2b0b963449b231
2023-08-29 14:59:47 +02:00
Hennadii Stepanov
c223d7e33d ci: Switch macOS from Ventura to Monterey and add Valgrind 2023-08-28 17:49:45 +01:00
Tim Ruffing
ea26b71c3a Merge bitcoin-core/secp256k1#1411: ci: Make repetitive command the default one
cce0456304 ci: Make repetitive command the default one (Hennadii Stepanov)
317a4c48f0 ci: Move `git config ...` to `run-in-docker-action` (Hennadii Stepanov)

Pull request description:

  This PR addresses the https://github.com/bitcoin-core/secp256k1/pull/1409#discussion_r1301767281:
  > couldn't we add this to `run-in-docker-action` to avoid duplication?

ACKs for top commit:
  real-or-random:
    ACK cce0456304

Tree-SHA512: 793cec3d99853a23e06680fe35a7cae2dc8771f22e3940c4a4f36357273164f2d92e196768118d146e956ffca9ef59d4e5f86e1cba5576ebfdc59343581c9924
2023-08-24 10:46:07 +02:00
Hennadii Stepanov
cce0456304 ci: Make repetitive command the default one 2023-08-23 21:31:57 +01:00
Hennadii Stepanov
317a4c48f0 ci: Move git config ... to run-in-docker-action 2023-08-23 21:18:53 +01:00
Tim Ruffing
4d7fe60905 Merge bitcoin-core/secp256k1#1409: ci: Move remained task from Cirrus to GitHub Actions
676ed8f9cf ci: Move "C++ (public headers)" from Cirrus to GitHub Actions (Hennadii Stepanov)
61fc3a2dc8 ci: Move "C++ -fpermissive..." from Cirrus to GitHub Actions (Hennadii Stepanov)
d51fb0a533 ci: Move "MSan" from Cirrus to GitHub Actions (Hennadii Stepanov)
c22ac27529 ci: Move sanitizers task from Cirrus to GitHub Actions (Hennadii Stepanov)

Pull request description:

  This PR concludes the migration from Cirrus CI to GitHub Actions.

ACKs for top commit:
  real-or-random:
    ACK 676ed8f9cf

Tree-SHA512: d8ea91a20297ff4c2c11a02c0a52f19413fde442c71e2e8b660737c09d62e55e4ae3f9bdbdeb0d967f6720a3dffa1566b7f94e0e32bcd490ac052819d5427c84
2023-08-23 14:57:52 +02:00
Hennadii Stepanov
676ed8f9cf ci: Move "C++ (public headers)" from Cirrus to GitHub Actions 2023-08-23 10:59:26 +01:00
Hennadii Stepanov
61fc3a2dc8 ci: Move "C++ -fpermissive..." from Cirrus to GitHub Actions 2023-08-23 10:24:24 +01:00
Hennadii Stepanov
d51fb0a533 ci: Move "MSan" from Cirrus to GitHub Actions 2023-08-23 10:24:15 +01:00
Hennadii Stepanov
c22ac27529 ci: Move sanitizers task from Cirrus to GitHub Actions 2023-08-23 10:24:05 +01:00
Tim Ruffing
26a989924b Merge bitcoin-core/secp256k1#1410: ci: Use concurrency for pull requests only
ee1be62d84 ci: Use concurrency for pull requests only (Hennadii Stepanov)

Pull request description:

  This PR is an amendment for https://github.com/bitcoin-core/secp256k1/pull/1403.

  It avoids skipping builds when some pushes were done consequentially.

  From GitHub Actions [docs](https://docs.github.com/en/actions/using-jobs/using-concurrency):

  > When a concurrent ... workflow is queued, if another ... workflow using the same concurrency group in the repository is in progress, the queued ... workflow will be pending. **Any previously pending ... workflow in the concurrency group will be canceled.**

  No behavior change for pull requests.

  Same as https://github.com/bitcoin/bitcoin/pull/28322.

ACKs for top commit:
  real-or-random:
    ACK ee1be62d84

Tree-SHA512: ce26378c3224a7647eb3b351d19e9308650ad49b933a68d37a0eca8516767a63f55580a33b02864caa539392c9aab0b4b54ecbace85bea6082bf533539a37c9c
2023-08-23 11:02:52 +02:00
Hennadii Stepanov
ee1be62d84 ci: Use concurrency for pull requests only
Otherwise, any previously pending workflow will be canceled on the
following push.
2023-08-22 15:02:30 +01:00
Tim Ruffing
6ee14550c8 Merge bitcoin-core/secp256k1#1406: ci, gha: Move more non-x86_64 tasks from Cirrus CI to GitHub Actions
fc3dea29ea ci: Move "ppc64le: Linux..." from Cirrus to GitHub Actions (Hennadii Stepanov)
7782dc8276 ci: Move "ARM64: Linux..." from Cirrus to GitHub Actions (Hennadii Stepanov)
0a16de671c ci: Move "ARM32: Linux..." from Cirrus to GitHub Actions (Hennadii Stepanov)
ea33914e00 ci: Move "s390x (big-endian): Linux..." from Cirrus to GitHub Actions (Hennadii Stepanov)
880be8af99 ci: Move "i686: Linux (Debian stable)" from Cirrus to GiHub Actions (Hennadii Stepanov)

Pull request description:

  Move more non-x86_64 tasks from Cirrus CI to GitHub Actions.

  Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1392 partially.

ACKs for top commit:
  real-or-random:
    ACK fc3dea29ea but still waiting for Cirrus

Tree-SHA512: 9a910b3ee500aa34fc4db827f8b2a50bcfb637a9e59f4ad32545634772b397ce80b31a18723f4605dc42aa19a5632292943102099f7720f87de1da454da068b0
2023-08-22 11:10:43 +02:00
Hennadii Stepanov
fc3dea29ea ci: Move "ppc64le: Linux..." from Cirrus to GitHub Actions 2023-08-21 15:33:27 +01:00
Hennadii Stepanov
7782dc8276 ci: Move "ARM64: Linux..." from Cirrus to GitHub Actions 2023-08-21 15:33:19 +01:00
Hennadii Stepanov
0a16de671c ci: Move "ARM32: Linux..." from Cirrus to GitHub Actions 2023-08-21 15:33:08 +01:00
Hennadii Stepanov
ea33914e00 ci: Move "s390x (big-endian): Linux..." from Cirrus to GitHub Actions 2023-08-21 15:32:56 +01:00
Hennadii Stepanov
880be8af99 ci: Move "i686: Linux (Debian stable)" from Cirrus to GiHub Actions 2023-08-21 15:32:20 +01:00
Tim Ruffing
2e6cf9bae5 Merge bitcoin-core/secp256k1#1396: ci, gha: Add "x86_64: Linux (Debian stable)" GitHub Actions job
e10878f58e ci, gha: Drop `driver-opts.network` input for `setup-buildx-action` (Hennadii Stepanov)
4ad4914bd1 ci, gha: Add `retry_builder` Docker image builder (Hennadii Stepanov)
6617a620d9 ci: Remove "x86_64: Linux (Debian stable)" task from Cirrus CI (Hennadii Stepanov)
03c9e6508c ci, gha: Add "x86_64: Linux (Debian stable)" GitHub Actions job (Hennadii Stepanov)
ad3e65d9fe ci: Remove GCC build files and sage to reduce size of Docker image (Tim Ruffing)

Pull request description:

  Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1392 partially.

ACKs for top commit:
  real-or-random:
    ACK e10878f58e

Tree-SHA512: 1e685b1a6a41b4be97b9b5bb0fe546c3f1f7daac9374146ca05ab29803d5945a038294ce3ab77489bd971ffce9789ece722e0e0f268b6a7e6483a3aa782d532d
2023-08-21 16:06:50 +02:00
Tim Ruffing
5373693e45 Merge bitcoin-core/secp256k1#1405: ci: Drop no longer needed workaround
ef9fe959de ci: Drop no longer needed workaround (Hennadii Stepanov)

Pull request description:

  The https://sourceware.org/bugzilla/show_bug.cgi?id=27008 bug has been resolved since libc 2.33.

  Debian Bookworm has [libc](https://packages.debian.org/bookworm/libc6) 2.36.

  I've separated this change from moving CI tasks to GitHub Actions intentionally.

ACKs for top commit:
  real-or-random:
    ACK ef9fe959de

Tree-SHA512: 4e8ce1232fcb581fa4700da75e5f63ff3da359416e5c5c1966f6aae079219fd697554db03d0b1729ea62cca42aae74bd36621a85d6ec7e4ee18e2c20b879cfa6
2023-08-21 16:06:04 +02:00
Hennadii Stepanov
ef9fe959de ci: Drop no longer needed workaround
The https://sourceware.org/bugzilla/show_bug.cgi?id=27008 bug has been
resolved since libc 2.33.

Debian Bookworm has libc 2.36.
2023-08-20 11:15:45 +01:00
Hennadii Stepanov
e10878f58e ci, gha: Drop driver-opts.network input for setup-buildx-action 2023-08-19 18:02:08 +01:00
Hennadii Stepanov
4ad4914bd1 ci, gha: Add retry_builder Docker image builder
This change is aimed at significantly reducing the frequency of failures
caused by intermittent network timeouts.
2023-08-18 17:05:25 +01:00
Hennadii Stepanov
6617a620d9 ci: Remove "x86_64: Linux (Debian stable)" task from Cirrus CI 2023-08-18 13:58:46 +01:00
Hennadii Stepanov
03c9e6508c ci, gha: Add "x86_64: Linux (Debian stable)" GitHub Actions job 2023-08-18 13:57:50 +01:00
Tim Ruffing
ad3e65d9fe ci: Remove GCC build files and sage to reduce size of Docker image 2023-08-18 13:52:28 +01:00
Jonas Nick
6b9507adf6 Merge bitcoin-core/secp256k1#1398: ci, gha: Add Windows jobs based on Linux image
87d35f30c0 ci: Rename `cirrus.sh` to more general `ci.sh` (Hennadii Stepanov)
d6281dd008 ci: Remove Windows tasks from Cirrus CI (Hennadii Stepanov)
2b6f9cd546 ci, gha: Add Windows jobs based on Linux image (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK 87d35f30c0
  jonasnick:
    ACK 87d35f30c0

Tree-SHA512: bab005041692f52ed26899d50ee9114e6dd57a21ffa36b4d0b99e8b5b394a64a956cbc99ae2767fdf64f242970ebbeb0df4f5b373e059ecb187174f471b1a95e
2023-08-18 12:47:10 +00:00
Hennadii Stepanov
87d35f30c0 ci: Rename cirrus.sh to more general ci.sh
This makes sense in the process of moving stuff to GitHub Actions.
2023-08-18 10:57:58 +01:00
Hennadii Stepanov
d6281dd008 ci: Remove Windows tasks from Cirrus CI 2023-08-18 10:57:58 +01:00
Hennadii Stepanov
2b6f9cd546 ci, gha: Add Windows jobs based on Linux image 2023-08-18 10:57:45 +01:00
Jonas Nick
48b1d939b5 Merge bitcoin-core/secp256k1#1403: ci, gha: Ensure only a single workflow processes github.ref at a time
b0886fd35c ci, gha: Ensure only a single workflow processes `github.ref` at a time (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK b0886fd35c
  jonasnick:
    ACK b0886fd35c

Tree-SHA512: 8edda9259fc07bda3a35286ab97238b2f2749fbc629030da52e5a352988e5562cf62255c7d4917b7f0c8dbc9a0bd3a36b5e725d3d5a4c635ae8239faef829d1b
2023-08-18 09:56:40 +00:00
Tim Ruffing
0ba2b94551 Merge bitcoin-core/secp256k1#1373: Add invariant checking for scalars
d23da6d557 use secp256k1_scalar_verify checks (stratospher)
c7d0454932 add verification for scalars (stratospher)
ad152151b0 update max scalar in scalar_cmov_test and fix schnorrsig_verify exhaustive test (stratospher)

Pull request description:

  From #1360. This PR:
  1. adds `secp256k1_scalar_verify` to make sure scalars are reduced mod the group order in VERIFY mode
  2. uses `secp256k1_scalar_verify` in all the scalar functions except `secp256k1_scalar_clear`, `secp256k1_scalar_reduce_512`, `secp256k1_scalar_mul_512` and `secp256k1_scalar_*_var` functions in `scalar_low_impl.h`

ACKs for top commit:
  real-or-random:
    utACK d23da6d557
  theStack:
    Code-review ACK d23da6d557

Tree-SHA512: a371b319d948198c4038d35c9ea58f4b94de4dc312215e2b78a323c2acd4ae1355d97935c558b388774832d6d0058b97ff8ca50c3aab40b9ede5307760d0a505
2023-08-18 11:44:17 +02:00
Sebastian Falbesoner
c45b7c4fbb refactor: introduce testutil.h (deduplicate random_fe_, ge_equals_ helpers) 2023-08-17 19:44:00 +02:00
Sebastian Falbesoner
dc5514144f tests: simplify random_fe_non_zero (remove loop limit and unneeded normalize)
`random_fe_non_zero` contains a loop iteration limit that ensures that
we abort if `random_fe` ever yielded zero more than ten times in a row.
This construct was first introduced in PR #19 (commit 09ca4f32) for
random non-square field elements and was later refactored into the
non-zero helper in PR #25 (commit 6d6102fe). The copy-over to the
exhaustive tests happened recently in PR #1118 (commit 0f864207).

This case seems to be practically irrelevant and I'd argue for keeping
things simple and removing it; if there's really a worry that the test's
random generator is heavily biased towards certain values or value
ranges then there should consequently be checks at other places too
(e.g. directly in `random_fe` for 256-bit values that repeatedly
overflow, i.e. >= p).

Also, the _fe_normalize call is not needed and can be removed, as the
result of `random_fe` is already normalized.
2023-08-17 19:40:49 +02:00
Jonas Nick
060e32cb60 Merge bitcoin-core/secp256k1#1401: ci, gha: Run all MSVC tests on Windows natively
d78bec7001 ci: Remove Windows MSVC tasks from Cirrus CI (Hennadii Stepanov)
3545dc2b9b ci, gha: Run all MSVC tests on Windows natively (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK d78bec7001
  jonasnick:
    ACK d78bec7001

Tree-SHA512: b58162a9f0827dceb1c7eb6fb7c759c0bffcf3e0d24cc7e6628ad71d1faaabaffb9d8de6fcd3d07bfcaca409632a13f711f9ad871a30718139557544cf91b4bf
2023-08-17 16:55:15 +00:00
Tim Ruffing
de657c2044 Merge bitcoin-core/secp256k1#1062: Removes _fe_equal_var, and unwanted _fe_normalize_weak calls (in tests)
54058d16fe field: remove `secp256k1_fe_equal_var` (siv2r)
bb4efd6404 tests: remove unwanted `secp256k1_fe_normalize_weak` call (siv2r)

Pull request description:

  Fixes #946 and #1061

  Changes:
  - removes unwanted `fe_normalize_weak` calls to the second argument of `fe_equal`
  - removes `fe_equal_var`

ACKs for top commit:
  real-or-random:
    utACK 54058d16fe
  jonasnick:
    ACK 54058d16fe

Tree-SHA512: 89bfd1c205f760d0736b995adebb96d15b0df0a42ece25885c57ae7f4318f6816eb009a7fe94b5987a4cbb8588f0fffbdc275234b406a2d1f80d7695b4bd89db
2023-08-17 18:25:22 +02:00
Jonas Nick
bcffeb14bc Merge bitcoin-core/secp256k1#1404: ci: Remove "arm64: macOS Ventura" task from Cirrus CI
c2f6435802 ci: Add comment about switching macOS to M1 on GHA later (Tim Ruffing)
4a24fae0bc ci: Remove "arm64: macOS Ventura" task from Cirrus CI (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  hebasto:
    ACK c2f6435802
  jonasnick:
    ACK c2f6435802

Tree-SHA512: a930f2a58fdf3624d03ffd07f6db236e804100eb9d4320c943a65b5a2afb89a5da82df8e0207b87e0e8f858974af07c876c9e56495246dfd24146dfb3b10b591
2023-08-17 15:13:04 +00:00
Tim Ruffing
c2f6435802 ci: Add comment about switching macOS to M1 on GHA later 2023-08-17 16:03:54 +02:00
Hennadii Stepanov
4a24fae0bc ci: Remove "arm64: macOS Ventura" task from Cirrus CI 2023-08-17 15:56:32 +02:00
Hennadii Stepanov
b0886fd35c ci, gha: Ensure only a single workflow processes github.ref at a time 2023-08-17 14:32:43 +01:00
Jonas Nick
3d05c86d63 Merge bitcoin-core/secp256k1#1394: ci, gha: Run "x86_64: macOS Ventura" job on GitHub Actions
8e54a346d2 ci, gha: Run "x86_64: macOS Ventura" job on GitHub Actions (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK 8e54a346d2
  jonasnick:
    ACK 8e54a346d2

Tree-SHA512: c10f9d8d677409b37f1d8a49e580f3160a920fed78add3437184e5dabf79083b1ba6df920a233f27485630e5bbee9ff9825e908cc6fb64b0c9959c131bc9f070
2023-08-17 11:09:59 +00:00
Hennadii Stepanov
d78bec7001 ci: Remove Windows MSVC tasks from Cirrus CI
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-08-17 10:13:38 +01:00
Hennadii Stepanov
3545dc2b9b ci, gha: Run all MSVC tests on Windows natively 2023-08-17 10:13:28 +01:00
Tim Ruffing
5d8fa825e2 Merge bitcoin-core/secp256k1#1274: test: Silent noisy clang warnings about Valgrind code on macOS x86_64
747ada3587 test: Silent noisy clang warnings about Valgrind code on macOS x86_64 (Hennadii Stepanov)

Pull request description:

  Since #1206, on macOS x86_64 with Valgrind installed, clang emits a massive amount of `-Wreserved-identifier` and `-Wreserved-macro-identifier` warnings from the `valgrind/valgrind.h` and `valgrind/memcheck.h` headers.

  This PR prevents warnings emitted for the Valgrind code.

ACKs for top commit:
  real-or-random:
    utACK 747ada3587

Tree-SHA512: dd1b2b9db2d471939fdc30f9d8fd106a12f21ec5008ca98d8ebe3087d7ea352d564e8bbd0cec59a004e084af3a84d4680cb81f2ef6fe13cf164b7691e33f437d
2023-08-16 19:04:31 +02:00
Hennadii Stepanov
8e54a346d2 ci, gha: Run "x86_64: macOS Ventura" job on GitHub Actions 2023-08-16 16:45:21 +01:00
Tim Ruffing
b327abfcea Merge bitcoin-core/secp256k1#1402: ci: Use Homebrew's gcc in native macOS task
d62db57427 ci: Use Homebrew's gcc in native macOS task (Hennadii Stepanov)

Pull request description:

  Fixes an issue noticed in https://github.com/bitcoin-core/secp256k1/pull/1394#issuecomment-1680233151:

  > This uses the wrong GCC, namely Clang

  When `CC=gcc`:

  - on the [master](https://api.cirrus-ci.com/v1/task/5074854529990656/logs/test.log) branch:
  ```
  + gcc -v
  Apple clang version 14.0.3 (clang-1403.0.22.14.1)
  Target: arm64-apple-darwin22.5.0
  Thread model: posix
  InstalledDir: /Library/Developer/CommandLineTools/usr/bin
  ```

  - with this [PR](https://api.cirrus-ci.com/v1/task/5460539170619392/logs/test.log):
  ```
  + gcc -v
  Using built-in specs.
  COLLECT_GCC=gcc
  COLLECT_LTO_WRAPPER=/opt/homebrew/Cellar/gcc/13.1.0/bin/../libexec/gcc/aarch64-apple-darwin22/13/lto-wrapper
  Target: aarch64-apple-darwin22
  Configured with: ../configure --prefix=/opt/homebrew/opt/gcc --libdir=/opt/homebrew/opt/gcc/lib/gcc/current --disable-nls --enable-checking=release --with-gcc-major-version-only --enable-languages=c,c++,objc,obj-c++,fortran --program-suffix=-13 --with-gmp=/opt/homebrew/opt/gmp --with-mpfr=/opt/homebrew/opt/mpfr --with-mpc=/opt/homebrew/opt/libmpc --with-isl=/opt/homebrew/opt/isl --with-zstd=/opt/homebrew/opt/zstd --with-pkgversion='Homebrew GCC 13.1.0' --with-bugurl=https://github.com/Homebrew/homebrew-core/issues --with-system-zlib --build=aarch64-apple-darwin22 --with-sysroot=/Library/Developer/CommandLineTools/SDKs/MacOSX13.sdk
  Thread model: posix
  Supported LTO compression algorithms: zlib zstd
  gcc version 13.1.0 (Homebrew GCC 13.1.0)
  ```

ACKs for top commit:
  real-or-random:
    ACK d62db57427, it works: https://cirrus-ci.com/task/6200190252613632?logs=test#L27

Tree-SHA512: 34b3aa86584fc04b57301731ebf811cd5b457cebb13e64593b8efb776aec48c1be5d2662b1af3f482d39fdb43308dafa5f4bfc18bd2cf350f0f61f0be799346e
2023-08-16 16:32:19 +02:00
Hennadii Stepanov
d62db57427 ci: Use Homebrew's gcc in native macOS task
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-08-16 14:39:58 +01:00
siv2r
54058d16fe field: remove secp256k1_fe_equal_var
`fe_equal_var` hits a fast path only when the inputs are unequal, which is
uncommon among its callers (public key parsing, ECDSA verify).
2023-08-16 17:39:25 +05:30
siv2r
bb4efd6404 tests: remove unwanted secp256k1_fe_normalize_weak call
It is not neccessary for the second argument in `secp256k1_fe_equal_var`
(or `secp256k1_fe_equal`) to have magnitude = 1.
Hence, removed the `secp256k1_fe_normalize_weak` call for those argument.
2023-08-16 17:38:04 +05:30
Tim Ruffing
eedd781085 Merge bitcoin-core/secp256k1#1348: tighten group magnitude limits, save normalize_weak calls in group add methods (revival of #1032)
b7c685e74a Save _normalize_weak calls in group add methods (Peter Dettman)
c83afa66e0 Tighten group magnitude limits (Peter Dettman)
173e8d061a Implement current magnitude assumptions (Peter Dettman)
49afd2f5d8 Take use of _fe_verify_magnitude in field_impl.h (Sebastian Falbesoner)
4e9661fc42 Add _fe_verify_magnitude (no-op unless VERIFY is enabled) (Peter Dettman)
690b0fc05a add missing group element invariant checks (Sebastian Falbesoner)

Pull request description:

  This PR picks up #1032 by peterdettman. It's essentially a rebase on master; the original first commit (09dbba561fdb9d57a2cc9842ce041d9ba29a6189) which introduced group verification methods has mostly been replaced by PR #1299 (commit f20266722a) and what remains now is only adding a few missing checks at some places. The remaining commits are unchanged, though some (easy-to-solve) conflicts appeared through cherry-picking. The last commit which actually removes the `normalize_weak` calls is obviously the critical one and needs the most attention for review.

ACKs for top commit:
  sipa:
    utACK b7c685e74a
  real-or-random:
    ACK b7c685e74a
  jonasnick:
    ACK b7c685e74a

Tree-SHA512: f15167eff7ef6ed971c726a4d738de9a15be95b0c947d7e38329e7b16656202b7113497d36625304e784866349f2293f6f1d8cb97df35393af9ea465a4156da3
2023-08-16 13:51:11 +02:00
Jonas Nick
b2f6712dd3 Merge bitcoin-core/secp256k1#1400: ctimetests: Use new SECP256K1_CHECKMEM macros also for ellswift
9c91ea41b1 ci: Enable ellswift module where it's missing (Tim Ruffing)
db32a24761 ctimetests: Use new SECP256K1_CHECKMEM macros also for ellswift (Tim Ruffing)

Pull request description:

ACKs for top commit:
  hebasto:
    ACK 9c91ea41b1.
  jonasnick:
    ACK 9c91ea41b1

Tree-SHA512: e918236cb38b2bb6e69f84fcfa5f550c54f0df018103627082646a8fd731c238ce68b1b85badf042f08300208015012677143a96f9b97d94065b9a00c1da7876
2023-08-16 09:32:01 +00:00
Tim Ruffing
9c91ea41b1 ci: Enable ellswift module where it's missing 2023-08-15 19:19:36 +02:00
Tim Ruffing
db32a24761 ctimetests: Use new SECP256K1_CHECKMEM macros also for ellswift 2023-08-15 19:13:09 +02:00
Jonas Nick
ce765a5b8e Merge bitcoin-core/secp256k1#1399: ci, gha: Run "SageMath prover" job on GitHub Actions
8408dfdc4c Revert "ci: Run sage prover on CI" (Hennadii Stepanov)
c8d9914fb1 ci, gha: Run "SageMath prover" job on GitHub Actions (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    utACK 8408dfdc4c
  jonasnick:
    ACK 8408dfdc4c

Tree-SHA512: 4de628b6d5535023c5351faebfd98d2bd9effe6592f14ffe0d0f7c6eeedd7426b9891da70aa3ea7fa830f0abc054f6b015af01fb6e26f50d45eb26177a7a6310
2023-08-15 11:54:27 +00:00
Hennadii Stepanov
8408dfdc4c Revert "ci: Run sage prover on CI"
This reverts commit d8d54859ed.
2023-08-14 14:28:54 +01:00
Hennadii Stepanov
c8d9914fb1 ci, gha: Run "SageMath prover" job on GitHub Actions 2023-08-14 14:28:53 +01:00
Tim Ruffing
8d2960c8e2 Merge bitcoin-core/secp256k1#1397: ci: Remove "Windows (VS 2022)" task from Cirrus CI
f1774e5ec4 ci, gha: Make MSVC job presentation more explicit (Hennadii Stepanov)
5ee039bb58 ci: Remove "Windows (VS 2022)" task from Cirrus CI (Hennadii Stepanov)

Pull request description:

  A follow-up for https://github.com/bitcoin-core/secp256k1/pull/1389.

  https://github.com/bitcoin-core/secp256k1/pull/1389#issuecomment-1671345100:
  > Or actually... hebasto Can you remove the second commit for now, if we're unsure whether this works at all.

  ---

  Second commit effect:
  - [before (master branch)](https://github.com/bitcoin-core/secp256k1/actions/runs/5809860925):
  ![image](https://github.com/bitcoin-core/secp256k1/assets/32963518/041439a5-8d1a-4740-85c3-4223e8cd9f70)

  - [after (this PR)](https://github.com/bitcoin-core/secp256k1/actions/runs/5810140851):
  ![image](https://github.com/bitcoin-core/secp256k1/assets/32963518/9e0c8f2c-1ba6-4df9-8720-542788b24da6)

ACKs for top commit:
  real-or-random:
    utACK f1774e5ec4

Tree-SHA512: ed36c5cef3ba4cf6769d480358f753ecc4a8a150103201f586b05d8d364c580ff637fe5b915918c695c8f7067c1bd7de6384eea1a12d1b8575ba5b629779ebf4
2023-08-09 16:57:53 +02:00
Hennadii Stepanov
f1774e5ec4 ci, gha: Make MSVC job presentation more explicit 2023-08-09 15:08:24 +01:00
Hennadii Stepanov
5ee039bb58 ci: Remove "Windows (VS 2022)" task from Cirrus CI 2023-08-09 14:48:11 +01:00
Tim Ruffing
96294c00fb Merge bitcoin-core/secp256k1#1389: ci: Run "Windows (VS 2022)" job on GitHub Actions
a2f7ccdecc ci: Run "Windows (VS 2022)" job on GitHub Actions (Hennadii Stepanov)

Pull request description:

  This PR solves one item in https://github.com/bitcoin-core/secp256k1/issues/1392.

  In response to upcoming [limiting free usage of Cirrus CI](https://cirrus-ci.org/blog/2023/07/17/limiting-free-usage-of-cirrus-ci/), suggesting to move (partially?) CI tasks/jobs from Cirrus CI to [GitHub Actions](https://docs.github.com/actions) (GHA).

  Here is example from my personal repo: https://github.com/hebasto/secp256k1/actions/runs/5806269046.

  For security concerns, see:
  - https://github.com/bitcoin/bitcoin/issues/28098#issuecomment-1651432106
  - https://github.com/bitcoin/bitcoin/issues/28098#issuecomment-1651688197

  I'm suggesting the repository "Actions permissions" as follows:

  ![image](https://github.com/bitcoin-core/secp256k1/assets/32963518/bd18d489-784f-48ba-b599-ed1c4dfc34fa)

  ![image](https://github.com/bitcoin-core/secp256k1/assets/32963518/632280e0-9c26-42eb-a0ed-24f9a8142faa)

  ---

  See build logs in my personal repo: https://github.com/hebasto/secp256k1/actions/runs/5692587475.

ACKs for top commit:
  real-or-random:
    utACK a2f7ccdecc

Tree-SHA512: b6329a29391146e3cdee9a56f6151b6672aa45837dfaacb708ba4209719801ed029a6928d638d314b71c7533d927d771b3eca4b9e740cfcf580a40ba07970ae4
2023-08-09 15:43:50 +02:00
Hennadii Stepanov
a2f7ccdecc ci: Run "Windows (VS 2022)" job on GitHub Actions 2023-08-09 12:54:18 +01:00
Tim Ruffing
374e2b54e2 Merge bitcoin-core/secp256k1#1290: cmake: Set ENVIRONMENT property for examples on Windows
175db31149 ci: Drop no longer needed `PATH` variable update on Windows (Hennadii Stepanov)
116d2ab3df cmake: Set `ENVIRONMENT` property for examples on Windows (Hennadii Stepanov)
cef373997c cmake, refactor: Use helper function instead of interface library (Hennadii Stepanov)

Pull request description:

  This PR simplifies running examples on Windows, because the DLL must reside either in the same folder where the executable is or somewhere in PATH.

  It is an alternative to #1233.

ACKs for top commit:
  real-or-random:
    utACK 175db31149

Tree-SHA512: 8188018589a5bcf0179647a039cdafcce661dc103a70a5bb9e6b6f680b899332ba30b1e9ef5dad2a8c22c315d7794747e49d8cf2e391eebea21e3d8505ee334b
2023-08-03 15:15:03 +02:00
Jonas Nick
1b13415df9 Merge bitcoin-core/secp256k1#1391: refactor: take use of secp256k1_scalar_{zero,one} constants (part 2)
a1bd4971d6 refactor: take use of `secp256k1_scalar_{zero,one}` constants (part 2) (Sebastian Falbesoner)

Pull request description:

ACKs for top commit:
  real-or-random:
    utACK a1bd4971d6
  jonasnick:
    ACK a1bd4971d6

Tree-SHA512: 09ef6d9be1d3f9c19f8fe4614fe629de5c45197027e0e3f9dd8d4679a510a7b57f8aa499707a6daf652041f255c87316c9883bf7cf9a08bd41a3651bff54299e
2023-08-03 09:41:58 +00:00
Sebastian Falbesoner
a1bd4971d6 refactor: take use of secp256k1_scalar_{zero,one} constants (part 2) 2023-08-01 02:40:21 +02:00
Peter Dettman
b7c685e74a Save _normalize_weak calls in group add methods
Also update the operations count comments in each of the affected
functions accordingly and remove a redundant VERIFY_CHECK in
secp256k1_gej_add_ge (the infinity value range check [0,1] is already
covered by secp256k1_gej_verify above).

Co-authored-by: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
2023-07-29 01:10:21 +02:00
Peter Dettman
c83afa66e0 Tighten group magnitude limits
- adjust test methods that randomize magnitudes

Co-authored-by: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
2023-07-28 13:05:04 +02:00
Tim Ruffing
26392da2fb Merge bitcoin-core/secp256k1#1386: ci: print $ELLSWIFT in cirrus.sh
4692478853 ci: print $ELLSWIFT in cirrus.sh (Jonas Nick)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK 4692478853

Tree-SHA512: 84c6021e2135857541def6ba058d9c9a1c180fd32a625854ff82d51d0561a4dd243623d38d335aeaf40200501581c0678878a9166f4a96ae3fb32717b8d39fbd
2023-07-27 15:05:29 +02:00
stratospher
d23da6d557 use secp256k1_scalar_verify checks 2023-07-27 17:35:50 +05:30
Jonas Nick
4692478853 ci: print $ELLSWIFT in cirrus.sh 2023-07-27 10:20:50 +00:00
stratospher
c7d0454932 add verification for scalars
secp256k1_scalar_verify checks that scalars are reduced mod the
group order
2023-07-27 14:03:59 +05:30
Tim Ruffing
c734c64278 Merge bitcoin-core/secp256k1#1384: build: enable ellswift module via SECP_CONFIG_DEFINES
78ca880788 build: enable ellswift module via SECP_CONFIG_DEFINES (Jonas Nick)

Pull request description:

  ...like the other modules.

ACKs for top commit:
  sipa:
    utACK 78ca880788
  real-or-random:
    utACK 78ca880788

Tree-SHA512: c157a1ed912b9aa1a318aa0a70859a3ac67cb22303993f08ff00ed601e6ac197380dd503d3b361cbc4e698fc6489b5283b782f570f2703809d23668f3ebe5ba6
2023-07-27 09:21:00 +02:00
stratospher
ad152151b0 update max scalar in scalar_cmov_test and fix schnorrsig_verify exhaustive test
- `secp256k1_scalar_set_int` in scalar_low uses input mod EXHAUSTIVE_TEST_ORDER
- directly store s in sig64 without reducing it mod the group order for testing
2023-07-27 11:59:33 +05:30
Jonas Nick
78ca880788 build: enable ellswift module via SECP_CONFIG_DEFINES
...like the other modules.
2023-07-26 14:44:20 +00:00
Tim Ruffing
0e00fc7d10 Merge bitcoin-core/secp256k1#1383: util: remove unused checked_realloc
b097a466c1 util: remove unused checked_realloc (Cory Fields)

Pull request description:

  Usage was removed in 6fe50439 . This should be a NOOP.

  Noticed when analyzing for zenbleed exposure: stdlib calls that aren't optimized away.

  In this case realloc isn't making it into the final binary, but as far as I can tell this is completely dead code and should be dropped.

ACKs for top commit:
  jonasnick:
    ACK b097a466c1
  real-or-random:
    ACK b097a466c1

Tree-SHA512: d4249215eddd4035be2b50a8bb48b8a681abdab4ab41ca53f6c2a2507edfbc9ffa39ba22eb48e7da52f978e224198294495ce64f9d571d98c19283b20b82a63a
2023-07-26 13:50:23 +02:00
Cory Fields
b097a466c1 util: remove unused checked_realloc
Usage was removed in 6fe50439 .
2023-07-25 20:37:46 +00:00
Jonas Nick
2bd5f3e618 Merge bitcoin-core/secp256k1#1382: refactor: Drop unused cast
4f8c5bd761 refactor: Drop unused cast (Hennadii Stepanov)

Pull request description:

ACKs for top commit:
  real-or-random:
    utACK 4f8c5bd761
  jonasnick:
    ACK 4f8c5bd761

Tree-SHA512: cc94b524f53e393bd843383e92bbc5b84dd7557d8121241f2d0461b960a0706236147d02b6f5bfc433272849f517c62eb6f1e0cfae892e1b8054817c27365430
2023-07-24 19:07:54 +00:00
Hennadii Stepanov
4f8c5bd761 refactor: Drop unused cast 2023-07-24 13:14:23 +01:00
Peter Dettman
173e8d061a Implement current magnitude assumptions
Remove also the explicit magnitude restriction `a->x.magnitude <= 31`
in `secp256k1_gej_eq_x_var` (introduced in commit
07c0e8b82e), as this is implied by the
new limits.

Co-authored-by: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
2023-07-22 01:52:06 +02:00
Sebastian Falbesoner
49afd2f5d8 Take use of _fe_verify_magnitude in field_impl.h 2023-07-22 01:52:06 +02:00
Peter Dettman
4e9661fc42 Add _fe_verify_magnitude (no-op unless VERIFY is enabled)
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-07-22 01:52:06 +02:00
Sebastian Falbesoner
690b0fc05a add missing group element invariant checks
The group element checks `secp256k1_{ge,gej}_verify` have first been
implemented and added in commit f20266722a
(PR #1299). This commit adds additional verification calls in group
functions, to match the ones that were originally proposed in commit
09dbba561fdb9d57a2cc9842ce041d9ba29a6189 of WIP-PR #1032 (which is
obviously not rebased on #1299 yet).

Also, for easier review, all functions handling group elements are
structured in the following wasy for easier review (idea suggested by
Tim Ruffing):

- on entry, verify all input ge, gej (and fe)
- empty line
- actual function body
- empty line
- on exit, verify all output ge, gej

Co-authored-by: Peter Dettman <peter.dettman@gmail.com>
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-07-22 01:52:06 +02:00
Jonas Nick
c545fdc374 Merge bitcoin-core/secp256k1#1298: Remove randomness tests
6ec3731e8c Simplify test PRNG implementation (Pieter Wuille)
fb5bfa4eed Add static test vector for Xoshiro256++ (Tim Ruffing)
723e8ca8f7 Remove randomness tests (Pieter Wuille)

Pull request description:

ACKs for top commit:
  real-or-random:
    utACK 6ec3731e8c
  jonasnick:
    ACK 6ec3731e8c

Tree-SHA512: 4cbbb9c42e31f067b17dd9169ae5d5e68bce77d1253452db9df523d3be2b5d61002d5a4203e5a153f257ec63c5ff2113555743eeb402d4b6c573069ea494d407
2023-07-18 14:05:46 +00:00
Tim Ruffing
b40e2d30b7 Merge bitcoin-core/secp256k1#1378: ellswift: fix probabilistic test failure when swapping sides
c424e2fb43 ellswift: fix probabilistic test failure when swapping sides (Jonas Nick)

Pull request description:

  Reported by jonatack in https://github.com/bitcoin/bitcoin/issues/28079.

  When configured with `--disable-module-ecdh --enable-module-recovery`, then `./tests  64 81af32fd7ab8c9cbc2e62a689f642106` fails with
  ```
  src/modules/ellswift/tests_impl.h:396: test condition failed: secp256k1_memcmp_var(share32_bad, share32a, 32) != 0
  ```

  This tests verifies that changing the `party` bit of the `secp256k1_ellswift_xdh` function results in a different share. However, that's not the case when the secret keys of both parties are the same and this is actually what happens in the observed test failure. The keys can be equal in this test case because they are created by the `random_scalar_order_test` function whose output is not uniformly random (it's biased towards 0).

  This commit restores the assumption that the secret keys differ.

ACKs for top commit:
  sipa:
    utACK c424e2fb43
  real-or-random:
    utACK c424e2fb43

Tree-SHA512: d1ab61473a77478f9aeffb21ad73e0bba478c90d8573c72ec89d2e0140434cc65c9d5f4d56e5f259931dc68fc1800695c6cd5d63d9cfce4c1c4d6744eeaa2028
2023-07-17 18:37:20 +02:00
Jonas Nick
c424e2fb43 ellswift: fix probabilistic test failure when swapping sides
When configured with `--disable-module-ecdh --enable-module-recovery`, then
`./tests  64 81af32fd7ab8c9cbc2e62a689f642106` fails with
```
src/modules/ellswift/tests_impl.h:396: test condition failed: secp256k1_memcmp_var(share32_bad, share32a, 32) != 0
```

This tests verifies that changing the `party` bit of the
`secp256k1_ellswift_xdh` function results in a different share. However, that's
not the case when the secret keys of both parties are the same and this is
actually what happens in the observed test failure. The keys can be equal in
this test case because they are created by the `random_scalar_order_test`
function whose output is not uniformly random (it's biased towards 0).

This commit restores the assummption that the secret keys differ.
2023-07-17 09:50:32 +00:00
Hennadii Stepanov
175db31149 ci: Drop no longer needed PATH variable update on Windows 2023-07-14 08:43:08 +01:00
Hennadii Stepanov
116d2ab3df cmake: Set ENVIRONMENT property for examples on Windows
This change simplifies running examples on Windows, because the DLL
must reside either in the same folder where the executable is or
somewhere in PATH.
2023-07-14 08:42:48 +01:00
Hennadii Stepanov
cef373997c cmake, refactor: Use helper function instead of interface library
This change aims to simplify the following commit.
2023-07-14 08:41:26 +01:00
Jonas Nick
907a67212e Merge bitcoin-core/secp256k1#1313: ci: Test on development snapshots of GCC and Clang
981e5be38c ci: Fix typo in comment (Tim Ruffing)
e9e9648219 ci: Reduce number of macOS tasks from 28 to 8 (Tim Ruffing)
609093b387 ci: Add x86_64 Linux tasks for gcc and clang snapshots (Tim Ruffing)
1deecaaf3b ci: Install development snapshots of gcc and clang (Tim Ruffing)

Pull request description:

ACKs for top commit:
  hebasto:
    re-ACK 981e5be38c
  jonasnick:
    ACK 981e5be38c

Tree-SHA512: a36ef6f3c30a7f6e09e186e67b8eeb6e16e05de3bd97f21342866e75e33275103d463b6a12603ce235da7e26e4acdef4d811f62f369f18db9ac4e7ff06749136
2023-07-13 14:44:45 +00:00
Tim Ruffing
0f7657d59c Merge bitcoin-core/secp256k1#1366: field: Use restrict consistently in fe_sqrt
b79ba8aa4c field: Use `restrict` consistently in fe_sqrt (Tim Ruffing)

Pull request description:

  That is, use it also in the definition and not only the declaration.

  I believe this was the intention of commit
  be82bd8e03, but it was omitted there.

  edit: Changed the description. I'm not entirely sure but after looking at the standard, I tend to think this is more than a cosmetic change, and only this change actually makes the parameters `restrict`. Anyway, I believe making them `restrict` was simply forgotten in be82bd8e03.

ACKs for top commit:
  sipa:
    utACK b79ba8aa4c

Tree-SHA512: eecec7674d8cef7833d50f4041b87241ca8de4839aa8027df1c422b89f5a1bcef3916ac785057a596c459ce1aa9d41e5a21ecb6fed9c5d15a1d9f588c7ee208e
2023-07-12 01:14:22 +02:00
Tim Ruffing
cc55757552 Merge bitcoin-core/secp256k1#1340: clean up in-comment Sage code (refer to secp256k1_params.sage, update to Python3)
600c5adcd5 clean up in-comment Sage code (refer to secp256k1_params.sage, update to Python3) (Sebastian Falbesoner)

Pull request description:

  Some of the C source files contain contain in-comment Sage code calculating secp256k1 parameters that are already defined in the file secp256k1_params.sage.  Replace that by a corresponding load instruction and access the necessary variables. In ecdsa_impl.h, update the comment to use a one-line shell command calling sage to get the values.

  The remaining code (test `test_add_neg_y_diff_x` in tests.c) is updated to work with a current version based on Python3 (Sage 9.0+, see https://wiki.sagemath.org/Python3-Switch).

  The latter can be seen as a small follow-up to PR #849 (commit 13c88efed0).

ACKs for top commit:
  sipa:
    ACK 600c5adcd5
  real-or-random:
    ACK 600c5adcd5

Tree-SHA512: a9e52f6afbce65edd9ab14203612c3d423639f450fe8f0d269a3dda04bebefa95b607f7aa0faec864cb78b46d49f281632bb1277118749b7d8613e9f5dcc8f3d
2023-07-10 18:34:16 +02:00
Sebastian Falbesoner
600c5adcd5 clean up in-comment Sage code (refer to secp256k1_params.sage, update to Python3)
Some of the C source files contain contain in-comment Sage code
calculating secp256k1 parameters that are already defined in the file
secp256k1_params.sage.  Replace that by a corresponding load instruction
and access the necessary variables. In ecdsa_impl.h, update the comment
to use a one-line shell command calling sage to get the values.

The remaining code (test `test_add_neg_y_diff_x` in tests.c) is updated
to work with a current version based on Python3 (Sage 9.0+, see
https://wiki.sagemath.org/Python3-Switch).

The latter can be seen as a small follow-up to PR #849 (commit
13c88efed0).
2023-07-10 02:28:31 +02:00
Tim Ruffing
981e5be38c ci: Fix typo in comment 2023-07-06 20:19:07 +02:00
Tim Ruffing
e9e9648219 ci: Reduce number of macOS tasks from 28 to 8 2023-07-06 20:19:04 +02:00
Tim Ruffing
609093b387 ci: Add x86_64 Linux tasks for gcc and clang snapshots 2023-07-06 20:19:04 +02:00
Tim Ruffing
1deecaaf3b ci: Install development snapshots of gcc and clang
TODO: Make sure the Docker image is actually rebuild
2023-07-06 20:19:04 +02:00
Tim Ruffing
b79ba8aa4c field: Use restrict consistently in fe_sqrt
That is, use it also in the definition and not only the declaration.

I believe this was the intention of commit
be82bd8e03, but it was omitted there.
2023-07-06 16:44:52 +02:00
Tim Ruffing
c9ebca95f9 Merge bitcoin-core/secp256k1#1363: doc: minor ellswift.md updates
c7d900ffd1 doc: minor ellswift.md updates (stratospher)

Pull request description:

ACKs for top commit:
  sipa:
    ACK c7d900ffd1
  real-or-random:
    ACK c7d900ffd1

Tree-SHA512: 161c17d038eb1eed9f5811c3eb92975a821a5274e7f69aa386bfbe5376b3f06f3d0d2887ea3310efbec83424f09ea8e4082e8c02b2fcad3b915625ce5c2007d2
2023-07-06 16:03:19 +02:00
Tim Ruffing
afd7eb4a55 Merge bitcoin-core/secp256k1#1371: Add exhaustive tests for ellswift (with create+decode roundtrip)
2792119278 Add exhaustive test for ellswift (create+decode roundtrip) (Sebastian Falbesoner)

Pull request description:

  This PR adds the basic structure for ellswift exhaustive tests. Right now only a `secp256k1_ellswift_create` + `secp256k1_ellswift_decode` indirect roundtrip (exhaustive loop scalar -> ellswift pubkey -> decoded pubkey -> decoded group element, compared with exhaustive precomputed group element) is included.

  The exhaustive tests passes locally with all currently supported orders (n=13 [default] and n=199). Note that for n=7, the test is skipped, as the used curve in this case is even-ordered and ellswift only supports odd-ordered curves.

ACKs for top commit:
  sipa:
    utACK 2792119278
  real-or-random:
    utACK 2792119278

Tree-SHA512: c51d3d99e9839793b3c15d75b9a29f01080db160ab8819973abd877288f9f0af972ea4264290220ab1cd035fdebcfac7767436aa39154d924ef0bf6a5733a55d
2023-07-05 23:19:31 +02:00
Sebastian Falbesoner
2792119278 Add exhaustive test for ellswift (create+decode roundtrip)
Co-authored-by: Pieter Wuille <pieter@wuille.net>
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
2023-07-05 18:24:37 +02:00
stratospher
c7d900ffd1 doc: minor ellswift.md updates 2023-07-05 20:26:18 +05:30
Tim Ruffing
332af315fc Merge bitcoin-core/secp256k1#1344: group: save normalize_weak calls in secp256k1_ge_is_valid_var/secp256k1_gej_eq_x_var
07c0e8b82e group: remove unneeded normalize_weak in `secp256k1_gej_eq_x_var` (Sebastian Falbesoner)
efa76c4bf7 group: remove unneeded normalize_weak in `secp256k1_ge_is_valid_var` (Sebastian Falbesoner)

Pull request description:

  This PR removes unneeded normalize_weak calls in two group element functions:
  * `secp256k1_ge_is_valid_var`: After calculating the right-hand side of the elliptic curve equation (x^3 + 7), the field element `x3` has a magnitude of 2 (1 as result of `secp256k1_fe_mul`, then increased by 1 due to `secp256k1_fe_add_int`). This is fine for `secp256k1_fe_equal_var`, as the second parameter only requires the magnitude to not exceed 31, and the normalize_weak call is hence not needed and can be dropped. Note that the interface description for `secp256k1_fe_equal` (which also applies to `secp256k1_fe_equal_var`) once stated that _both_ parameters need to have magnitude 1, but that was corrected in commit 7d7d43c6dd.

  * `secp256k1_gej_eq_x_var`: By requiring that the input group element's X coordinate (`a->x`) has a magnitude of <= 31, the normalize_weak call and also the field element variable `r2` are not needed anymore and hence can be dropped.

ACKs for top commit:
  sipa:
    utACK 07c0e8b82e
  jonasnick:
    ACK 07c0e8b82e

Tree-SHA512: 9037e4af881ce7bf3347414d6da06b99e3d318733ba4f70e8b24d2320c2f26d022144e17bd6b95c1a4ef1be3825a4464e56ce2d2b3ae7bbced04257048832b7f
2023-07-04 14:21:46 +02:00
Tim Ruffing
9e6d1b0e9b Merge bitcoin-core/secp256k1#1367: build: Improvements to symbol visibility logic on Windows (attempt 3)
c6cd2b15a0 ci: Add task for static library on Windows + CMake (Hennadii Stepanov)
020bf69a44 build: Add extensive docs on visibility issues (Tim Ruffing)
0196e8ade1 build: Introduce `SECP256k1_DLL_EXPORT` macro (Hennadii Stepanov)
9f1b1904a3 refactor: Replace `SECP256K1_API_VAR` with `SECP256K1_API` (Hennadii Stepanov)
ae9db95cea build: Introduce `SECP256K1_STATIC` macro for Windows users (Hennadii Stepanov)

Pull request description:

  Previous attempts:
  - https://github.com/bitcoin-core/secp256k1/pull/1346
  - https://github.com/bitcoin-core/secp256k1/pull/1362

  The result is as follows:
  1. Simple, concise and extensively documented code.
  2. Explicitly documented use cases with no ambiguities.
  3. No workarounds for linker warnings.
  4. Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1235.

ACKs for top commit:
  real-or-random:
    utACK c6cd2b15a0

Tree-SHA512: d58694452d630aefbd047916033249891bc726b7475433aaaa7c3ea2a07ded8f185a598385b67c2ee3440ec5904ff9d9452c97b0961d84dcb2eb2cf46caa171e
2023-07-03 18:53:38 +02:00
Tim Ruffing
0aacf64352 Merge bitcoin-core/secp256k1#1370: Corrected some typos
b6b9834e8d small fixes (Alejandro)

Pull request description:

  Corrected some typos

ACKs for top commit:
  real-or-random:
    ACK b6b9834e8d

Tree-SHA512: c40c22c66f1067ecca351f08cca07a78b00bb98af2f6cfb08c25d0b1db6845e0e32ace1954c386db7020cf9fc7ae973ff15bd6d9c0144f3d21ea28c15741050f
2023-07-03 18:50:45 +02:00
Alejandro
b6b9834e8d small fixes
restoring wycheproof files

restoring wycheproof files2
2023-07-03 17:05:55 +02:00
Sebastian Falbesoner
07c0e8b82e group: remove unneeded normalize_weak in secp256k1_gej_eq_x_var
By requiring that the input group element's X coordinate (`a->x`) has a
magnitude of <= 31, the normalize_weak call and also the field element
variable `r2` are not needed anymore and hence can be dropped.
2023-07-03 16:54:19 +02:00
Tim Ruffing
3fc1de5c55 Merge bitcoin-core/secp256k1#1364: Avoid -Wmaybe-uninitialized when compiling with gcc -O1
5b9f37f136 ci: Add `CFLAGS: -O1` to task matrix (Hennadii Stepanov)
a6ca76cdf2 Avoid `-Wmaybe-uninitialized` when compiling with `gcc -O1` (Hennadii Stepanov)

Pull request description:

  Fixes https://github.com/bitcoin-core/secp256k1/issues/1361.

  CI tasks have been adjusted to catch similar issues in the future.

ACKs for top commit:
  real-or-random:
    utACK 5b9f37f136
  jonasnick:
    tACK 5b9f37f136

Tree-SHA512: 8aa5ec22ed88579ecd37681df68d64f8bab93cd14bdbf432a3af41cadc7ab3eba86c33c179db15bf3a3c798c33064bd845ebdedb02ee617ef634e98c596838c2
2023-07-03 15:32:17 +02:00
Jonas Nick
fb758fe8d6 Merge bitcoin-core/secp256k1#1323: tweak_add: fix API doc for tweak=0
05873bb6b1 tweak_add: fix API doc for tweak=0 (Jonas Nick)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK 05873bb6b1

Tree-SHA512: ef587a680c3355c6328dd61e0f5fcac80ea995f6045b4392fe35f3ee1c04ee1bd941662c120758ad641588670c1f0f53bfb17a802821f54100f1385b8bb7375a
2023-07-03 13:11:20 +00:00
Hennadii Stepanov
c6cd2b15a0 ci: Add task for static library on Windows + CMake 2023-07-03 13:57:31 +01:00
Tim Ruffing
020bf69a44 build: Add extensive docs on visibility issues 2023-07-03 13:57:17 +01:00
Hennadii Stepanov
0196e8ade1 build: Introduce SECP256k1_DLL_EXPORT macro
This change provides a way to build a shared library that is not tired
to the Libtool-specific `DLL_EXPORT` macro.
2023-07-03 13:57:17 +01:00
Hennadii Stepanov
9f1b1904a3 refactor: Replace SECP256K1_API_VAR with SECP256K1_API 2023-07-03 13:57:16 +01:00
Hennadii Stepanov
ae9db95cea build: Introduce SECP256K1_STATIC macro for Windows users
It is a non-Libtool-specific way to explicitly specify the user's
intention to consume a static `libseck256k1`.

This change allows to get rid of MSVC linker warnings LNK4217 and
LNK4286. Also, it makes possible to merge the `SECP256K1_API` and
`SECP256K1_API_VAR` into one.
2023-07-03 13:57:11 +01:00
Tim Ruffing
7966aee31d Merge bitcoin-core/secp256k1#1369: ci: Print commit in Windows container
a7bec34231 ci: Print commit in Windows container (Hennadii Stepanov)

Pull request description:

  This PR is a follow-up to https://github.com/bitcoin-core/secp256k1/pull/1368 and adds the same functionality to Windows containers that is already available in Linux containers.

  See: https://github.com/bitcoin-core/secp256k1/pull/1368#discussion_r1250454050.

ACKs for top commit:
  real-or-random:
    ACK a7bec34231 seems to work: https://cirrus-ci.com/task/4919320090771456?logs=git_show#L2

Tree-SHA512: 0998e0f7231e3057a7e358a27b34071c73ca556973da20494db84fc67f2a72ad2fe582e59647a425ee41e7d9103a0a22fb3cdf0ace6fe0aed1d21f2f75c8ec53
2023-07-03 14:55:19 +02:00
Hennadii Stepanov
a7bec34231 ci: Print commit in Windows container
This change adds the same functionality to Windows containers that is
already available in Linux containers.
2023-07-03 09:31:49 +01:00
Jonas Nick
249c81eaa3 Merge bitcoin-core/secp256k1#1368: ci: Drop manual checkout of merge commit
98579e297b ci: Drop manual checkout of merge commit (Tim Ruffing)

Pull request description:

ACKs for top commit:
  jonasnick:
    ACK 98579e297b

Tree-SHA512: fe5305322e6fa616af4664db7c151acdfb8119feb0255a65190b9c185ae5383eab37debe76085dfc8137c691e0ff55cb20d9e51993f6cc871bc6c5c945ed66bf
2023-07-02 18:23:54 +00:00
Tim Ruffing
98579e297b ci: Drop manual checkout of merge commit
This is no longer necessary as of
https://github.com/cirruslabs/cirrus-ci-docs/issues/791#issuecomment-1615691585 .
2023-07-01 13:01:57 +02:00
Hennadii Stepanov
5b9f37f136 ci: Add CFLAGS: -O1 to task matrix 2023-06-28 07:46:40 +01:00
Hennadii Stepanov
a6ca76cdf2 Avoid -Wmaybe-uninitialized when compiling with gcc -O1 2023-06-28 07:45:57 +01:00
Tim Ruffing
0fa84f869d Merge bitcoin-core/secp256k1#1358: tests: introduce helper for non-zero random_fe_test() results
5a95a268b9 tests: introduce helper for non-zero `random_fe_test` results (Sebastian Falbesoner)
304421d57b tests: refactor: remove duplicate function `random_field_element_test` (Sebastian Falbesoner)

Pull request description:

  There are several instances in the tests where random non-zero field elements are generated by calling `random_fe_test` in a do/while-loop with is-zero condition. This PR deduplicates all these by introducing a `random_fe_non_zero_test` helper. Note that some instances checked the is-zero condition via `secp256k1_fe_normalizes_to_zero_var`, which is unnecessary, as the result of `random_field_element_test` is already normalized (so strictly speaking, this is not a pure refactor, and there could be tiny run-time improvements, though I doubt that's measurable).

  Additionally, the first commit removes the function `random_field_element_test` as it is logically a duplicate of `random_fe_test`.

ACKs for top commit:
  real-or-random:
    ACK 5a95a268b9

Tree-SHA512: 920404f38ebe8b84bfd52f3354dc17ae6a0fd6355f99b78c9aeb53bf21f7eca5fd4518edc8a422d84f430ae95864661b497de42a3ab7fa9c49515a1df2f1d466
2023-06-27 12:16:50 +02:00
Sebastian Falbesoner
5a95a268b9 tests: introduce helper for non-zero random_fe_test results
There are several instances in the tests where random non-zero field
elements are generated by calling `random_fe_test` in a do/while-loop.
This commit deduplicates all these by introducing a
`random_fe_non_zero_test` helper. Note that some instances checked the
is-zero condition via `secp256k1_fe_normalizes_to_zero_var`, which is
unnecessary, as the result of `random_fe_test` is already normalized (so
strictly speaking, this is not a pure refactor).
2023-06-27 10:31:24 +02:00
Sebastian Falbesoner
304421d57b tests: refactor: remove duplicate function random_field_element_test
There is a function `random_fe_test` which does exactly the
same, so use that instead. Note that it's also moved up before the
`random_group_element_test` function, in order to avoid needing a forward
declaration.
2023-06-27 10:31:22 +02:00
Tim Ruffing
3aef6ab8e1 Merge bitcoin-core/secp256k1#1345: field: Static-assert that int args affecting magnitude are constant
be8ff3a02a field: Static-assert that int args affecting magnitude are constant (Tim Ruffing)

Pull request description:

  See #1001.

  Try to revert the lines in `tests.c` to see the error message in action.

ACKs for top commit:
  sipa:
    ACK be8ff3a02a. Verified by introducing some non-constant expressions and seeing compilation fail.
  theStack:
    ACK be8ff3a02a

Tree-SHA512: 8befec6ee64959cdc7f3e29b4b622410794cfaf69e9df8df17600390a93bc787dba5cf86239de6eb2e99c038b9aca5461e4b3c82f0e0c4cf066ad7c689941b19
2023-06-27 09:39:10 +02:00
Tim Ruffing
4494a369b6 Merge bitcoin-core/secp256k1#1357: tests: refactor: take use of secp256k1_ge_x_on_curve_var
7d8d5c86df tests: refactor: take use of `secp256k1_ge_x_on_curve_var` (Sebastian Falbesoner)

Pull request description:

  The recently merged ellswift PR (#1129) introduced a helper `secp256k1_ge_x_on_curve_var` to check if a given X coordinate is on the curve (i.e. the expression x^3 + 7 is square, see commit 79e5b2a8b8). This can be used for code deduplication in the `ecmult_const_mult_xonly` test.

  (Found this instance via `$ git grep add_int.*SECP256K1_B`, I think it's the only one where the helper can be used.)

ACKs for top commit:
  sipa:
    utACK 7d8d5c86df
  real-or-random:
    utACK 7d8d5c86df

Tree-SHA512: aebff9b5ef2f6f6664ce89e4e1272cb55b6aac81cfb379652c4b7ab30dd1d7fd82a2c3b47c7b7429755ba28f011a3a9e2e6d3aa5c77d3b105d159104c24b89f3
2023-06-27 09:37:49 +02:00
Tim Ruffing
799f4eec27 Merge bitcoin-core/secp256k1#1356: ci: Adjust Docker image to Debian 12 "bookworm"
c862a9fb49 ci: Adjust Docker image to Debian 12 "bookworm" (Hennadii Stepanov)
a1782098a9 ci: Force DWARF v4 for Clang when Valgrind tests are expected (Hennadii Stepanov)
8a7273465b Help the compiler prove that a loop is entered (Tim Ruffing)

Pull request description:

  Since the [release](https://www.debian.org/News/2023/20230610.html) of Debian 12 "bookworm", it has become the "stable" one that our `ci/linux-debian.Dockerfile` relies on.

  Last time the Docker image was built basing on Debian Bullseye.

  Changes in packages are significant, for instance:
  - `gcc` 10.2. --> 12.2
  - `clang` 11.0 --> 14.0
  - `wine` 5.0 --> 8.0

  which requires certain adjustments provided in this PR.

  The first commit has been cherry-picked from https://github.com/bitcoin-core/secp256k1/pull/1313.

ACKs for top commit:
  sipa:
    utACK c862a9fb49
  real-or-random:
    ACK c862a9fb49

Tree-SHA512: 2a62a8865f904a460274f1f3ec02d2b0b72c84b25722a383c6455cfe672c1d93382941a5027e8dceb2c0f5fe0f0efd49a0ed6b72303982f9e32991f1535538eb
2023-06-27 09:33:42 +02:00
Hennadii Stepanov
c862a9fb49 ci: Adjust Docker image to Debian 12 "bookworm" 2023-06-26 10:24:15 +01:00
Hennadii Stepanov
a1782098a9 ci: Force DWARF v4 for Clang when Valgrind tests are expected 2023-06-26 10:03:19 +01:00
Sebastian Falbesoner
7d8d5c86df tests: refactor: take use of secp256k1_ge_x_on_curve_var
The recently merged ellswift PR (#1129) introduced a helper
`secp256k1_ge_x_on_curve_var` to check if a given X coordinate is
valid (i.e. the expression x^3 + 7 is square, see commit
79e5b2a8b8). This can be used for code
deduplication in the `ecmult_const_mult_xonly` test.
2023-06-25 22:26:20 +02:00
Tim Ruffing
8a7273465b Help the compiler prove that a loop is entered 2023-06-25 19:07:16 +01:00
Tim Ruffing
fd491ea1bb Merge bitcoin-core/secp256k1#1355: Fix a typo in the error message
67887ae65c Fix a typo in the error message (Hennadii Stepanov)

Pull request description:

  The code has been copy-pasted from the `precompute_ecmult_gen.c` source file.

ACKs for top commit:
  real-or-random:
    ACK 67887ae65c

Tree-SHA512: d6874949310197e5d2d6c43f5a7c2165b4ee0f6cbe3cc1491d0f97163fa5329ebeab2b2adf10246c87382016fbe738c69dfd3f2253e93c906bf404cbf439b12a
2023-06-25 09:52:04 +02:00
Tim Ruffing
ac43613d25 Merge bitcoin-core/secp256k1#1354: Add ellswift to CHANGELOG
7c7467ab7f Refer to ellswift.md in API docs (Pieter Wuille)
c32ffd8d8c Add ellswift to CHANGELOG (Pieter Wuille)

Pull request description:

  A follow-up with a CHANGELOG entry for #1129.

ACKs for top commit:
  real-or-random:
    ACK 7c7467ab7f
  theStack:
    ACK 7c7467ab7f

Tree-SHA512: 4f066e4b8d5e130f2b5bea0ed4c634e9426bc576342aad6c306e0805a8354e27a5e679b15ec869d4e7d36eb5d53174e46b3bf5e15d19a7e165afc82e46ddfcf5
2023-06-25 09:49:40 +02:00
Hennadii Stepanov
67887ae65c Fix a typo in the error message
The code has been copy-pasted from the `precompute_ecmult_gen.c` source
file.
2023-06-24 20:18:45 +01:00
Tim Ruffing
926dd3e962 Merge bitcoin-core/secp256k1#1295: abi: Use dllexport for mingw builds
bc7c8db179 abi: Use dllexport for mingw builds (Cory Fields)

Pull request description:

  Addresses the first part of #1181. See the discussion there for more context and history.

  After this, all that remains is a (platform-independent) exports checker for c-i. Or perhaps a linker script or .def file could be tricked into testing as a side-effect.

  This should fix mingw exports, specifically hiding the following:
  `secp256k1_pre_g_128`
  `secp256k1_pre_g`
  `secp256k1_ecmult_gen_prec_table`

  This changes our visibility macros to look more like [gcc's recommendation](https://gcc.gnu.org/wiki/Visibility#How_to_use_the_new_C.2B-.2B-_visibility_support).

  Edit:
  Note that we could further complicate this by supporting `__attribute__ ((dllexport))` as well, though I didn't bother as I'm not sure what compiler combo would accept that but not the bare dllexport syntax.

  Edit2:
  As the title implies, this affects this ABI and could affect downstream libs/apps in unintended ways (though it's hard to imagine any real downside). Though because it's win32 only, I'm imagining very little real-world impact at all.

ACKs for top commit:
  hebasto:
    re-ACK bc7c8db179, only a comment has been adjusted since my recent [review](https://github.com/bitcoin-core/secp256k1/pull/1295#pullrequestreview-1414928537),
  real-or-random:
    utACK bc7c8db179

Tree-SHA512: 378e15556da49494f551bdf4f7b41304db9d03a435f21fcc947c9520aa43e3c655cfe216fba57a5179a871c975c806460eef7c33b105f2726e1de0937ff2444e
2023-06-24 10:37:55 +02:00
Tim Ruffing
10836832e7 Merge bitcoin-core/secp256k1#1336: Use __shiftright128 intrinsic in secp256k1_u128_rshift on MSVC
5b7bf2e9d4 Use `__shiftright128` intrinsic in `secp256k1_u128_rshift` on MSVC (Hennadii Stepanov)

Pull request description:

  Closes https://github.com/bitcoin-core/secp256k1/issues/1324.

  As the `__shiftright128` [docs](https://learn.microsoft.com/en-us/cpp/intrinsics/shiftright128) state:
  > The `Shift` value is always modulo 64...

  it is not applicable for the `n >= 64` branch.

ACKs for top commit:
  sipa:
    utACK 5b7bf2e9d4
  real-or-random:
    ACK 5b7bf2e9d4 tested with MSVC x64

Tree-SHA512: bc4c245a9da83c783a0479e751a4bc2ec77a34b99189fcc4431033a5420c93b610f3b960d3f23c15bce2eb010beba665b3e84d468b3fdab3d5846d4f27016898
2023-06-24 10:16:02 +02:00
Pieter Wuille
7c7467ab7f Refer to ellswift.md in API docs 2023-06-23 16:05:24 -04:00
Pieter Wuille
c32ffd8d8c Add ellswift to CHANGELOG 2023-06-21 13:04:42 -04:00
Tim Ruffing
3c1a0fd37f Merge bitcoin-core/secp256k1#1347: field: Document return value of fe_sqrt()
5779137457 field: Document return value of fe_sqrt() (Tim Ruffing)

Pull request description:

ACKs for top commit:
  sipa:
    ACK 5779137457
  theStack:
    ACK 5779137457

Tree-SHA512: 706f8c6a26bf85f6c23af3bb053173b2cdee6838dd930cb2b1e2f851f47cfebafccecbd7d84b8152f2fea12f0676c1ddd700bb32beebec3f3e0f4300e878d0f5
2023-06-21 17:43:01 +02:00
Jonas Nick
705ce7ed8c Merge bitcoin-core/secp256k1#1129: ElligatorSwift + integrated x-only DH
90e360acc2 Add doc/ellswift.md with ElligatorSwift explanation (Pieter Wuille)
4f091847c2 Add ellswift testing to CI (Pieter Wuille)
1bcea8c57f Add benchmarks for ellswift module (Pieter Wuille)
2d1d41acf8 Add ctime tests for ellswift module (Pieter Wuille)
df633cdeba Add _prefix and _bip324 ellswift_xdh hash functions (Pieter Wuille)
9695deb351 Add tests for ellswift module (Pieter Wuille)
c47917bbd6 Add ellswift module implementing ElligatorSwift (Pieter Wuille)
79e5b2a8b8 Add functions to test if X coordinate is valid (Pieter Wuille)
a597a5a9ce Add benchmark for key generation (Pieter Wuille)

Pull request description:

ACKs for top commit:
  Davidson-Souza:
    tACK 90e360a. Full testing backlog:
  real-or-random:
    ACK 90e360acc2
  jonasnick:
    ACK 90e360acc2

Tree-SHA512: cf59044c1b064f9a3fd57fd1c4c6ab154305ee6ad67a604bc254ddd6b8ee78626250d325174e10d2f2b19264ab0d58013508dc763aa07f5a1e6417e03551a378
2023-06-21 14:34:39 +00:00
Tim Ruffing
0702ecb061 Merge bitcoin-core/secp256k1#1338: Drop no longer needed #include "../include/secp256k1.h"
e449af6872 Drop no longer needed `#include "../include/secp256k1.h"` (Hennadii Stepanov)

Pull request description:

  The removed header includes have not been needed since https://github.com/bitcoin-core/secp256k1/pull/1231.

  Test suggestions:
  1. Using Autottols-based build system:
  ```
  ./autogen.sh
  ./configure
  make clean-precomp
  make
  ```
  2. Using CMake-based build system:
  ```
  cmake -B build -DCMAKE_C_INCLUDE_WHAT_YOU_USE="include-what-you-use"
  cmake --build build --target secp256k1_precomputed
  ```

ACKs for top commit:
  sipa:
    utACK e449af6872
  real-or-random:
    utACK e449af6872

Tree-SHA512: 5aed7a88e1e03fcc2306c43817712c0652ecf6145679dd17f4719376818d372f619e4180bdaee548f2e82aaccbe6a2ff4c37203121d939af545128c8c48b933e
2023-06-21 09:55:02 +02:00
Tim Ruffing
5779137457 field: Document return value of fe_sqrt()
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
2023-06-21 00:18:24 +02:00
Pieter Wuille
90e360acc2 Add doc/ellswift.md with ElligatorSwift explanation 2023-06-20 11:31:58 -04:00
Pieter Wuille
4f091847c2 Add ellswift testing to CI 2023-06-20 11:31:58 -04:00
Pieter Wuille
1bcea8c57f Add benchmarks for ellswift module 2023-06-20 11:31:58 -04:00
Pieter Wuille
2d1d41acf8 Add ctime tests for ellswift module 2023-06-20 11:31:58 -04:00
Pieter Wuille
df633cdeba Add _prefix and _bip324 ellswift_xdh hash functions 2023-06-20 11:31:58 -04:00
Pieter Wuille
9695deb351 Add tests for ellswift module
These include both test vectors taken from BIP324, as randomized unit tests.
2023-06-20 11:31:58 -04:00
Pieter Wuille
c47917bbd6 Add ellswift module implementing ElligatorSwift
The scheme implemented is described below, and largely follows the paper
"SwiftEC: Shallue–van de Woestijne Indifferentiable Function To Elliptic Curves",
by Chavez-Saab, Rodriguez-Henriquez, and Tibouchi
(https://eprint.iacr.org/2022/759).

A new 64-byte public key format is introduced, with the property that *every*
64-byte array is an encoding for a non-infinite curve point. Each curve point
has roughly 2^256 distinct encodings. This permits disguising public keys as
uniformly random bytes.

The new API functions:
* secp256k1_ellswift_encode: convert a normal public key to an ellswift 64-byte
  public key, using additional entropy to pick among the many possible
  encodings.
* secp256k1_ellswift_decode: convert an ellswift 64-byte public key to a normal
  public key.
* secp256k1_ellswift_create: a faster and safer equivalent to calling
  secp256k1_ec_pubkey_create + secp256k1_ellswift_encode.
* secp256k1_ellswift_xdh: x-only ECDH directly on ellswift 64-byte public keys,
  where the key encodings are fed to the hash function.

The scheme itself is documented in secp256k1_ellswift.h.
2023-06-20 11:31:58 -04:00
Pieter Wuille
79e5b2a8b8 Add functions to test if X coordinate is valid 2023-06-20 11:05:32 -04:00
Pieter Wuille
a597a5a9ce Add benchmark for key generation 2023-06-20 10:57:19 -04:00
Tim Ruffing
30574f22ea Merge bitcoin-core/secp256k1#1349: Normalize ge produced from secp256k1_pubkey_load
f1652528be Normalize ge produced from secp256k1_pubkey_load (stratospher)

Pull request description:

  The output `ge` in secp256k1_pubkey_load is normalized when `sizeof(secp256k1_ge_storage) = 64` but not when it's not 64. ARG_CHECK at the end of the function assumes normalization. So normalize ge in the other code path too.

  context: [#1129(comment)](https://github.com/bitcoin-core/secp256k1/pull/1129/files#r1196167066)

ACKs for top commit:
  sipa:
    utACK f1652528be
  real-or-random:
    ACK f1652528be tested by changing the two `== 64` checks to `== 65`

Tree-SHA512: 0de1caad85ccdb42053f8e09576135257c88fda88455ef25e7640049c05a1e03d1e9bae1cd132d2e6fc327fd79929257a8b21fe1cc41c82374b6cd88e6744aa3
2023-06-18 20:34:43 +02:00
Tim Ruffing
45c5ca7675 Merge bitcoin-core/secp256k1#1350: scalar: introduce and use secp256k1_{read,write}_be64 helpers
7067ee54b4 tests: add tests for `secp256k1_{read,write}_be64` (Sebastian Falbesoner)
740528caad scalar: use newly introduced `secp256k1_{read,write}_be64` helpers (4x64 impl.) (Sebastian Falbesoner)

Pull request description:

  This is a simple follow-up to #1339, as suggested in comment https://github.com/bitcoin-core/secp256k1/pull/1339#issuecomment-1587508040.

ACKs for top commit:
  stratospher:
    ACK 7067ee5.
  real-or-random:
    utACK 7067ee54b4

Tree-SHA512: f9bc2ab610099948ffac1e6bb3c822bd90b81a7110ab74cec03175e2c92ed27694a15f9cdaa7c4f1b460fe459f61c3d1d102c99592169f127fdd7539a1a0c154
2023-06-18 20:33:38 +02:00
stratospher
f1652528be Normalize ge produced from secp256k1_pubkey_load
The output ge is normalized when sizeof(secp256k1_ge_storage) = 64
but not when it's not 64. ARG_CHECK at the end of the function
assumes normalization. So normalize ge in the other code path too.
2023-06-17 10:26:19 +05:30
Sebastian Falbesoner
7067ee54b4 tests: add tests for secp256k1_{read,write}_be64
This can be reviewed with `--ignore-all-space` (or `-w`), to ignore
already existing code that was only indented.
2023-06-17 01:54:25 +02:00
Sebastian Falbesoner
740528caad scalar: use newly introduced secp256k1_{read,write}_be64 helpers (4x64 impl.) 2023-06-17 01:06:35 +02:00
Tim Ruffing
be8ff3a02a field: Static-assert that int args affecting magnitude are constant
See #1001.
2023-06-13 13:34:49 +02:00
Sebastian Falbesoner
efa76c4bf7 group: remove unneeded normalize_weak in secp256k1_ge_is_valid_var
After calculating the right-hand side of the elliptic curve equation
(x^3 + 7), the field element `x3` has a magnitude of 2 (1 as result of
`secp256k1_fe_mul`, then increased by 1 due to `secp256k1_fe_add_int`).
This is fine for `secp256k1_fe_equal_var`, as the second parameter only
requires the magnitude to not exceed 31, and the normalize_weak call can
hence be dropped.
2023-06-12 23:57:15 +02:00
Tim Ruffing
67214f5f7d Merge bitcoin-core/secp256k1#1339: scalar: refactor: use secp256k1_{read,write}_be32 helpers
887183e7de scalar: use `secp256k1_{read,write}_be32` helpers (4x64 impl.) (Sebastian Falbesoner)
52b84238de scalar: use `secp256k1_{read,write}_be32` helpers (8x32 impl.) (Sebastian Falbesoner)

Pull request description:

  This refactoring PR takes use of the `secp256k1_{read,write}_be32` helpers (introduced in PR #1093, commit 8d89b9e6e5) in the scalar <-> byte array conversion functions, for both the 8x32 and 4x64 implementations. (An alternative for the latter would be to introduce special helpers for reading/writing uint64_t in big endian `secp256k1_{read,write}_be64`).

  Verified via `objdump -D libsecp256k1.a` that `secp256k1_scalar_set_b32` for 4x64 compiles to the same code on master and the PR (`secp256k1_scalar_get_b32` is apparently always inlined) on amd64 with clang 13.0.0.

ACKs for top commit:
  sipa:
    utACK 887183e7de

Tree-SHA512: 915cb4624c6da0530dce4ec3ac48e88dd735386302cd2e15759e3c30102d81186f382ffe71493ddd0538069f1b558db543d9bb900dfdb69acb60effedc33f705
2023-06-12 18:38:35 +02:00
Jonas Nick
cb1a59275c Merge bitcoin-core/secp256k1#1341: docs: correct pubkey param descriptions for secp256k1_keypair_{xonly_,}pub
f3644287b1 docs: correct `pubkey` param descriptions for `secp256k1_keypair_{xonly_,}pub` (Sebastian Falbesoner)

Pull request description:

ACKs for top commit:
  real-or-random:
    ACK f3644287b1 because it's consistent with the other docs
  jonasnick:
    ACK f3644287b1

Tree-SHA512: cc4db4637301335ea9d23ac43bb3a78de54af79a5262dba2013945f87d80670c7ae1e106101a59c04225eb077e9a9e0ecc9d9d3bfe2d11cdc90f098ebd479f49
2023-06-12 08:43:27 +00:00
Sebastian Falbesoner
f3644287b1 docs: correct pubkey param descriptions for secp256k1_keypair_{xonly_,}pub
From an API perspective, the functions `secp256k1_keypair_pub` and
`secp256k1_keypair_xonly_pub` always succeed (i.e. return the value 1),
so the other cases in the `pubkey` parameter descriptions never happen
and can hence be removed.

Note that the "1 always" return value description was previously done in
commit b8f8b99f0f (PR #1089), which also
explains why invalid inputs for the affected functions are in practice
only possible in violation of the type system.
2023-06-11 18:44:16 +02:00
Sebastian Falbesoner
887183e7de scalar: use secp256k1_{read,write}_be32 helpers (4x64 impl.)
An alternative would be to introduce special helpers for reading/writing
uint64_t in big endian `secp256k1_{read,write}_be64`.
2023-06-10 19:50:54 +02:00
Sebastian Falbesoner
52b84238de scalar: use secp256k1_{read,write}_be32 helpers (8x32 impl.) 2023-06-10 19:21:38 +02:00
Hennadii Stepanov
e449af6872 Drop no longer needed #include "../include/secp256k1.h"
The removed header includes have not been needed since PR1231.
2023-06-06 09:07:36 +01:00
Hennadii Stepanov
747ada3587 test: Silent noisy clang warnings about Valgrind code on macOS x86_64 2023-06-04 18:25:39 +01:00
Hennadii Stepanov
5b7bf2e9d4 Use __shiftright128 intrinsic in secp256k1_u128_rshift on MSVC 2023-06-04 18:03:36 +01:00
Tim Ruffing
60556c9f49 Merge bitcoin-core/secp256k1#1337: ci: Fix error D8037 in cl.exe (attempt 2)
db29bf220c ci: Remove quirk that runs dummy command after wineserver (Tim Ruffing)
c7db4942b3 ci: Fix error D8037 in `cl.exe` (Hennadii Stepanov)
7dae115861 Revert "ci: Move wine prefix to /tmp to avoid error D8037 in cl.exe" (Hennadii Stepanov)

Pull request description:

  Since the 2146cbfaf0, the `msvc-wine` effectively initializes the WINE prefix when running the `install.sh` script. See [`install.sh`#L143](2146cbfaf0/install.sh (L143)):
  ```sh
      WINEDEBUG=-all wine64 wineboot &>/dev/null
  ```

  Our following `wine64 wineboot --init` just messes up with the prefix.

  This PR fixes this issue.

  Also https://github.com/bitcoin-core/secp256k1/pull/1327 has been reverted as apparently it does not work. And https://github.com/bitcoin-core/secp256k1/pull/1320 has been combined into this one.

ACKs for top commit:
  real-or-random:
    ACK db29bf220c

Tree-SHA512: 59e61bde0060f67501f93da8b4e193f2bfcda85d849c16bb017e38af7aa9e3b569fe2fd4aa5cdb658c3b2345cc42fad98323e329b519389b2e881ecfd403d147
2023-06-03 13:49:20 +02:00
Tim Ruffing
db29bf220c ci: Remove quirk that runs dummy command after wineserver
The underlying issue is now worked around in upstream, see
https://github.com/mstorsjo/msvc-wine/issues/47 for details.
2023-06-03 09:08:38 +01:00
Hennadii Stepanov
c7db4942b3 ci: Fix error D8037 in cl.exe 2023-06-03 09:08:31 +01:00
Hennadii Stepanov
7dae115861 Revert "ci: Move wine prefix to /tmp to avoid error D8037 in cl.exe"
This reverts commit 27504d5c94.
2023-06-02 16:13:29 +01:00
Tim Ruffing
bf29f8d0a6 Merge bitcoin-core/secp256k1#1334: fix input range comment for secp256k1_fe_add_int
605e07e365 fix input range comment for `secp256k1_fe_add_int` (Sebastian Falbesoner)

Pull request description:

  This seems to be a typo that was introduced with commit 4371f98346 (PR #1066).

ACKs for top commit:
  sipa:
    ACK 605e07e365
  real-or-random:
    ACK 605e07e365

Tree-SHA512: 7ee99cf7140c698d1146072734ba986de7328f78b2c076ee445067ef64a6a335c8669f1e733e10f5e14f98b566c799cc4c51b3eb0f036cd178b3c93476c6df2e
2023-06-01 09:38:29 +02:00
Sebastian Falbesoner
605e07e365 fix input range comment for secp256k1_fe_add_int
This seems to be a typo that was introduced with commit
4371f98346 (PR #1066).
2023-06-01 02:55:12 +02:00
Tim Ruffing
debf3e5c08 Merge bitcoin-core/secp256k1#1330: refactor: take use of secp256k1_scalar_{zero,one} constants
ade5b36701 tests: add checks for scalar constants `secp256k1_scalar_{zero,one}` (Sebastian Falbesoner)
654246c635 refactor: take use of `secp256k1_scalar_{zero,one}` constants (Sebastian Falbesoner)

Pull request description:

  Rather than allocating a (non-constant) scalar variable on the stack with the sole purpose of setting it to a constant value, the global constants `secp256k1_scalar_{zero,one}` (apparently introduced in 34a67c773b, PR #710) can be directly used instead for the values 0 or 1. There is very likely not even a difference in run-time, but it leads to simpler and less code which might be nice.

ACKs for top commit:
  sipa:
    utACK ade5b36701
  real-or-random:
    utACK ade5b36701

Tree-SHA512: 0ff05a449c153f7117a4a56efef04b2087c2330f4692f3390a0b1d95573785ac7ae3fe689ed0ec2ecc64b575d2489d6e341d32567e75a1a4b4d458c3ecd406a1
2023-05-31 19:39:05 +02:00
Tim Ruffing
d75dc59b58 Merge bitcoin-core/secp256k1#1333: test: Warn if both VERIFY and COVERAGE are defined
e83801f5db test: Warn if both `VERIFY` and `COVERAGE` are defined (Hennadii Stepanov)

Pull request description:

  Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1235.

  Also see: https://github.com/bitcoin-core/secp256k1/pull/1113#discussion_r1127856040.

ACKs for top commit:
  sipa:
    utACK e83801f5db
  real-or-random:
    ACK e83801f5db

Tree-SHA512: 25e10a09ba2c3585148becd06f2a03d85306208bda333827c9ba73eb7fd94ad15536f10daf1b335703e5cb0539584f001501ce9c578f478ff1ebc1051aefde7d
2023-05-31 19:37:56 +02:00
Sebastian Falbesoner
ade5b36701 tests: add checks for scalar constants secp256k1_scalar_{zero,one} 2023-05-30 12:24:33 +02:00
Hennadii Stepanov
e83801f5db test: Warn if both VERIFY and COVERAGE are defined 2023-05-30 11:17:20 +01:00
Sebastian Falbesoner
654246c635 refactor: take use of secp256k1_scalar_{zero,one} constants 2023-05-30 12:10:41 +02:00
Tim Ruffing
908e02d596 Merge bitcoin-core/secp256k1#1328: build: Bump MSVC warning level up to W3
1549db0ca5 build: Level up MSVC warnings (Hennadii Stepanov)

Pull request description:

  Solves one item in https://github.com/bitcoin-core/secp256k1/issues/1235.

ACKs for top commit:
  sipa:
    utACK 1549db0ca5
  real-or-random:
    ACK 1549db0ca5

Tree-SHA512: 769386f734709537291ddee45c7fbee501185d3eebe9daa117d36e13e8504fabd1127857bc661a751fdf63f2eee1e7e9507121bdb020c97eb87b8758cb0879f8
2023-05-26 16:14:16 +02:00
Hennadii Stepanov
1549db0ca5 build: Level up MSVC warnings 2023-05-25 09:43:55 +01:00
Tim Ruffing
20a5da5fb1 Merge bitcoin-core/secp256k1#1310: Refine release process
ad84603297 release process: clarify change log updates (Jonas Nick)
6348bc7eee release process: fix process for maintenance release (Jonas Nick)
79fa50b082 release process: mention targeted release schedule (Jonas Nick)
165206789b release process: add sanity checks (Jonas Nick)

Pull request description:

  Fixes #1176

ACKs for top commit:
  real-or-random:
    ACK ad84603297
  hebasto:
    re-ACK ad84603297

Tree-SHA512: 215b469f4ecc6ecb2b07ba4d29b6b01fc0dda752d9cfffc3f5ec518f2efb5ec9ae027056b113758fadbebcdfdd549ff5803c3d7257761da6e3859ff6131cc137
2023-05-24 15:50:06 +02:00
Jonas Nick
05873bb6b1 tweak_add: fix API doc for tweak=0 2023-05-24 13:48:42 +00:00
Jonas Nick
ad84603297 release process: clarify change log updates 2023-05-24 13:43:29 +00:00
Jonas Nick
6348bc7eee release process: fix process for maintenance release 2023-05-24 13:43:29 +00:00
Jonas Nick
79fa50b082 release process: mention targeted release schedule 2023-05-24 13:43:28 +00:00
Jonas Nick
165206789b release process: add sanity checks 2023-05-24 13:43:25 +00:00
Tim Ruffing
09df0bfb23 Merge bitcoin-core/secp256k1#1327: ci: Move wine prefix to /tmp to avoid error D8037 in cl.exe
27504d5c94 ci: Move wine prefix to /tmp to avoid error D8037 in cl.exe (Tim Ruffing)

Pull request description:

  Don't ask me why this makes a difference. It may be some permission problem even though everything in Cirrus CI runs as root anyway. In any case, I'll probably get mad if I investigate this further.

  Fixes #1326.

ACKs for top commit:
  hebasto:
    ACK 27504d5c94, tested in my personal Cirrus account.

Tree-SHA512: 08bb1734827579b59c705a44ee8fad6d504031eb5659c2743649be95fb048794b95ac0869a994bfa732f7f0714b4d12674c325637fe079b2266f18a3c14bbec0
2023-05-24 15:36:01 +02:00
Tim Ruffing
27504d5c94 ci: Move wine prefix to /tmp to avoid error D8037 in cl.exe
Don't ask me why this makes a difference. It may be some permission
problem even though everything in Cirrus CI runs as root anyway. In
any case, I'll probably get mad if I investigate this further.

Fixes #1326.
2023-05-24 14:28:05 +02:00
Tim Ruffing
d373a7215b Merge bitcoin-core/secp256k1#1316: Do not invoke fe_is_zero on failed set_b32_limit
6433175ffe Do not invoke fe_is_zero on failed set_b32_limit (Pieter Wuille)

Pull request description:

  Noticed in the CI output of #1313 (https://cirrus-ci.com/task/5117786435878912)

  The code violates the field element contract that states that a field element that comes out of a failed `secp256k1_fe_set_b32_limit` call cannot be used before overwriting it. This is not an issue in practice, as such failure can only occur with negligible probability, but the experimental compiler in that CI setting is technically correct in detecting this possibility.

  Fix it by setting it to 1 based on a `secp256k1_fe_normalizes_to_zero` test rather than a `secp256k1_fe_is_zero` one (which does not require normalization).

ACKs for top commit:
  stratospher:
    ACK 6433175
  real-or-random:
    utACK 6433175ffe

Tree-SHA512: 49da4535181c4607c1f4d23d1fd7cd65e7751c7cfa68643f1da77f3ec7961754fc8553bb415137fd61d86c805fe69f5adf97c05b9dc4d3bf357ae7c6409cc51a
2023-05-23 13:34:03 +02:00
Pieter Wuille
6433175ffe Do not invoke fe_is_zero on failed set_b32_limit 2023-05-19 08:40:28 -04:00
Tim Ruffing
5f7903c73c Merge bitcoin-core/secp256k1#1318: build: Enable -DVERIFY for precomputation binaries
5768b50229 build: Enable -DVERIFY for precomputation binaries (Tim Ruffing)

Pull request description:

  because... why not?!

  I realized that this can't hurt when working on #1313.

ACKs for top commit:
  sipa:
    ACK 5768b50229

Tree-SHA512: 2412cb93097f5c7904cfded6816bc5cdc69d958b4023ddaffd6e7575615ac5bfcd3a7cfc9ce2c0b0e6526a6f000dd84ecd32909d9d207a3644aadb5d34905911
2023-05-19 10:05:19 +02:00
Tim Ruffing
e9e4526a4e Merge bitcoin-core/secp256k1#1317: Make fe_cmov take max of magnitudes
31b4bbee1e Make fe_cmov take max of magnitudes (Pieter Wuille)

Pull request description:

  This addresses part of #1001.

  The magnitude and normalization of the output of `secp256k1_fe_cmov` should not depend on the runtime value of `flag`.

ACKs for top commit:
  real-or-random:
    utACK 31b4bbee1e
  stratospher:
    ACK 31b4bbe.

Tree-SHA512: 08bef9f63797cb8a1f3ea63c716c09aaa267dfee285b74ef5fbb47d614569d2787ec73d21bce080214872dfe70246f73cea42ad3c24e6baccecabe3312f71433
2023-05-19 09:55:08 +02:00
Tim Ruffing
5768b50229 build: Enable -DVERIFY for precomputation binaries 2023-05-17 23:28:36 +02:00
Pieter Wuille
31b4bbee1e Make fe_cmov take max of magnitudes 2023-05-15 09:36:55 -04:00
Tim Ruffing
83186db34a Merge bitcoin-core/secp256k1#1314: release cleanup: bump version after 0.3.2
95448ef2f8 release cleanup: bump version after 0.3.2 (Pieter Wuille)

Pull request description:

ACKs for top commit:
  hebasto:
    ACK 95448ef2f8
  real-or-random:
    ACK 95448ef2f8

Tree-SHA512: 82724afd8c4b3a383a9a6b6db787fe9dd8dabd76df896a5e1d1a90733ef1c6a2fbbd6dd1d82faee359eb98fe3c636fb31ec659d49e70e17c649ded6155b9a71d
2023-05-13 19:55:44 +02:00
Pieter Wuille
95448ef2f8 release cleanup: bump version after 0.3.2 2023-05-13 13:54:32 -04:00
Pieter Wuille
6ec3731e8c Simplify test PRNG implementation 2023-05-10 10:40:08 -04:00
Tim Ruffing
fb5bfa4eed Add static test vector for Xoshiro256++ 2023-05-09 18:11:29 +02:00
Pieter Wuille
723e8ca8f7 Remove randomness tests
Our RNG has been replaced with Xoshiro256++, a well-analyzed RNG. Our
unit tests should not be resposible for verifying its statistical
qualities.
2023-05-08 12:17:33 -04:00
Cory Fields
bc7c8db179 abi: Use dllexport for mingw builds
This should fix mingw exports, specifically hiding the following:
secp256k1_pre_g_128
secp256k1_pre_g
secp256k1_ecmult_gen_prec_table

This changes our visibility macros to look more like gcc's recommendation:
https://gcc.gnu.org/wiki/Visibility#How_to_use_the_new_C.2B-.2B-_visibility_support
2023-05-08 15:25:26 +00:00
Tim Ruffing
e02f313b1f Add comment on length checks when parsing ECDSA sigs
I claim the check can be removed but I don't want to touch this
stable and well-tested code.

On the way, we fix grammar in another comment.
2021-10-17 12:02:10 +02:00
79 changed files with 5205 additions and 2757 deletions

View File

@@ -21,6 +21,7 @@ env:
ECDH: no
RECOVERY: no
SCHNORRSIG: no
ELLSWIFT: no
### test options
SECP256K1_TEST_ITERS:
BENCH: yes
@@ -29,11 +30,6 @@ env:
# Compile and run the tests
EXAMPLES: yes
# https://cirrus-ci.org/pricing/#compute-credits
credits_snippet: &CREDITS
# Don't use any credits for now.
use_compute_credits: false
cat_logs_snippet: &CAT_LOGS
always:
cat_tests_log_script:
@@ -53,357 +49,47 @@ cat_logs_snippet: &CAT_LOGS
cat_ci_env_script:
- env
merge_base_script_snippet: &MERGE_BASE
merge_base_script:
- if [ "$CIRRUS_PR" = "" ]; then exit 0; fi
- git fetch --depth=1 $CIRRUS_REPO_CLONE_URL "pull/${CIRRUS_PR}/merge"
- git checkout FETCH_HEAD # Use merged changes to detect silent merge conflicts
linux_container_snippet: &LINUX_CONTAINER
container:
dockerfile: ci/linux-debian.Dockerfile
# Reduce number of CPUs to be able to do more builds in parallel.
cpu: 1
# Gives us more CPUs for free if they're available.
greedy: true
# More than enough for our scripts.
memory: 1G
task:
name: "x86_64: Linux (Debian stable)"
<< : *LINUX_CONTAINER
matrix: &ENV_MATRIX
- env: {WIDEMUL: int64, RECOVERY: yes}
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128}
- env: {WIDEMUL: int128_struct}
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
- env: {WIDEMUL: int128, ASM: x86_64}
- env: { RECOVERY: yes, SCHNORRSIG: yes}
- env: {CTIMETESTS: no, RECOVERY: yes, ECDH: yes, SCHNORRSIG: yes, CPPFLAGS: -DVERIFY}
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETESTS: no, BENCH: no}
- env: {CPPFLAGS: -DDETERMINISTIC}
- env: {CFLAGS: -O0, CTIMETESTS: no}
- env: { ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
- env: { ECMULTGENPRECISION: 8, ECMULTWINDOW: 4 }
matrix:
- env:
CC: gcc
- env:
CC: clang
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "i686: Linux (Debian stable)"
<< : *LINUX_CONTAINER
env:
HOST: i686-linux-gnu
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
matrix:
- env:
CC: i686-linux-gnu-gcc
- env:
CC: clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "arm64: macOS Ventura"
macos_instance:
image: ghcr.io/cirruslabs/macos-ventura-base:latest
env:
HOMEBREW_NO_AUTO_UPDATE: 1
HOMEBREW_NO_INSTALL_CLEANUP: 1
# Cirrus gives us a fixed number of 4 virtual CPUs. Not that we even have that many jobs at the moment...
MAKEFLAGS: -j5
matrix:
<< : *ENV_MATRIX
env:
ASM: no
WITH_VALGRIND: no
CTIMETESTS: no
matrix:
- env:
CC: gcc
- env:
CC: clang
brew_script:
- brew install automake libtool gcc
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
<< : *CREDITS
task:
name: "s390x (big-endian): Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-s390x
SECP256K1_TEST_ITERS: 16
HOST: s390x-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
# https://sourceware.org/bugzilla/show_bug.cgi?id=27008
- rm /etc/ld.so.cache
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ARM32: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-arm
SECP256K1_TEST_ITERS: 16
HOST: arm-linux-gnueabihf
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- env: {}
- env: {EXPERIMENTAL: yes, ASM: arm32}
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ARM64: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-aarch64
SECP256K1_TEST_ITERS: 16
HOST: aarch64-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "ppc64le: Linux (Debian stable, QEMU)"
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: qemu-ppc64le
SECP256K1_TEST_ITERS: 16
HOST: powerpc64le-linux-gnu
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: wine
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
env:
HOST: x86_64-w64-mingw32
- name: "i686 (mingw32-w64): Windows (Debian stable, Wine)"
env:
HOST: i686-w64-mingw32
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
<< : *LINUX_CONTAINER
env:
WRAPPER_CMD: wine
WERROR_CFLAGS: -WX
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
EXPERIMENTAL: yes
SCHNORRSIG: yes
CTIMETESTS: no
# Use a MinGW-w64 host to tell ./configure we're building for Windows.
# This will detect some MinGW-w64 tools but then make will need only
# the MSVC tools CC, AR and NM as specified below.
HOST: x86_64-w64-mingw32
CC: /opt/msvc/bin/x64/cl
AR: /opt/msvc/bin/x64/lib
NM: /opt/msvc/bin/x64/dumpbin -symbols -headers
# Set non-essential options that affect the CLI messages here.
# (They depend on the user's taste, so we don't want to set them automatically in configure.ac.)
CFLAGS: -nologo -diagnostics:caret
LDFLAGS: -Xlinker -Xlinker -Xlinker -nologo
matrix:
- name: "x86_64 (MSVC): Windows (Debian stable, Wine)"
- name: "x86_64 (MSVC): Windows (Debian stable, Wine, int128_struct)"
env:
WIDEMUL: int128_struct
- name: "x86_64 (MSVC): Windows (Debian stable, Wine, int128_struct with __(u)mulh)"
env:
WIDEMUL: int128_struct
CPPFLAGS: -DSECP256K1_MSVC_MULH_TEST_OVERRIDE
- name: "i686 (MSVC): Windows (Debian stable, Wine)"
env:
HOST: i686-w64-mingw32
CC: /opt/msvc/bin/x86/cl
AR: /opt/msvc/bin/x86/lib
NM: /opt/msvc/bin/x86/dumpbin -symbols -headers
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
# Sanitizers
task:
<< : *LINUX_CONTAINER
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: no
matrix:
- name: "Valgrind (memcheck)"
container:
cpu: 2
env:
# The `--error-exitcode` is required to make the test fail if valgrind found errors, otherwise it'll return 0 (https://www.valgrind.org/docs/manual/manual-core.html)
WRAPPER_CMD: "valgrind --error-exitcode=42"
SECP256K1_TEST_ITERS: 2
- name: "UBSan, ASan, LSan"
container:
memory: 2G
env:
CFLAGS: "-fsanitize=undefined,address -g"
UBSAN_OPTIONS: "print_stacktrace=1:halt_on_error=1"
ASAN_OPTIONS: "strict_string_checks=1:detect_stack_use_after_return=1:detect_leaks=1"
LSAN_OPTIONS: "use_unaligned=1"
SECP256K1_TEST_ITERS: 32
# Try to cover many configurations with just a tiny matrix.
matrix:
- env:
ASM: auto
- env:
ASM: no
ECMULTGENPRECISION: 2
ECMULTWINDOW: 2
matrix:
- env:
CC: clang
- env:
HOST: i686-linux-gnu
CC: i686-linux-gnu-gcc
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
# Memory sanitizers
task:
<< : *LINUX_CONTAINER
name: "MSan"
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
CTIMETESTS: yes
CC: clang
SECP256K1_TEST_ITERS: 32
ASM: no
WITH_VALGRIND: no
container:
memory: 2G
matrix:
- env:
CFLAGS: "-fsanitize=memory -g"
- env:
ECMULTGENPRECISION: 2
ECMULTWINDOW: 2
CFLAGS: "-fsanitize=memory -g -O3"
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "C++ -fpermissive (entire project)"
<< : *LINUX_CONTAINER
env:
CC: g++
CFLAGS: -fpermissive -g
CPPFLAGS: -DSECP256K1_CPLUSPLUS_TEST_OVERRIDE
WERROR_CFLAGS:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
task:
name: "C++ (public headers)"
<< : *LINUX_CONTAINER
test_script:
- g++ -Werror include/*.h
- clang -Werror -x c++-header include/*.h
- /opt/msvc/bin/x64/cl.exe -c -WX -TP include/*.h
task:
name: "sage prover"
<< : *LINUX_CONTAINER
test_script:
- cd sage
- sage prove_group_implementations.sage
task:
name: "x86_64: Windows (VS 2022)"
windows_container:
image: cirrusci/windowsservercore:visualstudio2022
cpu: 4
memory: 3840MB
env:
PATH: '%CIRRUS_WORKING_DIR%\build\src\RelWithDebInfo;%PATH%'
x64_NATIVE_TOOLS: '"C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Auxiliary\Build\vcvars64.bat"'
# Ignore MSBuild warning MSB8029.
# See: https://learn.microsoft.com/en-us/visualstudio/msbuild/errors/msb8029?view=vs-2022
IgnoreWarnIntDirInTempDetected: 'true'
merge_script:
- PowerShell -NoLogo -Command if ($env:CIRRUS_PR -ne $null) { git fetch $env:CIRRUS_REPO_CLONE_URL pull/$env:CIRRUS_PR/merge; git reset --hard FETCH_HEAD; }
configure_script:
- '%x64_NATIVE_TOOLS%'
- cmake -E env CFLAGS="/WX" cmake -G "Visual Studio 17 2022" -A x64 -S . -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON
linux_arm64_container_snippet: &LINUX_ARM64_CONTAINER
env_script:
- env | tee /tmp/env
build_script:
- '%x64_NATIVE_TOOLS%'
- cmake --build build --config RelWithDebInfo -- -property:UseMultiToolTask=true;CL_MPcount=5
check_script:
- '%x64_NATIVE_TOOLS%'
- ctest -C RelWithDebInfo --test-dir build -j 5
- build\src\RelWithDebInfo\bench_ecmult.exe
- build\src\RelWithDebInfo\bench_internal.exe
- build\src\RelWithDebInfo\bench.exe
- DOCKER_BUILDKIT=1 docker build --file "ci/linux-debian.Dockerfile" --tag="ci_secp256k1_arm"
- docker image prune --force # Cleanup stale layers
test_script:
- docker run --rm --mount "type=bind,src=./,dst=/ci_secp256k1" --env-file /tmp/env --replace --name "ci_secp256k1_arm" "ci_secp256k1_arm" bash -c "cd /ci_secp256k1/ && ./ci/ci.sh"
task:
name: "ARM64: Linux (Debian stable)"
persistent_worker:
labels:
type: arm64
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
ELLSWIFT: yes
matrix:
# Currently only gcc-snapshot, the other compilers are tested on GHA with QEMU
- env: { CC: 'gcc-snapshot' }
<< : *LINUX_ARM64_CONTAINER
<< : *CAT_LOGS
task:
name: "ARM64: Linux (Debian stable), Valgrind"
persistent_worker:
labels:
type: arm64
env:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
ELLSWIFT: yes
WRAPPER_CMD: 'valgrind --error-exitcode=42'
SECP256K1_TEST_ITERS: 2
matrix:
- env: { CC: 'gcc' }
- env: { CC: 'clang' }
- env: { CC: 'gcc-snapshot' }
- env: { CC: 'clang-snapshot' }
<< : *LINUX_ARM64_CONTAINER
<< : *CAT_LOGS

View File

@@ -0,0 +1,33 @@
name: "Install Valgrind"
description: "Install Homebrew's Valgrind package and cache it."
runs:
using: "composite"
steps:
- run: |
brew tap LouisBrunner/valgrind
brew fetch --HEAD LouisBrunner/valgrind/valgrind
echo "CI_HOMEBREW_CELLAR_VALGRIND=$(brew --cellar valgrind)" >> "$GITHUB_ENV"
shell: bash
- run: |
sw_vers > valgrind_fingerprint
brew --version >> valgrind_fingerprint
git -C "$(brew --cache)/valgrind--git" rev-parse HEAD >> valgrind_fingerprint
cat valgrind_fingerprint
shell: bash
- uses: actions/cache@v3
id: cache
with:
path: ${{ env.CI_HOMEBREW_CELLAR_VALGRIND }}
key: ${{ github.job }}-valgrind-${{ hashFiles('valgrind_fingerprint') }}
- if: steps.cache.outputs.cache-hit != 'true'
run: |
brew install --HEAD LouisBrunner/valgrind/valgrind
shell: bash
- if: steps.cache.outputs.cache-hit == 'true'
run: |
brew link valgrind
shell: bash

View File

@@ -0,0 +1,49 @@
name: 'Run in Docker with environment'
description: 'Run a command in a Docker container, while passing explicitly set environment variables into the container.'
inputs:
dockerfile:
description: 'A Dockerfile that defines an image'
required: true
tag:
description: 'A tag of an image'
required: true
command:
description: 'A command to run in a container'
required: false
default: ./ci/ci.sh
runs:
using: "composite"
steps:
- uses: docker/setup-buildx-action@v3
- uses: docker/build-push-action@v5
id: main_builder
continue-on-error: true
with:
context: .
file: ${{ inputs.dockerfile }}
tags: ${{ inputs.tag }}
load: true
cache-from: type=gha
- uses: docker/build-push-action@v5
id: retry_builder
if: steps.main_builder.outcome == 'failure'
with:
context: .
file: ${{ inputs.dockerfile }}
tags: ${{ inputs.tag }}
load: true
cache-from: type=gha
- # Tell Docker to pass environment variables in `env` into the container.
run: >
docker run \
$(echo '${{ toJSON(env) }}' | jq -r 'keys[] | "--env \(.) "') \
--volume ${{ github.workspace }}:${{ github.workspace }} \
--workdir ${{ github.workspace }} \
${{ inputs.tag }} bash -c "
git config --global --add safe.directory ${{ github.workspace }}
${{ inputs.command }}
"
shell: bash

806
.github/workflows/ci.yml vendored Normal file
View File

@@ -0,0 +1,806 @@
name: CI
on:
pull_request:
push:
branches:
- '**'
tags-ignore:
- '**'
concurrency:
group: ${{ github.event_name != 'pull_request' && github.run_id || github.ref }}
cancel-in-progress: true
env:
### compiler options
HOST:
WRAPPER_CMD:
# Specific warnings can be disabled with -Wno-error=foo.
# -pedantic-errors is not equivalent to -Werror=pedantic and thus not implied by -Werror according to the GCC manual.
WERROR_CFLAGS: '-Werror -pedantic-errors'
MAKEFLAGS: '-j4'
BUILD: 'check'
### secp256k1 config
ECMULTWINDOW: 'auto'
ECMULTGENPRECISION: 'auto'
ASM: 'no'
WIDEMUL: 'auto'
WITH_VALGRIND: 'yes'
EXTRAFLAGS:
### secp256k1 modules
EXPERIMENTAL: 'no'
ECDH: 'no'
RECOVERY: 'no'
SCHNORRSIG: 'no'
ELLSWIFT: 'no'
### test options
SECP256K1_TEST_ITERS:
BENCH: 'yes'
SECP256K1_BENCH_ITERS: 2
CTIMETESTS: 'yes'
# Compile and run the examples.
EXAMPLES: 'yes'
jobs:
docker_cache:
name: "Build Docker image"
runs-on: ubuntu-latest
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
# See: https://github.com/moby/buildkit/issues/3969.
driver-opts: |
network=host
- name: Build container
uses: docker/build-push-action@v5
with:
file: ./ci/linux-debian.Dockerfile
tags: linux-debian-image
cache-from: type=gha
cache-to: type=gha,mode=min
linux_debian:
name: "x86_64: Linux (Debian stable)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { WIDEMUL: 'int64', RECOVERY: 'yes' }
- env_vars: { WIDEMUL: 'int64', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128' }
- env_vars: { WIDEMUL: 'int128_struct', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128', RECOVERY: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { WIDEMUL: 'int128', ECDH: 'yes', SCHNORRSIG: 'yes' }
- env_vars: { WIDEMUL: 'int128', ASM: 'x86_64', ELLSWIFT: 'yes' }
- env_vars: { RECOVERY: 'yes', SCHNORRSIG: 'yes' }
- env_vars: { CTIMETESTS: 'no', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', CPPFLAGS: '-DVERIFY' }
- env_vars: { BUILD: 'distcheck', WITH_VALGRIND: 'no', CTIMETESTS: 'no', BENCH: 'no' }
- env_vars: { CPPFLAGS: '-DDETERMINISTIC' }
- env_vars: { CFLAGS: '-O0', CTIMETESTS: 'no' }
- env_vars: { CFLAGS: '-O1', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- env_vars: { ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
- env_vars: { ECMULTGENPRECISION: 8, ECMULTWINDOW: 4 }
cc:
- 'gcc'
- 'clang'
- 'gcc-snapshot'
- 'clang-snapshot'
env:
CC: ${{ matrix.cc }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
i686_debian:
name: "i686: Linux (Debian stable)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
cc:
- 'i686-linux-gnu-gcc'
- 'clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include'
env:
HOST: 'i686-linux-gnu'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CC: ${{ matrix.cc }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
s390x_debian:
name: "s390x (big-endian): Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'qemu-s390x'
SECP256K1_TEST_ITERS: 16
HOST: 's390x-linux-gnu'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
arm32_debian:
name: "ARM32: Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: {}
- env_vars: { EXPERIMENTAL: 'yes', ASM: 'arm32' }
env:
WRAPPER_CMD: 'qemu-arm'
SECP256K1_TEST_ITERS: 16
HOST: 'arm-linux-gnueabihf'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
arm64_debian:
name: "ARM64: Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'qemu-aarch64'
SECP256K1_TEST_ITERS: 16
HOST: 'aarch64-linux-gnu'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { } # gcc
- env_vars: # clang
CC: 'clang --target=aarch64-linux-gnu'
- env_vars: # clang-snapshot
CC: 'clang-snapshot --target=aarch64-linux-gnu'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
ppc64le_debian:
name: "ppc64le: Linux (Debian stable, QEMU)"
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'qemu-ppc64le'
SECP256K1_TEST_ITERS: 16
HOST: 'powerpc64le-linux-gnu'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
valgrind_debian:
name: "Valgrind (memcheck)"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { CC: 'clang', ASM: 'auto' }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'auto' }
- env_vars: { CC: 'clang', ASM: 'no', ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'no', ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
env:
# The `--error-exitcode` is required to make the test fail if valgrind found errors,
# otherwise it will return 0 (https://www.valgrind.org/docs/manual/manual-core.html).
WRAPPER_CMD: 'valgrind --error-exitcode=42'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
SECP256K1_TEST_ITERS: 2
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
sanitizers_debian:
name: "UBSan, ASan, LSan"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars: { CC: 'clang', ASM: 'auto' }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'auto' }
- env_vars: { CC: 'clang', ASM: 'no', ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
- env_vars: { CC: 'i686-linux-gnu-gcc', HOST: 'i686-linux-gnu', ASM: 'no', ECMULTGENPRECISION: 2, ECMULTWINDOW: 2 }
env:
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
CFLAGS: '-fsanitize=undefined,address -g'
UBSAN_OPTIONS: 'print_stacktrace=1:halt_on_error=1'
ASAN_OPTIONS: 'strict_string_checks=1:detect_stack_use_after_return=1:detect_leaks=1'
LSAN_OPTIONS: 'use_unaligned=1'
SECP256K1_TEST_ITERS: 32
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
msan_debian:
name: "MSan"
runs-on: ubuntu-latest
needs: docker_cache
strategy:
fail-fast: false
matrix:
configuration:
- env_vars:
CFLAGS: '-fsanitize=memory -fsanitize-recover=memory -g'
- env_vars:
ECMULTGENPRECISION: 2
ECMULTWINDOW: 2
CFLAGS: '-fsanitize=memory -fsanitize-recover=memory -g -O3'
env:
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'yes'
CC: 'clang'
SECP256K1_TEST_ITERS: 32
ASM: 'no'
WITH_VALGRIND: 'no'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
mingw_debian:
name: ${{ matrix.configuration.job_name }}
runs-on: ubuntu-latest
needs: docker_cache
env:
WRAPPER_CMD: 'wine'
WITH_VALGRIND: 'no'
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
CTIMETESTS: 'no'
strategy:
fail-fast: false
matrix:
configuration:
- job_name: 'x86_64 (mingw32-w64): Windows (Debian stable, Wine)'
env_vars:
HOST: 'x86_64-w64-mingw32'
- job_name: 'i686 (mingw32-w64): Windows (Debian stable, Wine)'
env_vars:
HOST: 'i686-w64-mingw32'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
env: ${{ matrix.configuration.env_vars }}
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
macos-native:
name: "x86_64: macOS Monterey"
# See: https://github.com/actions/runner-images#available-images.
runs-on: macos-12 # Use M1 once available https://github.com/github/roadmap/issues/528
env:
CC: 'clang'
HOMEBREW_NO_AUTO_UPDATE: 1
HOMEBREW_NO_INSTALL_CLEANUP: 1
strategy:
fail-fast: false
matrix:
env_vars:
- { WIDEMUL: 'int64', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128_struct', ECMULTGENPRECISION: 2, ECMULTWINDOW: 4 }
- { WIDEMUL: 'int128', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes', CC: 'gcc' }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes', WRAPPER_CMD: 'valgrind --error-exitcode=42', SECP256K1_TEST_ITERS: 2 }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes', CC: 'gcc', WRAPPER_CMD: 'valgrind --error-exitcode=42', SECP256K1_TEST_ITERS: 2 }
- { WIDEMUL: 'int128', RECOVERY: 'yes', ECDH: 'yes', SCHNORRSIG: 'yes', ELLSWIFT: 'yes', CPPFLAGS: '-DVERIFY', CTIMETESTS: 'no' }
- BUILD: 'distcheck'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Homebrew packages
run: |
brew install automake libtool gcc
ln -s $(brew --prefix gcc)/bin/gcc-?? /usr/local/bin/gcc
- name: Install and cache Valgrind
uses: ./.github/actions/install-homebrew-valgrind
- name: CI script
env: ${{ matrix.env_vars }}
run: ./ci/ci.sh
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
win64-native:
name: ${{ matrix.configuration.job_name }}
# See: https://github.com/actions/runner-images#available-images.
runs-on: windows-2022
strategy:
fail-fast: false
matrix:
configuration:
- job_name: 'x64 (MSVC): Windows (VS 2022, shared)'
cmake_options: '-A x64 -DBUILD_SHARED_LIBS=ON'
- job_name: 'x64 (MSVC): Windows (VS 2022, static)'
cmake_options: '-A x64 -DBUILD_SHARED_LIBS=OFF'
- job_name: 'x64 (MSVC): Windows (VS 2022, int128_struct)'
cmake_options: '-A x64 -DSECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY=int128_struct'
- job_name: 'x64 (MSVC): Windows (VS 2022, int128_struct with __(u)mulh)'
cmake_options: '-A x64 -DSECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY=int128_struct'
cpp_flags: '/DSECP256K1_MSVC_MULH_TEST_OVERRIDE'
- job_name: 'x86 (MSVC): Windows (VS 2022)'
cmake_options: '-A Win32'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Generate buildsystem
run: cmake -E env CFLAGS="/WX ${{ matrix.configuration.cpp_flags }}" cmake -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON ${{ matrix.configuration.cmake_options }}
- name: Build
run: cmake --build build --config RelWithDebInfo -- /p:UseMultiToolTask=true /maxCpuCount
- name: Binaries info
# Use the bash shell included with Git for Windows.
shell: bash
run: |
cd build/src/RelWithDebInfo && file *tests.exe bench*.exe libsecp256k1-*.dll || true
- name: Check
run: |
ctest -C RelWithDebInfo --test-dir build -j ([int]$env:NUMBER_OF_PROCESSORS + 1)
build\src\RelWithDebInfo\bench_ecmult.exe
build\src\RelWithDebInfo\bench_internal.exe
build\src\RelWithDebInfo\bench.exe
win64-native-headers:
name: "x64 (MSVC): C++ (public headers)"
# See: https://github.com/actions/runner-images#available-images.
runs-on: windows-2022
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Add cl.exe to PATH
uses: ilammy/msvc-dev-cmd@v1
- name: C++ (public headers)
run: |
cl.exe -c -WX -TP include/*.h
cxx_fpermissive_debian:
name: "C++ -fpermissive (entire project)"
runs-on: ubuntu-latest
needs: docker_cache
env:
CC: 'g++'
CFLAGS: '-fpermissive -g'
CPPFLAGS: '-DSECP256K1_CPLUSPLUS_TEST_OVERRIDE'
WERROR_CFLAGS:
ECDH: 'yes'
RECOVERY: 'yes'
SCHNORRSIG: 'yes'
ELLSWIFT: 'yes'
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
- run: cat tests.log || true
if: ${{ always() }}
- run: cat noverify_tests.log || true
if: ${{ always() }}
- run: cat exhaustive_tests.log || true
if: ${{ always() }}
- run: cat ctime_tests.log || true
if: ${{ always() }}
- run: cat bench.log || true
if: ${{ always() }}
- run: cat config.log || true
if: ${{ always() }}
- run: cat test_env.log || true
if: ${{ always() }}
- name: CI env
run: env
if: ${{ always() }}
cxx_headers_debian:
name: "C++ (public headers)"
runs-on: ubuntu-latest
needs: docker_cache
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
uses: ./.github/actions/run-in-docker-action
with:
dockerfile: ./ci/linux-debian.Dockerfile
tag: linux-debian-image
command: |
g++ -Werror include/*.h
clang -Werror -x c++-header include/*.h
sage:
name: "SageMath prover"
runs-on: ubuntu-latest
container:
image: sagemath/sagemath:latest
options: --user root
steps:
- name: Checkout
uses: actions/checkout@v4
- name: CI script
run: |
cd sage
sage prove_group_implementations.sage
release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- run: ./autogen.sh && ./configure --enable-dev-mode && make distcheck
- name: Check installation with Autotools
env:
CI_INSTALL: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/install
run: |
./autogen.sh && ./configure --prefix=${{ env.CI_INSTALL }} && make clean && make install && ls -RlAh ${{ env.CI_INSTALL }}
gcc -o ecdsa examples/ecdsa.c $(PKG_CONFIG_PATH=${{ env.CI_INSTALL }}/lib/pkgconfig pkg-config --cflags --libs libsecp256k1) -Wl,-rpath,"${{ env.CI_INSTALL }}/lib" && ./ecdsa
- name: Check installation with CMake
env:
CI_BUILD: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/build
CI_INSTALL: ${{ runner.temp }}/${{ github.run_id }}${{ github.action }}/install
run: |
cmake -B ${{ env.CI_BUILD }} -DCMAKE_INSTALL_PREFIX=${{ env.CI_INSTALL }} && cmake --build ${{ env.CI_BUILD }} --target install && ls -RlAh ${{ env.CI_INSTALL }}
gcc -o ecdsa examples/ecdsa.c -I ${{ env.CI_INSTALL }}/include -L ${{ env.CI_INSTALL }}/lib*/ -l secp256k1 -Wl,-rpath,"${{ env.CI_INSTALL }}/lib",-rpath,"${{ env.CI_INSTALL }}/lib64" && ./ecdsa

View File

@@ -5,6 +5,34 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.4.1] - 2023-12-21
#### Changed
- The point multiplication algorithm used for ECDH operations (module `ecdh`) was replaced with a slightly faster one.
- Optional handwritten x86_64 assembly for field operations was removed because modern C compilers are able to output more efficient assembly. This change results in a significant speedup of some library functions when handwritten x86_64 assembly is enabled (`--with-asm=x86_64` in GNU Autotools, `-DSECP256K1_ASM=x86_64` in CMake), which is the default on x86_64. Benchmarks with GCC 10.5.0 show a 10% speedup for `secp256k1_ecdsa_verify` and `secp256k1_schnorrsig_verify`.
#### ABI Compatibility
The ABI is backward compatible with versions 0.4.0 and 0.3.x.
## [0.4.0] - 2023-09-04
#### Added
- New module `ellswift` implements ElligatorSwift encoding for public keys and x-only Diffie-Hellman key exchange for them.
ElligatorSwift permits representing secp256k1 public keys as 64-byte arrays which cannot be distinguished from uniformly random. See:
- Header file `include/secp256k1_ellswift.h` which defines the new API.
- Document `doc/ellswift.md` which explains the mathematical background of the scheme.
- The [paper](https://eprint.iacr.org/2022/759) on which the scheme is based.
- We now test the library with unreleased development snapshots of GCC and Clang. This gives us an early chance to catch miscompilations and constant-time issues introduced by the compiler (such as those that led to the previous two releases).
#### Fixed
- Fixed symbol visibility in Windows DLL builds, where three internal library symbols were wrongly exported.
#### Changed
- When consuming libsecp256k1 as a static library on Windows, the user must now define the `SECP256K1_STATIC` macro before including `secp256k1.h`.
#### ABI Compatibility
This release is backward compatible with the ABI of 0.3.0, 0.3.1, and 0.3.2. Symbol visibility is now believed to be handled properly on supported platforms and is now considered to be part of the ABI. Please report any improperly exported symbols as a bug.
## [0.3.2] - 2023-05-13
We strongly recommend updating to 0.3.2 if you use or plan to use GCC >=13 to compile libsecp256k1. When in doubt, check the GCC version using `gcc -v`.
@@ -85,7 +113,8 @@ This version was in fact never released.
The number was given by the build system since the introduction of autotools in Jan 2014 (ea0fe5a5bf0c04f9cc955b2966b614f5f378c6f6).
Therefore, this version number does not uniquely identify a set of source files.
[unreleased]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.2...HEAD
[0.4.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.4.0...v0.4.1
[0.4.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.2...v0.4.0
[0.3.2]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.1...v0.3.2
[0.3.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.0...v0.3.1
[0.3.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.2.0...v0.3.0

View File

@@ -11,7 +11,7 @@ project(libsecp256k1
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
VERSION 0.3.2
VERSION 0.4.1
DESCRIPTION "Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1."
HOMEPAGE_URL "https://github.com/bitcoin-core/secp256k1"
LANGUAGES C
@@ -34,9 +34,9 @@ endif()
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
set(${PROJECT_NAME}_LIB_VERSION_CURRENT 2)
set(${PROJECT_NAME}_LIB_VERSION_REVISION 2)
set(${PROJECT_NAME}_LIB_VERSION_AGE 0)
set(${PROJECT_NAME}_LIB_VERSION_CURRENT 3)
set(${PROJECT_NAME}_LIB_VERSION_REVISION 1)
set(${PROJECT_NAME}_LIB_VERSION_AGE 1)
set(CMAKE_C_STANDARD 90)
set(CMAKE_C_EXTENSIONS OFF)
@@ -71,6 +71,11 @@ if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
add_compile_definitions(ENABLE_MODULE_EXTRAKEYS=1)
endif()
option(SECP256K1_ENABLE_MODULE_ELLSWIFT "Enable ElligatorSwift module." ON)
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
add_compile_definitions(ENABLE_MODULE_ELLSWIFT=1)
endif()
option(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS "Enable external default callback functions." OFF)
if(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS)
add_compile_definitions(USE_EXTERNAL_DEFAULT_CALLBACKS=1)
@@ -102,7 +107,7 @@ if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
endif()
mark_as_advanced(FORCE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly optimizations to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm32\" (experimental). [default=AUTO]")
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm32\" (experimental). [default=AUTO]")
set_property(CACHE SECP256K1_ASM PROPERTY STRINGS "AUTO" "OFF" "x86_64" "arm32")
check_string_option_value(SECP256K1_ASM)
if(SECP256K1_ASM STREQUAL "arm32")
@@ -112,7 +117,7 @@ if(SECP256K1_ASM STREQUAL "arm32")
if(HAVE_ARM32_ASM)
add_compile_definitions(USE_EXTERNAL_ASM=1)
else()
message(FATAL_ERROR "ARM32 assembly optimization requested but not available.")
message(FATAL_ERROR "ARM32 assembly requested but not available.")
endif()
elseif(SECP256K1_ASM)
include(CheckX86_64Assembly)
@@ -123,14 +128,14 @@ elseif(SECP256K1_ASM)
elseif(SECP256K1_ASM STREQUAL "AUTO")
set(SECP256K1_ASM "OFF")
else()
message(FATAL_ERROR "x86_64 assembly optimization requested but not available.")
message(FATAL_ERROR "x86_64 assembly requested but not available.")
endif()
endif()
option(SECP256K1_EXPERIMENTAL "Allow experimental configuration options." OFF)
if(NOT SECP256K1_EXPERIMENTAL)
if(SECP256K1_ASM STREQUAL "arm32")
message(FATAL_ERROR "ARM32 assembly optimization is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
message(FATAL_ERROR "ARM32 assembly is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
endif()
endif()
@@ -212,8 +217,12 @@ endif()
include(TryAppendCFlags)
if(MSVC)
# Keep the following commands ordered lexicographically.
try_append_c_flags(/W2) # Moderate warning level.
try_append_c_flags(/W3) # Production quality warning level.
try_append_c_flags(/wd4146) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
try_append_c_flags(/wd4244) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
try_append_c_flags(/wd4267) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
# Eliminate deprecation warnings for the older, less secure functions.
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
else()
# Keep the following commands ordered lexicographically.
try_append_c_flags(-pedantic)
@@ -266,11 +275,12 @@ message(" ECDH ................................ ${SECP256K1_ENABLE_MODULE_ECDH}
message(" ECDSA pubkey recovery ............... ${SECP256K1_ENABLE_MODULE_RECOVERY}")
message(" extrakeys ........................... ${SECP256K1_ENABLE_MODULE_EXTRAKEYS}")
message(" schnorrsig .......................... ${SECP256K1_ENABLE_MODULE_SCHNORRSIG}")
message(" ElligatorSwift ...................... ${SECP256K1_ENABLE_MODULE_ELLSWIFT}")
message("Parameters:")
message(" ecmult window size .................. ${SECP256K1_ECMULT_WINDOW_SIZE}")
message(" ecmult gen precision bits ........... ${SECP256K1_ECMULT_GEN_PREC_BITS}")
message("Optional features:")
message(" assembly optimization ............... ${SECP256K1_ASM}")
message(" assembly ............................ ${SECP256K1_ASM}")
message(" external callbacks .................. ${SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS}")
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
message(" wide multiplication (test-only) ..... ${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}")

107
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,107 @@
# Contributing to libsecp256k1
## Scope
libsecp256k1 is a library for elliptic curve cryptography on the curve secp256k1, not a general-purpose cryptography library.
The library primarily serves the needs of the Bitcoin Core project but provides additional functionality for the benefit of the wider Bitcoin ecosystem.
## Adding new functionality or modules
The libsecp256k1 project welcomes contributions in the form of new functionality or modules, provided they are within the project's scope.
It is the responsibility of the contributors to convince the maintainers that the proposed functionality is within the project's scope, high-quality and maintainable.
Contributors are recommended to provide the following in addition to the new code:
* **Specification:**
A specification can help significantly in reviewing the new code as it provides documentation and context.
It may justify various design decisions, give a motivation and outline security goals.
If the specification contains pseudocode, a reference implementation or test vectors, these can be used to compare with the proposed libsecp256k1 code.
* **Security Arguments:**
In addition to a defining the security goals, it should be argued that the new functionality meets these goals.
Depending on the nature of the new functionality, a wide range of security arguments are acceptable, ranging from being "obviously secure" to rigorous proofs of security.
* **Relevance Arguments:**
The relevance of the new functionality for the Bitcoin ecosystem should be argued by outlining clear use cases.
These are not the only factors taken into account when considering to add new functionality.
The proposed new libsecp256k1 code must be of high quality, including API documentation and tests, as well as featuring a misuse-resistant API design.
We recommend reaching out to other contributors (see [Communication Channels](#communication-channels)) and get feedback before implementing new functionality.
## Communication channels
Most communication about libsecp256k1 occurs on the GitHub repository: in issues, pull request or on the discussion board.
Additionally, there is an IRC channel dedicated to libsecp256k1, with biweekly meetings (see channel topic).
The channel is `#secp256k1` on Libera Chat.
The easiest way to participate on IRC is with the web client, [web.libera.chat](https://web.libera.chat/#secp256k1).
Chat history logs can be found at https://gnusha.org/secp256k1/.
## Contributor workflow & peer review
The Contributor Workflow & Peer Review in libsecp256k1 are similar to Bitcoin Core's workflow and review processes described in its [CONTRIBUTING.md](https://github.com/bitcoin/bitcoin/blob/master/CONTRIBUTING.md).
### Coding conventions
In addition, libsecp256k1 tries to maintain the following coding conventions:
* No runtime heap allocation (e.g., no `malloc`) unless explicitly requested by the caller (via `secp256k1_context_create` or `secp256k1_scratch_space_create`, for example). Morever, it should be possible to use the library without any heap allocations.
* The tests should cover all lines and branches of the library (see [Test coverage](#coverage)).
* Operations involving secret data should be tested for being constant time with respect to the secrets (see [src/ctime_tests.c](src/ctime_tests.c)).
* Local variables containing secret data should be cleared explicitly to try to delete secrets from memory.
* Use `secp256k1_memcmp_var` instead of `memcmp` (see [#823](https://github.com/bitcoin-core/secp256k1/issues/823)).
#### Style conventions
* Commits should be atomic and diffs should be easy to read. For this reason, do not mix any formatting fixes or code moves with actual code changes. Make sure each individual commit is hygienic: that it builds successfully on its own without warnings, errors, regressions, or test failures.
* New code should adhere to the style of existing, in particular surrounding, code. Other than that, we do not enforce strict rules for code formatting.
* The code conforms to C89. Most notably, that means that only `/* ... */` comments are allowed (no `//` line comments). Moreover, any declarations in a `{ ... }` block (e.g., a function) must appear at the beginning of the block before any statements. When you would like to declare a variable in the middle of a block, you can open a new block:
```C
void secp256k_foo(void) {
unsigned int x; /* declaration */
int y = 2*x; /* declaration */
x = 17; /* statement */
{
int a, b; /* declaration */
a = x + y; /* statement */
secp256k_bar(x, &b); /* statement */
}
}
```
* Use `unsigned int` instead of just `unsigned`.
* Use `void *ptr` instead of `void* ptr`.
* Arguments of the publicly-facing API must have a specific order defined in [include/secp256k1.h](include/secp256k1.h).
* User-facing comment lines in headers should be limited to 80 chars if possible.
* All identifiers in file scope should start with `secp256k1_`.
* Avoid trailing whitespace.
### Tests
#### Coverage
This library aims to have full coverage of reachable lines and branches.
To create a test coverage report, configure with `--enable-coverage` (use of GCC is necessary):
$ ./configure --enable-coverage
Run the tests:
$ make check
To create a report, `gcovr` is recommended, as it includes branch coverage reporting:
$ gcovr --exclude 'src/bench*' --print-summary
To create a HTML report with coloured and annotated source code:
$ mkdir -p coverage
$ gcovr --exclude 'src/bench*' --html --html-details -o coverage/coverage.html
#### Exhaustive tests
There are tests of several functions in which a small group replaces secp256k1.
These tests are *exhaustive* since they provide all elements and scalars of the small group as input arguments (see [src/tests_exhaustive.c](src/tests_exhaustive.c)).
### Benchmarks
See `src/bench*.c` for examples of benchmarks.

View File

@@ -37,7 +37,6 @@ noinst_HEADERS += src/field_10x26_impl.h
noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/modinv32.h
noinst_HEADERS += src/modinv32_impl.h
noinst_HEADERS += src/modinv64.h
@@ -46,6 +45,7 @@ noinst_HEADERS += src/precomputed_ecmult.h
noinst_HEADERS += src/precomputed_ecmult_gen.h
noinst_HEADERS += src/assumptions.h
noinst_HEADERS += src/checkmem.h
noinst_HEADERS += src/testutil.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/int128.h
noinst_HEADERS += src/int128_impl.h
@@ -153,7 +153,7 @@ endif
if USE_EXAMPLES
noinst_PROGRAMS += ecdsa_example
ecdsa_example_SOURCES = examples/ecdsa.c
ecdsa_example_CPPFLAGS = -I$(top_srcdir)/include
ecdsa_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
ecdsa_example_LDADD = libsecp256k1.la
ecdsa_example_LDFLAGS = -static
if BUILD_WINDOWS
@@ -163,7 +163,7 @@ TESTS += ecdsa_example
if ENABLE_MODULE_ECDH
noinst_PROGRAMS += ecdh_example
ecdh_example_SOURCES = examples/ecdh.c
ecdh_example_CPPFLAGS = -I$(top_srcdir)/include
ecdh_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
ecdh_example_LDADD = libsecp256k1.la
ecdh_example_LDFLAGS = -static
if BUILD_WINDOWS
@@ -174,7 +174,7 @@ endif
if ENABLE_MODULE_SCHNORRSIG
noinst_PROGRAMS += schnorr_example
schnorr_example_SOURCES = examples/schnorr.c
schnorr_example_CPPFLAGS = -I$(top_srcdir)/include
schnorr_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
schnorr_example_LDADD = libsecp256k1.la
schnorr_example_LDFLAGS = -static
if BUILD_WINDOWS
@@ -189,11 +189,11 @@ EXTRA_PROGRAMS = precompute_ecmult precompute_ecmult_gen
CLEANFILES = $(EXTRA_PROGRAMS)
precompute_ecmult_SOURCES = src/precompute_ecmult.c
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES)
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
precompute_ecmult_LDADD = $(COMMON_LIB)
precompute_ecmult_gen_SOURCES = src/precompute_ecmult_gen.c
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES)
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
precompute_ecmult_gen_LDADD = $(COMMON_LIB)
# See Automake manual, Section "Errors with distclean".
@@ -267,3 +267,7 @@ endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif
if ENABLE_MODULE_ELLSWIFT
include src/modules/ellswift/Makefile.am.include
endif

View File

@@ -1,11 +1,10 @@
libsecp256k1
============
[![Build Status](https://api.cirrus-ci.com/github/bitcoin-core/secp256k1.svg?branch=master)](https://cirrus-ci.com/github/bitcoin-core/secp256k1)
![Dependencies: None](https://img.shields.io/badge/dependencies-none-success)
[![irc.libera.chat #secp256k1](https://img.shields.io/badge/irc.libera.chat-%23secp256k1-success)](https://web.libera.chat/#secp256k1)
Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1.
High-performance high-assurance C library for digital signatures and other cryptographic primitives on the secp256k1 elliptic curve.
This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose.
@@ -34,7 +33,7 @@ Implementation details
* Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
* Field operations
* Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
* Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
* Using 5 52-bit limbs
* Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan).
* This is an experimental feature that has not received enough scrutiny to satisfy the standard of quality of this library but is made available for testing and review by the community.
* Scalar operations
@@ -117,28 +116,6 @@ Usage examples can be found in the [examples](examples) directory. To compile th
To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
Test coverage
-----------
This library aims to have full coverage of the reachable lines and branches.
To create a test coverage report, configure with `--enable-coverage` (use of GCC is necessary):
$ ./configure --enable-coverage
Run the tests:
$ make check
To create a report, `gcovr` is recommended, as it includes branch coverage reporting:
$ gcovr --exclude 'src/bench*' --print-summary
To create a HTML report with coloured and annotated source code:
$ mkdir -p coverage
$ gcovr --exclude 'src/bench*' --html --html-details -o coverage/coverage.html
Benchmark
------------
If configured with `--enable-benchmark` (which is the default), binaries for benchmarking the libsecp256k1 functions will be present in the root directory after the build.
@@ -155,3 +132,8 @@ Reporting a vulnerability
------------
See [SECURITY.md](SECURITY.md)
Contributing to libsecp256k1
------------
See [CONTRIBUTING.md](CONTRIBUTING.md)

View File

@@ -4,7 +4,8 @@ set -eux
export LC_ALL=C
# Print relevant CI environment to allow reproducing the job outside of CI.
# Print commit and relevant CI environment to allow reproducing the job outside of CI.
git show --no-patch
print_environment() {
# Turn off -x because it messes up the output
set +x
@@ -12,7 +13,7 @@ print_environment() {
# does not rely on bash.
for var in WERROR_CFLAGS MAKEFLAGS BUILD \
ECMULTWINDOW ECMULTGENPRECISION ASM WIDEMUL WITH_VALGRIND EXTRAFLAGS \
EXPERIMENTAL ECDH RECOVERY SCHNORRSIG \
EXPERIMENTAL ECDH RECOVERY SCHNORRSIG ELLSWIFT \
SECP256K1_TEST_ITERS BENCH SECP256K1_BENCH_ITERS CTIMETESTS\
EXAMPLES \
HOST WRAPPER_CMD \
@@ -30,19 +31,15 @@ print_environment() {
}
print_environment
# Start persistent wineserver if necessary.
# This speeds up jobs with many invocations of wine (e.g., ./configure with MSVC) tremendously.
case "$WRAPPER_CMD" in
*wine*)
# Make sure to shutdown wineserver whenever we exit.
trap "wineserver -k || true" EXIT INT HUP
# This is apparently only reliable when we run a dummy command such as "hh.exe" afterwards.
wineserver -p && wine hh.exe
env >> test_env.log
# If gcc is requested, assert that it's in fact gcc (and not some symlinked Apple clang).
case "${CC:-undefined}" in
*gcc*)
$CC -v 2>&1 | grep -q "gcc version" || exit 1;
;;
esac
env >> test_env.log
if [ -n "${CC+x}" ]; then
# The MSVC compiler "cl" doesn't understand "-v"
$CC -v || true
@@ -54,6 +51,22 @@ if [ -n "$WRAPPER_CMD" ]; then
$WRAPPER_CMD --version
fi
# Workaround for https://bugs.kde.org/show_bug.cgi?id=452758 (fixed in valgrind 3.20.0).
case "${CC:-undefined}" in
clang*)
if [ "$CTIMETESTS" = "yes" ] && [ "$WITH_VALGRIND" = "yes" ]
then
export CFLAGS="${CFLAGS:+$CFLAGS }-gdwarf-4"
else
case "$WRAPPER_CMD" in
valgrind*)
export CFLAGS="${CFLAGS:+$CFLAGS }-gdwarf-4"
;;
esac
fi
;;
esac
./autogen.sh
./configure \
@@ -62,6 +75,7 @@ fi
--with-ecmult-window="$ECMULTWINDOW" \
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
--enable-module-ellswift="$ELLSWIFT" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--enable-examples="$EXAMPLES" \
--enable-ctime-tests="$CTIMETESTS" \
@@ -69,7 +83,21 @@ fi
--host="$HOST" $EXTRAFLAGS
# We have set "-j<n>" in MAKEFLAGS.
make
build_exit_code=0
make > make.log 2>&1 || build_exit_code=$?
cat make.log
if [ $build_exit_code -ne 0 ]; then
case "${CC:-undefined}" in
*snapshot*)
# Ignore internal compiler errors in gcc-snapshot and clang-snapshot
grep -e "internal compiler error:" -e "PLEASE submit a bug report" make.log
return $?;
;;
*)
return 1;
;;
esac
fi
# Print information about binaries so that we can see that the architecture is correct
file *tests* || true

View File

@@ -1,4 +1,17 @@
FROM debian:stable
FROM debian:stable-slim
SHELL ["/bin/bash", "-c"]
WORKDIR /root
# A too high maximum number of file descriptors (with the default value
# inherited from the docker host) can cause issues with some of our tools:
# - sanitizers hanging: https://github.com/google/sanitizers/issues/1662
# - valgrind crashing: https://stackoverflow.com/a/75293014
# This is not be a problem on our CI hosts, but developers who run the image
# on their machines may run into this (e.g., on Arch Linux), so warn them.
# (Note that .bashrc is only executed in interactive bash shells.)
RUN echo 'if [[ $(ulimit -n) -gt 200000 ]]; then echo "WARNING: Very high value reported by \"ulimit -n\". Consider passing \"--ulimit nofile=32768\" to \"docker run\"."; fi' >> /root/.bashrc
RUN dpkg --add-architecture i386 && \
dpkg --add-architecture s390x && \
@@ -11,27 +24,56 @@ RUN dpkg --add-architecture i386 && \
RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates \
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
gcc clang llvm libc6-dbg \
gcc clang llvm libclang-rt-dev libc6-dbg \
g++ \
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libubsan1:i386 libasan6:i386 \
gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libubsan1:i386 libasan8:i386 \
gcc-s390x-linux-gnu libc6-dev-s390x-cross libc6-dbg:s390x \
gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 \
gcc-powerpc64le-linux-gnu libc6-dev-ppc64el-cross libc6-dbg:ppc64el \
gcc-mingw-w64-x86-64-win32 wine64 wine \
gcc-mingw-w64-i686-win32 wine32 \
sagemath
python3 && \
if ! ( dpkg --print-architecture | grep --quiet "arm64" ) ; then \
apt-get install --no-install-recommends -y \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 ;\
fi && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /root
# The "wine" package provides a convience wrapper that we need
RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates wine64 wine python3-simplejson python3-six msitools winbind procps && \
git clone https://github.com/mstorsjo/msvc-wine && \
mkdir /opt/msvc && \
python3 msvc-wine/vsdownload.py --accept-license --dest /opt/msvc Microsoft.VisualStudio.Workload.VCTools && \
msvc-wine/install.sh /opt/msvc
# Build and install gcc snapshot
ARG GCC_SNAPSHOT_MAJOR=14
RUN apt-get update && apt-get install --no-install-recommends -y wget libgmp-dev libmpfr-dev libmpc-dev flex && \
mkdir gcc && cd gcc && \
wget --progress=dot:giga --https-only --recursive --accept '*.tar.xz' --level 1 --no-directories "https://gcc.gnu.org/pub/gcc/snapshots/LATEST-${GCC_SNAPSHOT_MAJOR}" && \
wget "https://gcc.gnu.org/pub/gcc/snapshots/LATEST-${GCC_SNAPSHOT_MAJOR}/sha512.sum" && \
sha512sum --check --ignore-missing sha512.sum && \
# We should have downloaded exactly one tar.xz file
ls && \
[ $(ls *.tar.xz | wc -l) -eq "1" ] && \
tar xf *.tar.xz && \
mkdir gcc-build && cd gcc-build && \
../*/configure --prefix=/opt/gcc-snapshot --enable-languages=c --disable-bootstrap --disable-multilib --without-isl && \
make -j $(nproc) && \
make install && \
cd ../.. && rm -rf gcc && \
ln -s /opt/gcc-snapshot/bin/gcc /usr/bin/gcc-snapshot && \
apt-get autoremove -y wget libgmp-dev libmpfr-dev libmpc-dev flex && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Install clang snapshot, see https://apt.llvm.org/
RUN \
# Setup GPG keys of LLVM repository
apt-get update && apt-get install --no-install-recommends -y wget && \
wget -qO- https://apt.llvm.org/llvm-snapshot.gpg.key | tee /etc/apt/trusted.gpg.d/apt.llvm.org.asc && \
# Add repository for this Debian release
. /etc/os-release && echo "deb http://apt.llvm.org/${VERSION_CODENAME} llvm-toolchain-${VERSION_CODENAME} main" >> /etc/apt/sources.list && \
apt-get update && \
# Determine the version number of the LLVM development branch
LLVM_VERSION=$(apt-cache search --names-only '^clang-[0-9]+$' | sort -V | tail -1 | cut -f1 -d" " | cut -f2 -d"-" ) && \
# Install
apt-get install --no-install-recommends -y "clang-${LLVM_VERSION}" && \
# Create symlink
ln -s "/usr/bin/clang-${LLVM_VERSION}" /usr/bin/clang-snapshot && \
# Clean up
apt-get autoremove -y wget && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Initialize the wine environment. Wait until the wineserver process has
# exited before closing the session, to avoid corrupting the wine prefix.
RUN wine64 wineboot --init && \
while (ps -A | grep wineserver) > /dev/null; do sleep 1; done

View File

@@ -0,0 +1,8 @@
function(generate_pkg_config_file in_file)
set(prefix ${CMAKE_INSTALL_PREFIX})
set(exec_prefix \${prefix})
set(libdir \${exec_prefix}/${CMAKE_INSTALL_LIBDIR})
set(includedir \${prefix}/${CMAKE_INSTALL_INCLUDEDIR})
set(PACKAGE_VERSION ${PROJECT_VERSION})
configure_file(${in_file} ${PROJECT_NAME}.pc @ONLY)
endfunction()

View File

@@ -4,8 +4,8 @@ AC_PREREQ([2.60])
# the API. All changes in experimental modules are treated as
# backwards-compatible and therefore at most increase the minor version.
define(_PKG_VERSION_MAJOR, 0)
define(_PKG_VERSION_MINOR, 3)
define(_PKG_VERSION_PATCH, 2)
define(_PKG_VERSION_MINOR, 4)
define(_PKG_VERSION_PATCH, 1)
define(_PKG_VERSION_IS_RELEASE, true)
# The library version is based on libtool versioning of the ABI. The set of
@@ -13,9 +13,9 @@ define(_PKG_VERSION_IS_RELEASE, true)
# https://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html
# All changes in experimental modules are treated as if they don't affect the
# interface and therefore only increase the revision.
define(_LIB_VERSION_CURRENT, 2)
define(_LIB_VERSION_REVISION, 2)
define(_LIB_VERSION_AGE, 0)
define(_LIB_VERSION_CURRENT, 3)
define(_LIB_VERSION_REVISION, 1)
define(_LIB_VERSION_AGE, 1)
AC_INIT([libsecp256k1],m4_join([.], _PKG_VERSION_MAJOR, _PKG_VERSION_MINOR, _PKG_VERSION_PATCH)m4_if(_PKG_VERSION_IS_RELEASE, [true], [], [-dev]),[https://github.com/bitcoin-core/secp256k1/issues],[libsecp256k1],[https://github.com/bitcoin-core/secp256k1])
@@ -121,13 +121,12 @@ AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
# libtool makes the same assumption internally.
# Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
SECP_TRY_APPEND_CFLAGS([-W2 -wd4146], $1) # Moderate warning level, disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned"
# We pass -ignore:4217 to the MSVC linker to suppress warning 4217 when
# importing variables from a statically linked secp256k1.
# (See the libtool manual, section "Windows DLLs" for background.)
# Unfortunately, libtool tries to be too clever and strips "-Xlinker arg"
# into "arg", so this will be " -Xlinker -ignore:4217" after stripping.
LDFLAGS="-Xlinker -Xlinker -Xlinker -ignore:4217 $LDFLAGS"
SECP_TRY_APPEND_CFLAGS([-W3], $1) # Production quality warning level.
SECP_TRY_APPEND_CFLAGS([-wd4146], $1) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
SECP_TRY_APPEND_CFLAGS([-wd4244], $1) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
SECP_TRY_APPEND_CFLAGS([-wd4267], $1) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
# Eliminate deprecation warnings for the older, less secure functions.
CPPFLAGS="-D_CRT_SECURE_NO_WARNINGS $CPPFLAGS"
fi
])
SECP_TRY_APPEND_DEFAULT_CFLAGS(SECP_CFLAGS)
@@ -185,6 +184,10 @@ AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_schnorrsig], [yes], [yes])])
AC_ARG_ENABLE(module_ellswift,
AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module [default=yes]]), [],
[SECP_SET_DEFAULT([enable_module_ellswift], [yes], [yes])])
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
@@ -198,7 +201,7 @@ AC_ARG_ENABLE(external_default_callbacks,
AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm32|no|auto],
[assembly optimizations to use (experimental: arm32) [default=auto]])],[req_asm=$withval], [req_asm=auto])
[assembly to use (experimental: arm32) [default=auto]])],[req_asm=$withval], [req_asm=auto])
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto],
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
@@ -276,24 +279,24 @@ else
x86_64)
SECP_X86_64_ASM_CHECK
if test x"$has_x86_64_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
AC_MSG_ERROR([x86_64 assembly requested but not available])
fi
;;
arm32)
SECP_ARM32_ASM_CHECK
if test x"$has_arm32_asm" != x"yes"; then
AC_MSG_ERROR([ARM32 assembly optimization requested but not available])
AC_MSG_ERROR([ARM32 assembly requested but not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
AC_MSG_ERROR([invalid assembly selection])
;;
esac
fi
# Select assembly optimization
# Select assembly
enable_external_asm=no
case $set_asm in
@@ -306,7 +309,7 @@ arm32)
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
AC_MSG_ERROR([invalid assembly selection])
;;
esac
@@ -397,6 +400,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then
enable_module_extrakeys=yes
fi
if test x"$enable_module_ellswift" = x"yes"; then
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DENABLE_MODULE_ELLSWIFT=1"
fi
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
# module to set enable_module_extrakeys=yes
if test x"$enable_module_extrakeys" = x"yes"; then
@@ -418,7 +425,7 @@ if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
else
if test x"$set_asm" = x"arm32"; then
AC_MSG_ERROR([ARM32 assembly optimization is experimental. Use --enable-experimental to allow.])
AC_MSG_ERROR([ARM32 assembly is experimental. Use --enable-experimental to allow.])
fi
fi
@@ -439,6 +446,7 @@ AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm32"])
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
@@ -460,6 +468,7 @@ echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
echo " module ellswift = $enable_module_ellswift"
echo
echo " asm = $set_asm"
echo " ecmult window size = $set_ecmult_window"

483
doc/ellswift.md Normal file
View File

@@ -0,0 +1,483 @@
# ElligatorSwift for secp256k1 explained
In this document we explain how the `ellswift` module implementation is related to the
construction in the
["SwiftEC: Shalluevan de Woestijne Indifferentiable Function To Elliptic Curves"](https://eprint.iacr.org/2022/759)
paper by Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
* [1. Introduction](#1-introduction)
* [2. The decoding function](#2-the-decoding-function)
+ [2.1 Decoding for `secp256k1`](#21-decoding-for-secp256k1)
* [3. The encoding function](#3-the-encoding-function)
+ [3.1 Switching to *v, w* coordinates](#31-switching-to-v-w-coordinates)
+ [3.2 Avoiding computing all inverses](#32-avoiding-computing-all-inverses)
+ [3.3 Finding the inverse](#33-finding-the-inverse)
+ [3.4 Dealing with special cases](#34-dealing-with-special-cases)
+ [3.5 Encoding for `secp256k1`](#35-encoding-for-secp256k1)
* [4. Encoding and decoding full *(x, y)* coordinates](#4-encoding-and-decoding-full-x-y-coordinates)
+ [4.1 Full *(x, y)* coordinates for `secp256k1`](#41-full-x-y-coordinates-for-secp256k1)
## 1. Introduction
The `ellswift` module effectively introduces a new 64-byte public key format, with the property
that (uniformly random) public keys can be encoded as 64-byte arrays which are computationally
indistinguishable from uniform byte arrays. The module provides functions to convert public keys
from and to this format, as well as convenience functions for key generation and ECDH that operate
directly on ellswift-encoded keys.
The encoding consists of the concatenation of two (32-byte big endian) encoded field elements $u$
and $t.$ Together they encode an x-coordinate on the curve $x$, or (see further) a full point $(x, y)$ on
the curve.
**Decoding** consists of decoding the field elements $u$ and $t$ (values above the field size $p$
are taken modulo $p$), and then evaluating $F_u(t)$, which for every $u$ and $t$ results in a valid
x-coordinate on the curve. The functions $F_u$ will be defined in [Section 2](#2-the-decoding-function).
**Encoding** a given $x$ coordinate is conceptually done as follows:
* Loop:
* Pick a uniformly random field element $u.$
* Compute the set $L = F_u^{-1}(x)$ of $t$ values for which $F_u(t) = x$, which may have up to *8* elements.
* With probability $1 - \dfrac{\\#L}{8}$, restart the loop.
* Select a uniformly random $t \in L$ and return $(u, t).$
This is the *ElligatorSwift* algorithm, here given for just x-coordinates. An extension to full
$(x, y)$ points will be given in [Section 4](#4-encoding-and-decoding-full-x-y-coordinates).
The algorithm finds a uniformly random $(u, t)$ among (almost all) those
for which $F_u(t) = x.$ Section 3.2 in the paper proves that the number of such encodings for
almost all x-coordinates on the curve (all but at most 39) is close to two times the field size
(specifically, it lies in the range $2q \pm (22\sqrt{q} + O(1))$, where $q$ is the size of the field).
## 2. The decoding function
First some definitions:
* $\mathbb{F}$ is the finite field of size $q$, of characteristic 5 or more, and $q \equiv 1 \mod 3.$
* For `secp256k1`, $q = 2^{256} - 2^{32} - 977$, which satisfies that requirement.
* Let $E$ be the elliptic curve of points $(x, y) \in \mathbb{F}^2$ for which $y^2 = x^3 + ax + b$, with $a$ and $b$
public constants, for which $\Delta_E = -16(4a^3 + 27b^2)$ is a square, and at least one of $(-b \pm \sqrt{-3 \Delta_E} / 36)/2$ is a square.
This implies that the order of $E$ is either odd, or a multiple of *4*.
If $a=0$, this condition is always fulfilled.
* For `secp256k1`, $a=0$ and $b=7.$
* Let the function $g(x) = x^3 + ax + b$, so the $E$ curve equation is also $y^2 = g(x).$
* Let the function $h(x) = 3x^3 + 4a.$
* Define $V$ as the set of solutions $(x_1, x_2, x_3, z)$ to $z^2 = g(x_1)g(x_2)g(x_3).$
* Define $S_u$ as the set of solutions $(X, Y)$ to $X^2 + h(u)Y^2 = -g(u)$ and $Y \neq 0.$
* $P_u$ is a function from $\mathbb{F}$ to $S_u$ that will be defined below.
* $\psi_u$ is a function from $S_u$ to $V$ that will be defined below.
**Note**: In the paper:
* $F_u$ corresponds to $F_{0,u}$ there.
* $P_u(t)$ is called $P$ there.
* All $S_u$ sets together correspond to $S$ there.
* All $\psi_u$ functions together (operating on elements of $S$) correspond to $\psi$ there.
Note that for $V$, the left hand side of the equation $z^2$ is square, and thus the right
hand must also be square. As multiplying non-squares results in a square in $\mathbb{F}$,
out of the three right-hand side factors an even number must be non-squares.
This implies that exactly *1* or exactly *3* out of
$\\{g(x_1), g(x_2), g(x_3)\\}$ must be square, and thus that for any $(x_1,x_2,x_3,z) \in V$,
at least one of $\\{x_1, x_2, x_3\\}$ must be a valid x-coordinate on $E.$ There is one exception
to this, namely when $z=0$, but even then one of the three values is a valid x-coordinate.
**Define** the decoding function $F_u(t)$ as:
* Let $(x_1, x_2, x_3, z) = \psi_u(P_u(t)).$
* Return the first element $x$ of $(x_3, x_2, x_1)$ which is a valid x-coordinate on $E$ (i.e., $g(x)$ is square).
$P_u(t) = (X(u, t), Y(u, t))$, where:
$$
\begin{array}{lcl}
X(u, t) & = & \left\\{\begin{array}{ll}
\dfrac{g(u) - t^2}{2t} & a = 0 \\
\dfrac{g(u) + h(u)(Y_0(u) - X_0(u)t)^2}{X_0(u)(1 + h(u)t^2)} & a \neq 0
\end{array}\right. \\
Y(u, t) & = & \left\\{\begin{array}{ll}
\dfrac{X(u, t) + t}{u \sqrt{-3}} = \dfrac{g(u) + t^2}{2tu\sqrt{-3}} & a = 0 \\
Y_0(u) + t(X(u, t) - X_0(u)) & a \neq 0
\end{array}\right.
\end{array}
$$
$P_u(t)$ is defined:
* For $a=0$, unless:
* $u = 0$ or $t = 0$ (division by zero)
* $g(u) = -t^2$ (would give $Y=0$).
* For $a \neq 0$, unless:
* $X_0(u) = 0$ or $h(u)t^2 = -1$ (division by zero)
* $Y_0(u) (1 - h(u)t^2) = 2X_0(u)t$ (would give $Y=0$).
The functions $X_0(u)$ and $Y_0(u)$ are defined in Appendix A of the paper, and depend on various properties of $E.$
The function $\psi_u$ is the same for all curves: $\psi_u(X, Y) = (x_1, x_2, x_3, z)$, where:
$$
\begin{array}{lcl}
x_1 & = & \dfrac{X}{2Y} - \dfrac{u}{2} && \\
x_2 & = & -\dfrac{X}{2Y} - \dfrac{u}{2} && \\
x_3 & = & u + 4Y^2 && \\
z & = & \dfrac{g(x_3)}{2Y}(u^2 + ux_1 + x_1^2 + a) = \dfrac{-g(u)g(x_3)}{8Y^3}
\end{array}
$$
### 2.1 Decoding for `secp256k1`
Put together and specialized for $a=0$ curves, decoding $(u, t)$ to an x-coordinate is:
**Define** $F_u(t)$ as:
* Let $X = \dfrac{u^3 + b - t^2}{2t}.$
* Let $Y = \dfrac{X + t}{u\sqrt{-3}}.$
* Return the first $x$ in $(u + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u}{2}, \dfrac{X}{2Y} - \dfrac{u}{2})$ for which $g(x)$ is square.
To make sure that every input decodes to a valid x-coordinate, we remap the inputs in case
$P_u$ is not defined (when $u=0$, $t=0$, or $g(u) = -t^2$):
**Define** $F_u(t)$ as:
* Let $u'=u$ if $u \neq 0$; $1$ otherwise (guaranteeing $u' \neq 0$).
* Let $t'=t$ if $t \neq 0$; $1$ otherwise (guaranteeing $t' \neq 0$).
* Let $t''=t'$ if $g(u') \neq -t'^2$; $2t'$ otherwise (guaranteeing $t'' \neq 0$ and $g(u') \neq -t''^2$).
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
* Return the first $x$ in $(u' + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u'}{2}, \dfrac{X}{2Y} - \dfrac{u'}{2})$ for which $x^3 + b$ is square.
The choices here are not strictly necessary. Just returning a fixed constant in any of the undefined cases would suffice,
but the approach here is simple enough and gives fairly uniform output even in these cases.
**Note**: in the paper these conditions result in $\infty$ as output, due to the use of projective coordinates there.
We wish to avoid the need for callers to deal with this special case.
This is implemented in `secp256k1_ellswift_xswiftec_frac_var` (which decodes to an x-coordinate represented as a fraction), and
in `secp256k1_ellswift_xswiftec_var` (which outputs the actual x-coordinate).
## 3. The encoding function
To implement $F_u^{-1}(x)$, the function to find the set of inverses $t$ for which $F_u(t) = x$, we have to reverse the process:
* Find all the $(X, Y) \in S_u$ that could have given rise to $x$, through the $x_1$, $x_2$, or $x_3$ formulas in $\psi_u.$
* Map those $(X, Y)$ solutions to $t$ values using $P_u^{-1}(X, Y).$
* For each of the found $t$ values, verify that $F_u(t) = x.$
* Return the remaining $t$ values.
The function $P_u^{-1}$, which finds $t$ given $(X, Y) \in S_u$, is significantly simpler than $P_u:$
$$
P_u^{-1}(X, Y) = \left\\{\begin{array}{ll}
Yu\sqrt{-3} - X & a = 0 \\
\dfrac{Y-Y_0(u)}{X-X_0(u)} & a \neq 0 \land X \neq X_0(u) \\
\dfrac{-X_0(u)}{h(u)Y_0(u)} & a \neq 0 \land X = X_0(u) \land Y = Y_0(u)
\end{array}\right.
$$
The third step above, verifying that $F_u(t) = x$, is necessary because for the $(X, Y)$ values found through the $x_1$ and $x_2$ expressions,
it is possible that decoding through $\psi_u(X, Y)$ yields a valid $x_3$ on the curve, which would take precedence over the
$x_1$ or $x_2$ decoding. These $(X, Y)$ solutions must be rejected.
Since we know that exactly one or exactly three out of $\\{x_1, x_2, x_3\\}$ are valid x-coordinates for any $t$,
the case where either $x_1$ or $x_2$ is valid and in addition also $x_3$ is valid must mean that all three are valid.
This means that instead of checking whether $x_3$ is on the curve, it is also possible to check whether the other one out of
$x_1$ and $x_2$ is on the curve. This is significantly simpler, as it turns out.
Observe that $\psi_u$ guarantees that $x_1 + x_2 = -u.$ So given either $x = x_1$ or $x = x_2$, the other one of the two can be computed as
$-u - x.$ Thus, when encoding $x$ through the $x_1$ or $x_2$ expressions, one can simply check whether $g(-u-x)$ is a square,
and if so, not include the corresponding $t$ values in the returned set. As this does not need $X$, $Y$, or $t$, this condition can be determined
before those values are computed.
It is not possible that an encoding found through the $x_1$ expression decodes to a different valid x-coordinate using $x_2$ (which would
take precedence), for the same reason: if both $x_1$ and $x_2$ decodings were valid, $x_3$ would be valid as well, and thus take
precedence over both. Because of this, the $g(-u-x)$ being square test for $x_1$ and $x_2$ is the only test necessary to guarantee the found $t$
values round-trip back to the input $x$ correctly. This is the reason for choosing the $(x_3, x_2, x_1)$ precedence order in the decoder;
any order which does not place $x_3$ first requires more complicated round-trip checks in the encoder.
### 3.1 Switching to *v, w* coordinates
Before working out the formulas for all this, we switch to different variables for $S_u.$ Let $v = (X/Y - u)/2$, and
$w = 2Y.$ Or in the other direction, $X = w(u/2 + v)$ and $Y = w/2:$
* $S_u'$ becomes the set of $(v, w)$ for which $w^2 (u^2 + uv + v^2 + a) = -g(u)$ and $w \neq 0.$
* For $a=0$ curves, $P_u^{-1}$ can be stated for $(v,w)$ as $P_u^{'-1}(v, w) = w\left(\frac{\sqrt{-3}-1}{2}u - v\right).$
* $\psi_u$ can be stated for $(v, w)$ as $\psi_u'(v, w) = (x_1, x_2, x_3, z)$, where
$$
\begin{array}{lcl}
x_1 & = & v \\
x_2 & = & -u - v \\
x_3 & = & u + w^2 \\
z & = & \dfrac{g(x_3)}{w}(u^2 + uv + v^2 + a) = \dfrac{-g(u)g(x_3)}{w^3}
\end{array}
$$
We can now write the expressions for finding $(v, w)$ given $x$ explicitly, by solving each of the $\\{x_1, x_2, x_3\\}$
expressions for $v$ or $w$, and using the $S_u'$ equation to find the other variable:
* Assuming $x = x_1$, we find $v = x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
* Assuming $x = x_2$, we find $v = -u-x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
* Assuming $x = x_3$, we find $w = \pm\sqrt{x-u}$ and $v = -u/2 \pm \sqrt{-w^2(4g(u) + w^2h(u))}/(2w^2)$ (four solutions).
### 3.2 Avoiding computing all inverses
The *ElligatorSwift* algorithm as stated in Section 1 requires the computation of $L = F_u^{-1}(x)$ (the
set of all $t$ such that $(u, t)$ decode to $x$) in full. This is unnecessary.
Observe that the procedure of restarting with probability $(1 - \frac{\\#L}{8})$ and otherwise returning a
uniformly random element from $L$ is actually equivalent to always padding $L$ with $\bot$ values up to length 8,
picking a uniformly random element from that, restarting whenever $\bot$ is picked:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Compute the set $L = F_u^{-1}(x).$
* Let $T$ be the 8-element vector consisting of the elements of $L$, plus $8 - \\#L$ times $\\{\bot\\}.$
* Select a uniformly random $t \in T.$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
Now notice that the order of elements in $T$ does not matter, as all we do is pick a uniformly
random element in it, so we do not need to have all $\bot$ values at the end.
As we have 8 distinct formulas for finding $(v, w)$ (taking the variants due to $\pm$ into account),
we can associate every index in $T$ with exactly one of those formulas, making sure that:
* Formulas that yield no solutions (due to division by zero or non-existing square roots) or invalid solutions are made to return $\bot.$
* For the $x_1$ and $x_2$ cases, if $g(-u-x)$ is a square, $\bot$ is returned instead (the round-trip check).
* In case multiple formulas would return the same non- $\bot$ result, all but one of those must be turned into $\bot$ to avoid biasing those.
The last condition above only occurs with negligible probability for cryptographically-sized curves, but is interesting
to take into account as it allows exhaustive testing in small groups. See [Section 3.4](#34-dealing-with-special-cases)
for an analysis of all the negligible cases.
If we define $T = (G_{0,u}(x), G_{1,u}(x), \ldots, G_{7,u}(x))$, with each $G_{i,u}$ matching one of the formulas,
the loop can be simplified to only compute one of the inverses instead of all of them:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Pick a uniformly random integer $c$ in $[0,8).$
* Let $t = G_{c,u}(x).$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
This is implemented in `secp256k1_ellswift_xelligatorswift_var`.
### 3.3 Finding the inverse
To implement $G_{c,u}$, we map $c=0$ to the $x_1$ formula, $c=1$ to the $x_2$ formula, and $c=2$ and $c=3$ to the $x_3$ formula.
Those are then repeated as $c=4$ through $c=7$ for the other sign of $w$ (noting that in each formula, $w$ is a square root of some expression).
Ignoring the negligible cases, we get:
**Define** $G_{c,u}(x)$ as:
* If $c \in \\{0, 1, 4, 5\\}$ (for $x_1$ and $x_2$ formulas):
* If $g(-u-x)$ is square, return $\bot$ (as $x_3$ would be valid and take precedence).
* If $c \in \\{0, 4\\}$ (the $x_1$ formula) let $v = x$, otherwise let $v = -u-x$ (the $x_2$ formula)
* Let $s = -g(u)/(u^2 + uv + v^2 + a)$ (using $s = w^2$ in what follows).
* Otherwise, when $c \in \\{2, 3, 6, 7\\}$ (for $x_3$ formulas):
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
* Let $v = (r/s - u)/2$ if $c \in \\{3, 7\\}$; $(-r/s - u)/2$ otherwise.
* Let $w = \sqrt{s}.$
* Depending on $c:$
* If $c \in \\{0, 1, 2, 3\\}:$ return $P_u^{'-1}(v, w).$
* If $c \in \\{4, 5, 6, 7\\}:$ return $P_u^{'-1}(v, -w).$
Whenever a square root of a non-square is taken, $\bot$ is returned; for both square roots this happens with roughly
50% on random inputs. Similarly, when a division by 0 would occur, $\bot$ is returned as well; this will only happen
with negligible probability. A division by 0 in the first branch in fact cannot occur at all, because $u^2 + uv + v^2 + a = 0$
implies $g(-u-x) = g(x)$ which would mean the $g(-u-x)$ is square condition has triggered
and $\bot$ would have been returned already.
**Note**: In the paper, the $case$ variable corresponds roughly to the $c$ above, but only takes on 4 possible values (1 to 4).
The conditional negation of $w$ at the end is done randomly, which is equivalent, but makes testing harder. We choose to
have the $G_{c,u}$ be deterministic, and capture all choices in $c.$
Now observe that the $c \in \\{1, 5\\}$ and $c \in \\{3, 7\\}$ conditions effectively perform the same $v \rightarrow -u-v$
transformation. Furthermore, that transformation has no effect on $s$ in the first branch
as $u^2 + ux + x^2 + a = u^2 + u(-u-x) + (-u-x)^2 + a.$ Thus we can extract it out and move it down:
**Define** $G_{c,u}(x)$ as:
* If $c \in \\{0, 1, 4, 5\\}:$
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a).$
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}.$
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w).$
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w).$
* If $c \in \\{4, 6\\}:$ return $P_u^{'-1}(v, -w).$
* If $c \in \\{5, 7\\}:$ return $P_u^{'-1}(-u-v, -w).$
This shows there will always be exactly 0, 4, or 8 $t$ values for a given $(u, x)$ input.
There can be 0, 1, or 2 $(v, w)$ pairs before invoking $P_u^{'-1}$, and each results in 4 distinct $t$ values.
### 3.4 Dealing with special cases
As mentioned before there are a few cases to deal with which only happen in a negligibly small subset of inputs.
For cryptographically sized fields, if only random inputs are going to be considered, it is unnecessary to deal with these. Still, for completeness
we analyse them here. They generally fall into two categories: cases in which the encoder would produce $t$ values that
do not decode back to $x$ (or at least cannot guarantee that they do), and cases in which the encoder might produce the same
$t$ value for multiple $c$ inputs (thereby biasing that encoding):
* In the branch for $x_1$ and $x_2$ (where $c \in \\{0, 1, 4, 5\\}$):
* When $g(u) = 0$, we would have $s=w=Y=0$, which is not on $S_u.$ This is only possible on even-ordered curves.
Excluding this also removes the one condition under which the simplified check for $x_3$ on the curve
fails (namely when $g(x_1)=g(x_2)=0$ but $g(x_3)$ is not square).
This does exclude some valid encodings: when both $g(u)=0$ and $u^2+ux+x^2+a=0$ (also implying $g(x)=0$),
the $S_u'$ equation degenerates to $0 = 0$, and many valid $t$ values may exist. Yet, these cannot be targeted uniformly by the
encoder anyway as there will generally be more than 8.
* When $g(x) = 0$, the same $t$ would be produced as in the $x_3$ branch (where $c \in \\{2, 3, 6, 7\\}$) which we give precedence
as it can deal with $g(u)=0$.
This is again only possible on even-ordered curves.
* In the branch for $x_3$ (where $c \in \\{2, 3, 6, 7\\}$):
* When $s=0$, a division by zero would occur.
* When $v = -u-v$ and $c \in \\{3, 7\\}$, the same $t$ would be returned as in the $c \in \\{2, 6\\}$ cases.
It is equivalent to checking whether $r=0$.
This cannot occur in the $x_1$ or $x_2$ branches, as it would trigger the $g(-u-x)$ is square condition.
A similar concern for $w = -w$ does not exist, as $w=0$ is already impossible in both branches: in the first
it requires $g(u)=0$ which is already outlawed on even-ordered curves and impossible on others; in the second it would trigger division by zero.
* Curve-specific special cases also exist that need to be rejected, because they result in $(u,t)$ which is invalid to the decoder, or because of division by zero in the encoder:
* For $a=0$ curves, when $u=0$ or when $t=0$. The latter can only be reached by the encoder when $g(u)=0$, which requires an even-ordered curve.
* For $a \neq 0$ curves, when $X_0(u)=0$, when $h(u)t^2 = -1$, or when $w(u + 2v) = 2X_0(u)$ while also either $w \neq 2Y_0(u)$ or $h(u)=0$.
**Define** a version of $G_{c,u}(x)$ which deals with all these cases:
* If $a=0$ and $u=0$, return $\bot.$
* If $a \neq 0$ and $X_0(u)=0$, return $\bot.$
* If $c \in \\{0, 1, 4, 5\\}:$
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
* If $s = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* If $a \neq 0$ and $w(u+2v) = 2X_0(u)$ and either $w \neq 2Y_0(u)$ or $h(u) = 0$, return $\bot.$
* Depending on $c:$
* If $c \in \\{0, 2\\}$, let $t = P_u^{'-1}(v, w).$
* If $c \in \\{1, 3\\}$, let $t = P_u^{'-1}(-u-v, w).$
* If $c \in \\{4, 6\\}$, let $t = P_u^{'-1}(v, -w).$
* If $c \in \\{5, 7\\}$, let $t = P_u^{'-1}(-u-v, -w).$
* If $a=0$ and $t=0$, return $\bot$ (even curves only).
* If $a \neq 0$ and $h(u)t^2 = -1$, return $\bot.$
* Return $t.$
Given any $u$, using this algorithm over all $x$ and $c$ values, every $t$ value will be reached exactly once,
for an $x$ for which $F_u(t) = x$ holds, except for these cases that will not be reached:
* All cases where $P_u(t)$ is not defined:
* For $a=0$ curves, when $u=0$, $t=0$, or $g(u) = -t^2.$
* For $a \neq 0$ curves, when $h(u)t^2 = -1$, $X_0(u) = 0$, or $Y_0(u) (1 - h(u) t^2) = 2X_0(u)t.$
* When $g(u)=0$, the potentially many $t$ values that decode to an $x$ satisfying $g(x)=0$ using the $x_2$ formula. These were excluded by the $g(u)=0$ condition in the $c \in \\{0, 1, 4, 5\\}$ branch.
These cases form a negligible subset of all $(u, t)$ for cryptographically sized curves.
### 3.5 Encoding for `secp256k1`
Specialized for odd-ordered $a=0$ curves:
**Define** $G_{c,u}(x)$ as:
* If $u=0$, return $\bot.$
* If $c \in \\{0, 1, 4, 5\\}:$
* If $(-u-x)^3 + b$ is square, return $\bot$
* Let $s = -(u^3 + b)/(u^2 + ux + x^2)$ (cannot cause division by 0).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4(u^3 + b) + 3su^2)}$; return $\bot$ if not square.
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
* If $s = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $w(\frac{\sqrt{-3}-1}{2}u - v).$
* If $c \in \\{1, 3\\}:$ return $w(\frac{\sqrt{-3}+1}{2}u + v).$
* If $c \in \\{4, 6\\}:$ return $w(\frac{-\sqrt{-3}+1}{2}u + v).$
* If $c \in \\{5, 7\\}:$ return $w(\frac{-\sqrt{-3}-1}{2}u - v).$
This is implemented in `secp256k1_ellswift_xswiftec_inv_var`.
And the x-only ElligatorSwift encoding algorithm is still:
**Define** *ElligatorSwift(x)* as:
* Loop:
* Pick a uniformly random field element $u.$
* Pick a uniformly random integer $c$ in $[0,8).$
* Let $t = G_{c,u}(x).$
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
Note that this logic does not take the remapped $u=0$, $t=0$, and $g(u) = -t^2$ cases into account; it just avoids them.
While it is not impossible to make the encoder target them, this would increase the maximum number of $t$ values for a given $(u, x)$
combination beyond 8, and thereby slow down the ElligatorSwift loop proportionally, for a negligible gain in uniformity.
## 4. Encoding and decoding full *(x, y)* coordinates
So far we have only addressed encoding and decoding x-coordinates, but in some cases an encoding
for full points with $(x, y)$ coordinates is desirable. It is possible to encode this information
in $t$ as well.
Note that for any $(X, Y) \in S_u$, $(\pm X, \pm Y)$ are all on $S_u.$ Moreover, all of these are
mapped to the same x-coordinate. Negating $X$ or negating $Y$ just results in $x_1$ and $x_2$
being swapped, and does not affect $x_3.$ This will not change the outcome x-coordinate as the order
of $x_1$ and $x_2$ only matters if both were to be valid, and in that case $x_3$ would be used instead.
Still, these four $(X, Y)$ combinations all correspond to distinct $t$ values, so we can encode
the sign of the y-coordinate in the sign of $X$ or the sign of $Y.$ They correspond to the
four distinct $P_u^{'-1}$ calls in the definition of $G_{u,c}.$
**Note**: In the paper, the sign of the y coordinate is encoded in a separately-coded bit.
To encode the sign of $y$ in the sign of $Y:$
**Define** *Decode(u, t)* for full $(x, y)$ as:
* Let $(X, Y) = P_u(t).$
* Let $x$ be the first value in $(u + 4Y^2, \frac{-X}{2Y} - \frac{u}{2}, \frac{X}{2Y} - \frac{u}{2})$ for which $g(x)$ is square.
* Let $y = \sqrt{g(x)}.$
* If $sign(y) = sign(Y)$, return $(x, y)$; otherwise return $(x, -y).$
And encoding would be done using a $G_{c,u}(x, y)$ function defined as:
**Define** $G_{c,u}(x, y)$ as:
* If $c \in \\{0, 1\\}:$
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
* If $g(-u-x)$ is square, return $\bot.$
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
* Let $v = x.$
* Otherwise, when $c \in \\{2, 3\\}:$
* Let $s = x-u.$
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
* If $c = 3$ and $r = 0$, return $\bot.$
* Let $v = (r/s - u)/2.$
* Let $w = \sqrt{s}$; return $\bot$ if not square.
* Let $w' = w$ if $sign(w/2) = sign(y)$; $-w$ otherwise.
* Depending on $c:$
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w').$
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w').$
Note that $c$ now only ranges $[0,4)$, as the sign of $w'$ is decided based on that of $y$, rather than on $c.$
This change makes some valid encodings unreachable: when $y = 0$ and $sign(Y) \neq sign(0)$.
In the above logic, $sign$ can be implemented in several ways, such as parity of the integer representation
of the input field element (for prime-sized fields) or the quadratic residuosity (for fields where
$-1$ is not square). The choice does not matter, as long as it only takes on two possible values, and for $x \neq 0$ it holds that $sign(x) \neq sign(-x)$.
### 4.1 Full *(x, y)* coordinates for `secp256k1`
For $a=0$ curves, there is another option. Note that for those,
the $P_u(t)$ function translates negations of $t$ to negations of (both) $X$ and $Y.$ Thus, we can use $sign(t)$ to
encode the y-coordinate directly. Combined with the earlier remapping to guarantee all inputs land on the curve, we get
as decoder:
**Define** *Decode(u, t)* as:
* Let $u'=u$ if $u \neq 0$; $1$ otherwise.
* Let $t'=t$ if $t \neq 0$; $1$ otherwise.
* Let $t''=t'$ if $u'^3 + b + t'^2 \neq 0$; $2t'$ otherwise.
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
* Let $x$ be the first element of $(u' + 4Y^2, \frac{-X}{2Y} - \frac{u'}{2}, \frac{X}{2Y} - \frac{u'}{2})$ for which $g(x)$ is square.
* Let $y = \sqrt{g(x)}.$
* Return $(x, y)$ if $sign(y) = sign(t)$; $(x, -y)$ otherwise.
This is implemented in `secp256k1_ellswift_swiftec_var`. The used $sign(x)$ function is the parity of $x$ when represented as in integer in $[0,q).$
The corresponding encoder would invoke the x-only one, but negating the output $t$ if $sign(t) \neq sign(y).$
This is implemented in `secp256k1_ellswift_elligatorswift_var`.
Note that this is only intended for encoding points where both the x-coordinate and y-coordinate are unpredictable. When encoding x-only points
where the y-coordinate is implicitly even (or implicitly square, or implicitly in $[0,q/2]$), the encoder in
[Section 3.5](#35-encoding-for-secp256k1) must be used, or a bias is reintroduced that undoes all the benefit of using ElligatorSwift
in the first place.

View File

@@ -12,10 +12,41 @@ It is best if the maintainers are present during the release, so they can help e
This process also assumes that there will be no minor releases for old major releases.
We aim to cut a regular release every 3-4 months, approximately twice as frequent as major Bitcoin Core releases. Every second release should be published one month before the feature freeze of the next major Bitcoin Core release, allowing sufficient time to update the library in Core.
## Sanity Checks
Perform these checks before creating a release:
1. Ensure `make distcheck` doesn't fail.
```shell
./autogen.sh && ./configure --enable-dev-mode && make distcheck
```
2. Check installation with autotools:
```shell
dir=$(mktemp -d)
./autogen.sh && ./configure --prefix=$dir && make clean && make install && ls -RlAh $dir
gcc -o ecdsa examples/ecdsa.c $(PKG_CONFIG_PATH=$dir/lib/pkgconfig pkg-config --cflags --libs libsecp256k1) -Wl,-rpath,"$dir/lib" && ./ecdsa
```
3. Check installation with CMake:
```shell
dir=$(mktemp -d)
build=$(mktemp -d)
cmake -B $build -DCMAKE_INSTALL_PREFIX=$dir && cmake --build $build --target install && ls -RlAh $dir
gcc -o ecdsa examples/ecdsa.c -I $dir/include -L $dir/lib*/ -l secp256k1 -Wl,-rpath,"$dir/lib",-rpath,"$dir/lib64" && ./ecdsa
```
4. Use the [`check-abi.sh`](/tools/check-abi.sh) tool to ensure there are no unexpected ABI incompatibilities and that the version number and release notes accurately reflect all potential ABI changes. To run this tool, the `abi-dumper` and `abi-compliance-checker` packages are required.
```shell
tools/check-abi.sh
```
## Regular release
1. Open a PR to the master branch with a commit (using message `"release: prepare for $MAJOR.$MINOR.$PATCH"`, for example) that
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) (make sure to include an entry for `### ABI Compatibility`),
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) by
* adding a section for the release (make sure that the version number is a link to a diff between the previous and new version),
* removing the `[Unreleased]` section header, and
* including an entry for `### ABI Compatibility` if it doesn't exist,
* sets `_PKG_VERSION_IS_RELEASE` to `true` in `configure.ac`, and
* if this is not a patch release
* updates `_PKG_VERSION_*` and `_LIB_VERSION_*` in `configure.ac` and
@@ -27,8 +58,9 @@ This process also assumes that there will be no minor releases for old major rel
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
```
3. Open a PR to the master branch with a commit (using message `"release cleanup: bump version after $MAJOR.$MINOR.$PATCH"`, for example) that
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`, and
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`.
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`,
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`, and
* adds an `[Unreleased]` section header to the [CHANGELOG.md](../CHANGELOG.md).
If other maintainers are not present to approve the PR, it can be merged without ACKs.
4. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
@@ -37,14 +69,14 @@ This process also assumes that there will be no minor releases for old major rel
Note that bugfixes only need to be backported to releases for which no compatible release without the bug exists.
1. If `$PATCH = 1`, create maintenance branch `$MAJOR.$MINOR`:
1. If there's no maintenance branch `$MAJOR.$MINOR`, create one:
```
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.0
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.$((PATCH - 1))
git push git@github.com:bitcoin-core/secp256k1.git $MAJOR.$MINOR
```
2. Open a pull request to the `$MAJOR.$MINOR` branch that
* includes the bugfixes,
* finalizes the release notes,
* finalizes the release notes similar to a regular release,
* increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`
and the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`
(with commit message `"release: bump versions for $MAJOR.$MINOR.$PATCH"`, for example).

View File

@@ -1,27 +1,30 @@
add_library(example INTERFACE)
target_include_directories(example INTERFACE
${PROJECT_SOURCE_DIR}/include
)
target_link_libraries(example INTERFACE
secp256k1
$<$<PLATFORM_ID:Windows>:bcrypt>
)
if(NOT BUILD_SHARED_LIBS AND MSVC)
target_link_options(example INTERFACE /IGNORE:4217)
endif()
function(add_example name)
set(target_name ${name}_example)
add_executable(${target_name} ${name}.c)
target_include_directories(${target_name} PRIVATE
${PROJECT_SOURCE_DIR}/include
)
target_link_libraries(${target_name}
secp256k1
$<$<PLATFORM_ID:Windows>:bcrypt>
)
set(test_name ${name}_example)
add_test(NAME ${test_name} COMMAND ${target_name})
if(BUILD_SHARED_LIBS AND MSVC)
# The DLL must reside either in the same folder where the executable is
# or somewhere in PATH. Using the latter option.
set_tests_properties(${test_name} PROPERTIES
ENVIRONMENT "PATH=$<TARGET_FILE_DIR:secp256k1>;$ENV{PATH}"
)
endif()
endfunction()
add_executable(ecdsa_example ecdsa.c)
target_link_libraries(ecdsa_example example)
add_test(NAME ecdsa_example COMMAND ecdsa_example)
add_example(ecdsa)
if(SECP256K1_ENABLE_MODULE_ECDH)
add_executable(ecdh_example ecdh.c)
target_link_libraries(ecdh_example example)
add_test(NAME ecdh_example COMMAND ecdh_example)
add_example(ecdh)
endif()
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
add_executable(schnorr_example schnorr.c)
target_link_libraries(schnorr_example example)
add_test(NAME schnorr_example COMMAND schnorr_example)
add_example(schnorr)
endif()

View File

@@ -95,7 +95,7 @@ static void secure_erase(void *ptr, size_t len) {
* As best as we can tell, this is sufficient to break any optimisations that
* might try to eliminate "superfluous" memsets.
* This method used in memzero_explicit() the Linux kernel, too. Its advantage is that it is
* pretty efficient, because the compiler can still implement the memset() efficently,
* pretty efficient, because the compiler can still implement the memset() efficiently,
* just not remove it entirely. See "Dead Store Elimination (Still) Considered Harmful" by
* Yang et al. (USENIX Security 2017) for more background.
*/

View File

@@ -133,28 +133,35 @@ typedef int (*secp256k1_nonce_function)(
# define SECP256K1_NO_BUILD
#endif
/* Symbol visibility. See libtool manual, section "Windows DLLs". */
#if defined(_WIN32) && !defined(__GNUC__)
# ifdef SECP256K1_BUILD
# ifdef DLL_EXPORT
# define SECP256K1_API __declspec (dllexport)
# define SECP256K1_API_VAR extern __declspec (dllexport)
/* Symbol visibility. */
#if defined(_WIN32)
/* GCC for Windows (e.g., MinGW) accepts the __declspec syntax
* for MSVC compatibility. A __declspec declaration implies (but is not
* exactly equivalent to) __attribute__ ((visibility("default"))), and so we
* actually want __declspec even on GCC, see "Microsoft Windows Function
* Attributes" in the GCC manual and the recommendations in
* https://gcc.gnu.org/wiki/Visibility. */
# if defined(SECP256K1_BUILD)
# if defined(DLL_EXPORT) || defined(SECP256K1_DLL_EXPORT)
/* Building libsecp256k1 as a DLL.
* 1. If using Libtool, it defines DLL_EXPORT automatically.
* 2. In other cases, SECP256K1_DLL_EXPORT must be defined. */
# define SECP256K1_API extern __declspec (dllexport)
# endif
# elif defined _MSC_VER
# define SECP256K1_API
# define SECP256K1_API_VAR extern __declspec (dllimport)
# elif defined DLL_EXPORT
# define SECP256K1_API __declspec (dllimport)
# define SECP256K1_API_VAR extern __declspec (dllimport)
/* The user must define SECP256K1_STATIC when consuming libsecp256k1 as a static
* library on Windows. */
# elif !defined(SECP256K1_STATIC)
/* Consuming libsecp256k1 as a DLL. */
# define SECP256K1_API extern __declspec (dllimport)
# endif
#endif
#ifndef SECP256K1_API
# if defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# define SECP256K1_API_VAR extern __attribute__ ((visibility ("default")))
/* Building libsecp256k1 on non-Windows using GCC or compatible. */
# define SECP256K1_API extern __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# define SECP256K1_API_VAR extern
/* All cases not captured above. */
# define SECP256K1_API extern
# endif
#endif
@@ -226,10 +233,10 @@ typedef int (*secp256k1_nonce_function)(
*
* It is highly recommended to call secp256k1_selftest before using this context.
*/
SECP256K1_API_VAR const secp256k1_context *secp256k1_context_static;
SECP256K1_API const secp256k1_context *secp256k1_context_static;
/** Deprecated alias for secp256k1_context_static. */
SECP256K1_API_VAR const secp256k1_context *secp256k1_context_no_precomp
SECP256K1_API const secp256k1_context *secp256k1_context_no_precomp
SECP256K1_DEPRECATED("Use secp256k1_context_static instead");
/** Perform basic self tests (to be used in conjunction with secp256k1_context_static)
@@ -626,10 +633,10 @@ SECP256K1_API int secp256k1_ecdsa_signature_normalize(
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API_VAR const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API_VAR const secp256k1_nonce_function secp256k1_nonce_function_default;
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
@@ -733,10 +740,10 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
* invalid according to secp256k1_ec_seckey_verify, this
* function returns 0. seckey will be set to some unspecified
* value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(
const secp256k1_context *ctx,
@@ -761,10 +768,10 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
* Args: ctx: pointer to a context object.
* In/Out: pubkey: pointer to a public key object. pubkey will be set to an
* invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
* secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context *ctx,

View File

@@ -27,11 +27,11 @@ typedef int (*secp256k1_ecdh_hash_function)(
/** An implementation of SHA256 hash function that applies to compressed public key.
* Populates the output parameter with 32 bytes. */
SECP256K1_API_VAR const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256;
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256;
/** A default ECDH hash function (currently equal to secp256k1_ecdh_hash_function_sha256).
* Populates the output parameter with 32 bytes. */
SECP256K1_API_VAR const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default;
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default;
/** Compute an EC Diffie-Hellman secret in constant time
*

View File

@@ -0,0 +1,200 @@
#ifndef SECP256K1_ELLSWIFT_H
#define SECP256K1_ELLSWIFT_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/* This module provides an implementation of ElligatorSwift as well as a
* version of x-only ECDH using it (including compatibility with BIP324).
*
* ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
* Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
* uniformly chosen public keys as 64-byte arrays which are indistinguishable
* from uniformly random arrays.
*
* Let f be the function from pairs of field elements to point X coordinates,
* defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
* f(u,t):
* - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
* a square root of -3.
* - If u=0, set u=1 instead.
* - If t=0, set t=1 instead.
* - If u^3 + t^2 + 7 = 0, multiply t by 2.
* - Let X = (u^3 + 7 - t^2) / (2 * t)
* - Let Y = (X + t) / (C * u)
* - Return the first in [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
* X coordinate on the curve (at least one of them is, for any u and t).
*
* Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
* encodings of field elements u and t concatenated, where f(u,t) = x.
* The encoding algorithm is described in the paper, and effectively picks a
* uniformly random pair (u,t) among those which encode x.
*
* If the Y coordinate is relevant, it is given the same parity as t.
*
* Changes w.r.t. the the paper:
* - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
* at infinity in the paper. Here they are remapped to finite points.
* - The paper uses an additional encoding bit for the parity of y. Here the
* parity of t is used (negating t does not affect the decoded x coordinate,
* so this is possible).
*
* For mathematical background about the scheme, see the doc/ellswift.md file.
*/
/** A pointer to a function used by secp256k1_ellswift_xdh to hash the shared X
* coordinate along with the encoded public keys to a uniform shared secret.
*
* Returns: 1 if a shared secret was successfully computed.
* 0 will cause secp256k1_ellswift_xdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ellswift_xdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to the 32-byte serialized X coordinate
* of the resulting shared point (will not be NULL)
* ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ellswift_xdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
void *data
);
/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
* SHA256(prefix64 || ell_a64 || ell_b64 || x32), where prefix64 is the 64-byte
* array pointed to by data. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix;
/** An implementation of an secp256k1_ellswift_xdh_hash_function compatible with
* BIP324. It returns H_tag(ell_a64 || ell_b64 || x32), where H_tag is the
* BIP340 tagged hash function with tag "bip324_ellswift_xonly_ecdh". Equivalent
* to secp256k1_ellswift_xdh_hash_function_prefix with prefix64 set to
* SHA256("bip324_ellswift_xonly_ecdh")||SHA256("bip324_ellswift_xonly_ecdh").
* The data argument is ignored. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324;
/** Construct a 64-byte ElligatorSwift encoding of a given pubkey.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to be filled
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* rnd32: pointer to 32 bytes of randomness
*
* It is recommended that rnd32 consists of 32 uniformly random bytes, not
* known to any adversary trying to detect whether public keys are being
* encoded, though 16 bytes of randomness (padded to an array of 32 bytes,
* e.g., with zeros) suffice to make the result indistinguishable from
* uniform. The randomness in rnd32 must not be a deterministic function of
* the pubkey (it can be derived from the private key, though).
*
* It is not guaranteed that the computed encoding is stable across versions
* of the library, even if all arguments to this function (including rnd32)
* are the same.
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_encode(
const secp256k1_context *ctx,
unsigned char *ell64,
const secp256k1_pubkey *pubkey,
const unsigned char *rnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Decode a 64-bytes ElligatorSwift encoded public key.
*
* Returns: always 1
* Args: ctx: pointer to a context object
* Out: pubkey: pointer to a secp256k1_pubkey that will be filled
* In: ell64: pointer to a 64-byte array to decode
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_decode(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *ell64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute an ElligatorSwift public key for a secret key.
*
* Returns: 1: secret was valid, public key was stored.
* 0: secret was invalid, try again.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to receive the ElligatorSwift
* public key
* In: seckey32: pointer to a 32-byte secret key
* auxrnd32: (optional) pointer to 32 bytes of randomness
*
* Constant time in seckey and auxrnd32, but not in the resulting public key.
*
* It is recommended that auxrnd32 contains 32 uniformly random bytes, though
* it is optional (and does result in encodings that are indistinguishable from
* uniform even without any auxrnd32). It differs from the (mandatory) rnd32
* argument to secp256k1_ellswift_encode in this regard.
*
* This function can be used instead of calling secp256k1_ec_pubkey_create
* followed by secp256k1_ellswift_encode. It is safer, as it uses the secret
* key as entropy for the encoding (supplemented with auxrnd32, if provided).
*
* Like secp256k1_ellswift_encode, this function does not guarantee that the
* computed encoding is stable across versions of the library, even if all
* arguments (including auxrnd32) are the same.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
const secp256k1_context *ctx,
unsigned char *ell64,
const unsigned char *seckey32,
const unsigned char *auxrnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Given a private key, and ElligatorSwift public keys sent in both directions,
* compute a shared secret using x-only Elliptic Curve Diffie-Hellman (ECDH).
*
* Returns: 1: shared secret was successfully computed
* 0: secret was invalid or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* seckey32: a pointer to our 32-byte secret key
* party: boolean indicating which party we are: zero if we are
* party A, non-zero if we are party B. seckey32 must be
* the private key corresponding to that party's ell_?64.
* This correspondence is not checked.
* hashfp: pointer to a hash function.
* data: arbitrary data pointer passed through to hashfp.
*
* Constant time in seckey32.
*
* This function is more efficient than decoding the public keys, and performing
* ECDH on them.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
const secp256k1_context *ctx,
unsigned char *output,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
const unsigned char *seckey32,
int party,
secp256k1_ellswift_xdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ELLSWIFT_H */

View File

@@ -112,10 +112,10 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubke
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0.
* In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
* tweak32: pointer to a 32-byte tweak. If the tweak is invalid
* according to secp256k1_ec_seckey_verify, this function
* returns 0. For uniformly random 32-byte arrays the
* chance of being invalid is negligible (around 1 in 2^128).
* tweak32: pointer to a 32-byte tweak, which must be valid
* according to secp256k1_ec_seckey_verify or 32 zero
* bytes. For uniformly random 32-byte tweaks, the chance of
* being invalid is negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
const secp256k1_context *ctx,
@@ -185,9 +185,8 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_sec(
/** Get the public key from a keypair.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
* the keypair public key. If not, it's set to an invalid value.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to a pubkey object, set to the keypair public key.
* In: keypair: pointer to a keypair.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
@@ -203,9 +202,8 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
*
* Returns: 1 always.
* Args: ctx: pointer to a context object.
* Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
* to the keypair public key after converting it to an
* xonly_pubkey. If not, it's set to an invalid value.
* Out: pubkey: pointer to an xonly_pubkey object, set to the keypair
* public key after converting it to an xonly_pubkey.
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that will be set to the
* pk_parity argument of secp256k1_xonly_pubkey_from_pubkey.
* In: keypair: pointer to a keypair.
@@ -231,10 +229,10 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(
* Args: ctx: pointer to a context object.
* In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
* an invalid value if this function returns 0.
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according
* to secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128).
* In: tweak32: pointer to a 32-byte tweak, which must be valid according to
* secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
* random 32-byte tweaks, the chance of being invalid is
* negligible (around 1 in 2^128).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
const secp256k1_context *ctx,

View File

@@ -61,7 +61,7 @@ typedef int (*secp256k1_nonce_function_hardened)(
* Therefore, to create BIP-340 compliant signatures, algo must be set to
* "BIP0340/nonce" and algolen to 13.
*/
SECP256K1_API_VAR const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
SECP256K1_API const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
/** Data structure that contains additional arguments for schnorrsig_sign_custom.
*

View File

@@ -198,7 +198,7 @@ def normalize_factor(p):
(8) * (-bx + ax)^3
```
"""
# Assert p is not 0 and that its non-zero coeffients are coprime.
# Assert p is not 0 and that its non-zero coefficients are coprime.
# (We could just work with the primitive part p/p.content() but we want to be
# aware if factor() does not return a primitive part in future sage versions.)
assert p.content() == 1

View File

@@ -20,10 +20,10 @@ if(SECP256K1_ASM STREQUAL "arm32")
target_link_libraries(secp256k1_asm INTERFACE secp256k1_asm_arm)
endif()
# Define our export symbol only for Win32 and only for shared libs.
# This matches libtool's usage of DLL_EXPORT
if(WIN32)
set_target_properties(secp256k1 PROPERTIES DEFINE_SYMBOL "DLL_EXPORT")
# Define our export symbol only for shared libs.
set_target_properties(secp256k1 PROPERTIES DEFINE_SYMBOL SECP256K1_DLL_EXPORT)
target_compile_definitions(secp256k1 INTERFACE $<$<NOT:$<BOOL:${BUILD_SHARED_LIBS}>>:SECP256K1_STATIC>)
endif()
# Object libs don't know if they're being built for a shared or static lib.
@@ -132,6 +132,9 @@ if(SECP256K1_INSTALL)
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h")
endif()
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ellswift.h")
endif()
install(FILES ${${PROJECT_NAME}_headers}
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
@@ -158,5 +161,13 @@ if(SECP256K1_INSTALL)
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config-version.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
)
)
include(GeneratePkgConfigFile)
generate_pkg_config_file(${PROJECT_SOURCE_DIR}/libsecp256k1.pc.in)
install(
FILES
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}.pc
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig
)
endif()

View File

@@ -913,3 +913,4 @@ secp256k1_fe_sqr_inner:
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner
.section .note.GNU-stack,"",%progbits

View File

@@ -38,6 +38,8 @@ static void help(int default_iters) {
printf(" ecdsa : all ECDSA algorithms--sign, verify, recovery (if enabled)\n");
printf(" ecdsa_sign : ECDSA siging algorithm\n");
printf(" ecdsa_verify : ECDSA verification algorithm\n");
printf(" ec : all EC public key algorithms (keygen)\n");
printf(" ec_keygen : EC public key generation\n");
#ifdef ENABLE_MODULE_RECOVERY
printf(" ecdsa_recover : ECDSA public key recovery algorithm\n");
@@ -53,6 +55,14 @@ static void help(int default_iters) {
printf(" schnorrsig_verify : Schnorr verification algorithm\n");
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
printf(" ellswift : all ElligatorSwift benchmarks (encode, decode, keygen, ecdh)\n");
printf(" ellswift_encode : ElligatorSwift encoding\n");
printf(" ellswift_decode : ElligatorSwift decoding\n");
printf(" ellswift_keygen : ElligatorSwift key generation\n");
printf(" ellswift_ecdh : ECDH on ElligatorSwift keys\n");
#endif
printf("\n");
}
@@ -115,6 +125,30 @@ static void bench_sign_run(void* arg, int iters) {
}
}
static void bench_keygen_setup(void* arg) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_keygen_run(void *arg, int iters) {
int i;
bench_data *data = (bench_data*)arg;
for (i = 0; i < iters; i++) {
unsigned char pub33[33];
size_t len = 33;
secp256k1_pubkey pubkey;
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
memcpy(data->key, pub33 + 1, 32);
}
}
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/bench_impl.h"
#endif
@@ -127,6 +161,10 @@ static void bench_sign_run(void* arg, int iters) {
# include "modules/schnorrsig/bench_impl.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
# include "modules/ellswift/bench_impl.h"
#endif
int main(int argc, char** argv) {
int i;
secp256k1_pubkey pubkey;
@@ -139,7 +177,9 @@ int main(int argc, char** argv) {
/* Check for invalid user arguments */
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
"keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
"ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
@@ -181,6 +221,16 @@ int main(int argc, char** argv) {
}
#endif
#ifndef ENABLE_MODULE_ELLSWIFT
if (have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ellswift_encode") || have_flag(argc, argv, "ellswift_decode") ||
have_flag(argc, argv, "encode") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_keygen") ||
have_flag(argc, argv, "ellswift_ecdh")) {
fprintf(stderr, "./bench: ElligatorSwift module not enabled.\n");
fprintf(stderr, "Use ./configure --enable-module-ellswift.\n\n");
return 1;
}
#endif
/* ECDSA benchmark */
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
@@ -201,6 +251,7 @@ int main(int argc, char** argv) {
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "verify") || have_flag(argc, argv, "ecdsa_verify")) run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_keygen_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
@@ -219,5 +270,10 @@ int main(int argc, char** argv) {
run_schnorrsig_bench(iters, argc, argv);
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
/* ElligatorSwift benchmarks */
run_ellswift_bench(iters, argc, argv);
#endif
return 0;
}

View File

@@ -138,12 +138,10 @@ static void bench_ecmult_1p_teardown(void* arg, int iters) {
static void bench_ecmult_0p_g(void* arg, int iters) {
bench_data* data = (bench_data*)arg;
secp256k1_scalar zero;
int i;
secp256k1_scalar_set_int(&zero, 0);
for (i = 0; i < iters; ++i) {
secp256k1_ecmult(&data->output[i], NULL, &zero, &data->scalars[(data->offset1+i) % POINTS]);
secp256k1_ecmult(&data->output[i], NULL, &secp256k1_scalar_zero, &data->scalars[(data->offset1+i) % POINTS]);
}
}
@@ -246,7 +244,6 @@ static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_g, int num_iters) {
char str[32];
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
size_t iters = 1 + num_iters / count;
size_t iter;
@@ -264,7 +261,7 @@ static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_
secp256k1_scalar_add(&total, &total, &tmp);
}
secp256k1_scalar_negate(&total, &total);
secp256k1_ecmult(&data->expected_output[iter], NULL, &zero, &total);
secp256k1_ecmult(&data->expected_output[iter], NULL, &secp256k1_scalar_zero, &total);
}
/* Run the benchmark. */

View File

@@ -14,10 +14,28 @@
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
static void help(int default_iters) {
printf("Benchmarks various internal routines.\n");
printf("\n");
printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
printf("\n");
printf("Usage: ./bench_internal [args]\n");
printf("By default, all benchmarks will be run.\n");
printf("args:\n");
printf(" help : display this help and exit\n");
printf(" scalar : all scalar operations (add, half, inverse, mul, negate, split)\n");
printf(" field : all field operations (half, inverse, issquare, mul, normalize, sqr, sqrt)\n");
printf(" group : all group operations (add, double, to_affine)\n");
printf(" ecmult : all point multiplication operations (ecmult_wnaf) \n");
printf(" hash : all hash algorithms (hmac, rng6979, sha256)\n");
printf(" context : all context object operations (context_create)\n");
printf("\n");
}
typedef struct {
secp256k1_scalar scalar[2];
secp256k1_fe fe[4];
@@ -98,6 +116,18 @@ static void bench_scalar_negate(void* arg, int iters) {
}
}
static void bench_scalar_half(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_scalar s = data->scalar[0];
for (i = 0; i < iters; i++) {
secp256k1_scalar_half(&s, &s);
}
data->scalar[0] = s;
}
static void bench_scalar_mul(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
@@ -309,18 +339,6 @@ static void bench_ecmult_wnaf(void* arg, int iters) {
CHECK(bits <= 256*iters);
}
static void bench_wnaf_const(void* arg, int iters) {
int i, bits = 0, overflow = 0;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < iters; i++) {
bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
}
CHECK(overflow >= 0);
CHECK(bits <= 256*iters);
}
static void bench_sha256(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
@@ -366,10 +384,22 @@ static void bench_context(void* arg, int iters) {
int main(int argc, char **argv) {
bench_inv data;
int iters = get_iters(20000);
int default_iters = 20000;
int iters = get_iters(default_iters);
int d = argc == 1; /* default */
if (argc > 1) {
if (have_flag(argc, argv, "-h")
|| have_flag(argc, argv, "--help")
|| have_flag(argc, argv, "help")) {
help(default_iters);
return 0;
}
}
print_output_table_header_row();
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "half")) run_benchmark("scalar_half", bench_scalar_half, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
@@ -394,7 +424,6 @@ int main(int argc, char **argv) {
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);

View File

@@ -58,7 +58,14 @@
#if !defined SECP256K1_CHECKMEM_ENABLED
# if defined VALGRIND
# include <stddef.h>
# if defined(__clang__) && defined(__APPLE__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wreserved-identifier"
# endif
# include <valgrind/memcheck.h>
# if defined(__clang__) && defined(__APPLE__)
# pragma clang diagnostic pop
# endif
# define SECP256K1_CHECKMEM_ENABLED 1
# define SECP256K1_CHECKMEM_UNDEFINE(p, len) VALGRIND_MAKE_MEM_UNDEFINED((p), (len))
# define SECP256K1_CHECKMEM_DEFINE(p, len) VALGRIND_MAKE_MEM_DEFINED((p), (len))

View File

@@ -30,6 +30,10 @@
#include "../include/secp256k1_schnorrsig.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
#include "../include/secp256k1_ellswift.h"
#endif
static void run_tests(secp256k1_context *ctx, unsigned char *key);
int main(void) {
@@ -80,6 +84,10 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
unsigned char ellswift[64];
static const unsigned char prefix[64] = {'t', 'e', 's', 't'};
#endif
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
@@ -171,4 +179,31 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
ret = secp256k1_ellswift_create(ctx, ellswift, key, ellswift);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
for (i = 0; i < 2; i++) {
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_DEFINE(&ellswift, sizeof(ellswift));
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
SECP256K1_CHECKMEM_UNDEFINE(key, 32);
SECP256K1_CHECKMEM_DEFINE(&ellswift, sizeof(ellswift));
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_prefix, (void *)prefix);
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
CHECK(ret == 1);
}
#endif
}

View File

@@ -16,17 +16,8 @@
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
* $ sage -c 'load("secp256k1_params.sage"); print(hex(N))'
* 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
@@ -35,12 +26,8 @@ static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
* $ sage -c 'load("secp256k1_params.sage"); print(hex(P-N))'
* 0x14551231950b75fc4402da1722fc9baee
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
@@ -79,8 +66,7 @@ static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const
}
if (lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
* it is certainly longer than the passed array size. */
return 0;
}
while (lenleft > 0) {
@@ -89,7 +75,9 @@ static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const
lenleft--;
}
if (*len > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
/* Result exceeds the length of the passed array.
(Checking this is the responsibility of the caller but it
can't hurt do it here, too.) */
return 0;
}
if (*len < 128) {

View File

@@ -59,10 +59,8 @@ static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp25
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(&pt, &pt, &one, tweak);
secp256k1_ecmult(&pt, &pt, &secp256k1_scalar_one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
@@ -80,15 +78,13 @@ static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp25
}
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(&pt, &pt, tweak, &zero);
secp256k1_ecmult(&pt, &pt, tweak, &secp256k1_scalar_zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}

View File

@@ -22,7 +22,7 @@
# pragma message DEBUG_CONFIG_DEF(ECMULT_WINDOW_SIZE)
#endif
/* Noone will ever need more than a window size of 24. The code might
/* No one will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* tested.
*

View File

@@ -1,5 +1,5 @@
/***********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Copyright (c) 2015, 2022 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
@@ -12,208 +12,259 @@
#include "ecmult_const.h"
#include "ecmult_impl.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need 2^ECMULT_CONST_GROUP_SIZE - 1 to be less than EXHAUSTIVE_TEST_ORDER, because
* the tables cannot have infinities in them (this breaks the effective-affine technique's
* z-ratio tracking) */
# if EXHAUSTIVE_TEST_ORDER == 199
# define ECMULT_CONST_GROUP_SIZE 4
# elif EXHAUSTIVE_TEST_ORDER == 13
# define ECMULT_CONST_GROUP_SIZE 3
# elif EXHAUSTIVE_TEST_ORDER == 7
# define ECMULT_CONST_GROUP_SIZE 2
# else
# error "Unknown EXHAUSTIVE_TEST_ORDER"
# endif
#else
/* Group size 4 or 5 appears optimal. */
# define ECMULT_CONST_GROUP_SIZE 5
#endif
#define ECMULT_CONST_TABLE_SIZE (1L << (ECMULT_CONST_GROUP_SIZE - 1))
#define ECMULT_CONST_GROUPS ((129 + ECMULT_CONST_GROUP_SIZE - 1) / ECMULT_CONST_GROUP_SIZE)
#define ECMULT_CONST_BITS (ECMULT_CONST_GROUPS * ECMULT_CONST_GROUP_SIZE)
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* The resulting point set is brought to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in globalz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
* coordinates as ge points in pre, and stores the global Z in globalz.
*
* 'pre' must be an array of size ECMULT_CONST_TABLE_SIZE.
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
static void secp256k1_ecmult_const_odd_multiples_table_globalz(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_fe zr[ECMULT_CONST_TABLE_SIZE];
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr, globalz, a);
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr);
secp256k1_ecmult_odd_multiples_table(ECMULT_CONST_TABLE_SIZE, pre, zr, globalz, a);
secp256k1_ge_table_set_globalz(ECMULT_CONST_TABLE_SIZE, pre, zr);
}
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m = 0; \
/* Extract the sign-bit for a constant time absolute-value. */ \
int volatile mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
int abs_n = ((n) + mask) ^ mask; \
int idx_n = abs_n >> 1; \
/* Given a table 'pre' with odd multiples of a point, put in r the signed-bit multiplication of n with that point.
*
* For example, if ECMULT_CONST_GROUP_SIZE is 4, then pre is expected to contain 8 entries:
* [1*P, 3*P, 5*P, 7*P, 9*P, 11*P, 13*P, 15*P]. n is then expected to be a 4-bit integer (range 0-15), and its
* bits are interpreted as signs of powers of two to look up.
*
* For example, if n=4, which is 0100 in binary, which is interpreted as [- + - -], so the looked up value is
* [ -(2^3) + (2^2) - (2^1) - (2^0) ]*P = -7*P. Every valid n translates to an odd number in range [-15,15],
* which means we just need to look up one of the precomputed values, and optionally negate it.
*/
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n) do { \
unsigned int m = 0; \
/* If the top bit of n is 0, we want the negation. */ \
volatile unsigned int negative = ((n) >> (ECMULT_CONST_GROUP_SIZE - 1)) ^ 1; \
/* Let n[i] be the i-th bit of n, then the index is
* sum(cnot(n[i]) * 2^i, i=0..l-2)
* where cnot(b) = b if n[l-1] = 1 and 1 - b otherwise.
* For example, if n = 4, in binary 0100, the index is 3, in binary 011.
*
* Proof:
* Let
* x = sum((2*n[i] - 1)*2^i, i=0..l-1)
* = 2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 1
* be the value represented by n.
* The index is (x - 1)/2 if x > 0 and -(x + 1)/2 otherwise.
* Case x > 0:
* n[l-1] = 1
* index = sum(n[i] * 2^i, i=0..l-1) - 2^(l-1)
* = sum(n[i] * 2^i, i=0..l-2)
* Case x <= 0:
* n[l-1] = 0
* index = -(2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 2)/2
* = 2^(l-1) - 1 - sum(n[i] * 2^i, i=0..l-1)
* = sum((1 - n[i]) * 2^i, i=0..l-2)
*/ \
unsigned int index = ((unsigned int)(-negative) ^ n) & ((1U << (ECMULT_CONST_GROUP_SIZE - 1)) - 1U); \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one \
VERIFY_CHECK((n) < (1U << ECMULT_CONST_GROUP_SIZE)); \
VERIFY_CHECK(index < (1U << (ECMULT_CONST_GROUP_SIZE - 1))); \
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one
* or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \
(r)->x = (pre)[m].x; \
(r)->y = (pre)[m].y; \
for (m = 1; m < ECMULT_TABLE_SIZE(w); m++) { \
for (m = 1; m < ECMULT_CONST_TABLE_SIZE; m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == index); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == index); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
secp256k1_fe_cmov(&(r)->y, &neg_y, negative); \
} while(0)
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is always WNAF_SIZE(w) + 1
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlag Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) {
int global_sign;
int skew;
int word = 0;
/* For K as defined in the comment of secp256k1_ecmult_const, we have several precomputed
* formulas/constants.
* - in exhaustive test mode, we give an explicit expression to compute it at compile time: */
#ifdef EXHAUSTIVE_TEST_ORDER
static const secp256k1_scalar secp256k1_ecmult_const_K = ((SECP256K1_SCALAR_CONST(0, 0, 0, (1U << (ECMULT_CONST_BITS - 128)) - 2U, 0, 0, 0, 0) + EXHAUSTIVE_TEST_ORDER - 1U) * (1U + EXHAUSTIVE_TEST_LAMBDA)) % EXHAUSTIVE_TEST_ORDER;
/* - for the real secp256k1 group we have constants for various ECMULT_CONST_BITS values. */
#elif ECMULT_CONST_BITS == 129
/* For GROUP_SIZE = 1,3. */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xac9c52b3ul, 0x3fa3cf1ful, 0x5ad9e3fdul, 0x77ed9ba4ul, 0xa880b9fcul, 0x8ec739c2ul, 0xe0cfc810ul, 0xb51283ceul);
#elif ECMULT_CONST_BITS == 130
/* For GROUP_SIZE = 2,5. */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xa4e88a7dul, 0xcb13034eul, 0xc2bdd6bful, 0x7c118d6bul, 0x589ae848ul, 0x26ba29e4ul, 0xb5c2c1dcul, 0xde9798d9ul);
#elif ECMULT_CONST_BITS == 132
/* For GROUP_SIZE = 4,6 */
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0x76b1d93dul, 0x0fae3c6bul, 0x3215874bul, 0x94e93813ul, 0x7937fe0dul, 0xb66bcaaful, 0xb3749ca5ul, 0xd7b6171bul);
#else
# error "Unknown ECMULT_CONST_BITS"
#endif
/* 1 2 3 */
int u_last;
int u;
int flip;
secp256k1_scalar s = *scalar;
VERIFY_CHECK(w > 0);
VERIFY_CHECK(size > 0);
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a variation of a
* technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the
* number we are encoding when it is even, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication.
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q) {
/* The approach below combines the signed-digit logic from Mike Hamburg's
* "Fast and compact elliptic-curve cryptography" (https://eprint.iacr.org/2012/309)
* Section 3.3, with the GLV endomorphism.
*
* In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in
* particular, to ensure that the outputs from the endomorphism-split fit into
* 128 bits). If we negate, the parity of our number flips, affecting whether
* we want to add to the scalar to ensure that it's odd. */
flip = secp256k1_scalar_is_high(&s);
skew = flip ^ secp256k1_scalar_is_even(&s);
secp256k1_scalar_cadd_bit(&s, 0, skew);
global_sign = secp256k1_scalar_cond_negate(&s, flip);
* The idea there is to interpret the bits of a scalar as signs (1 = +, 0 = -), and compute a
* point multiplication in that fashion. Let v be an n-bit non-negative integer (0 <= v < 2^n),
* and v[i] its i'th bit (so v = sum(v[i] * 2^i, i=0..n-1)). Then define:
*
* C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
*
* Then it holds that C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
* = (2*sum(v[i] * 2^i, i=0..l-1) + 1 - 2^l) * A
* = (2*v + 1 - 2^l) * A
*
* Thus, one can compute q*A as C_256((q + 2^256 - 1) / 2, A). This is the basis for the
* paper's signed-digit multi-comb algorithm for multiplication using a precomputed table.
*
* It is appealing to try to combine this with the GLV optimization: the idea that a scalar
* s can be written as s1 + lambda*s2, where lambda is a curve-specific constant such that
* lambda*A is easy to compute, and where s1 and s2 are small. In particular we have the
* secp256k1_scalar_split_lambda function which performs such a split with the resulting s1
* and s2 in range (-2^128, 2^128) mod n. This does work, but is uninteresting:
*
* To compute q*A:
* - Let s1, s2 = split_lambda(q)
* - Let R1 = C_256((s1 + 2^256 - 1) / 2, A)
* - Let R2 = C_256((s2 + 2^256 - 1) / 2, lambda*A)
* - Return R1 + R2
*
* The issue is that while s1 and s2 are small-range numbers, (s1 + 2^256 - 1) / 2 (mod n)
* and (s2 + 2^256 - 1) / 2 (mod n) are not, undoing the benefit of the splitting.
*
* To make it work, we want to modify the input scalar q first, before splitting, and then only
* add a 2^128 offset of the split results (so that they end up in the single 129-bit range
* [0,2^129]). A slightly smaller offset would work due to the bounds on the split, but we pick
* 2^128 for simplicity. Let s be the scalar fed to split_lambda, and f(q) the function to
* compute it from q:
*
* To compute q*A:
* - Compute s = f(q)
* - Let s1, s2 = split_lambda(s)
* - Let v1 = s1 + 2^128 (mod n)
* - Let v2 = s2 + 2^128 (mod n)
* - Let R1 = C_l(v1, A)
* - Let R2 = C_l(v2, lambda*A)
* - Return R1 + R2
*
* l will thus need to be at least 129, but we may overshoot by a few bits (see
* further), so keep it as a variable.
*
* To solve for s, we reason:
* q*A = R1 + R2
* <=> q*A = C_l(s1 + 2^128, A) + C_l(s2 + 2^128, lambda*A)
* <=> q*A = (2*(s1 + 2^128) + 1 - 2^l) * A + (2*(s2 + 2^128) + 1 - 2^l) * lambda*A
* <=> q*A = (2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda)) * A
* <=> q = 2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
* <=> q = 2*s + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
* <=> s = (q + (2^l - 2^129 - 1) * (1 + lambda)) / 2 (mod n)
* <=> f(q) = (q + K) / 2 (mod n)
* where K = (2^l - 2^129 - 1)*(1 + lambda) (mod n)
*
* We will process the computation of C_l(v1, A) and C_l(v2, lambda*A) in groups of
* ECMULT_CONST_GROUP_SIZE, so we set l to the smallest multiple of ECMULT_CONST_GROUP_SIZE
* that is not less than 129; this equals ECMULT_CONST_BITS.
*/
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
do {
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
/* In contrast to the original algorithm, u_last is always > 0 and
* therefore we do not need to check its sign. In particular, it's easy
* to see that u_last is never < 0 because u is never < 0. Moreover,
* u_last is never = 0 because u is never even after a loop
* iteration. The same holds analogously for the initial value of
* u_last (in the first loop iteration). */
VERIFY_CHECK(u_last > 0);
VERIFY_CHECK((u_last & 1) == 1);
u += even;
u_last -= even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
} while (word * w < size);
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int i;
/* The offset to add to s1 and s2 to make them non-negative. Equal to 2^128. */
static const secp256k1_scalar S_OFFSET = SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0);
secp256k1_scalar s, v1, v2;
secp256k1_ge pre_a[ECMULT_CONST_TABLE_SIZE];
secp256k1_ge pre_a_lam[ECMULT_CONST_TABLE_SIZE];
secp256k1_fe global_z;
int group, i;
/* We're allowed to be non-constant time in the point, and the code below (in particular,
* secp256k1_ecmult_const_odd_multiples_table_globalz) cannot deal with infinity in a
* constant-time manner anyway. */
if (secp256k1_ge_is_infinity(a)) {
secp256k1_gej_set_infinity(r);
return;
}
/* build wnaf representation for q. */
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar);
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
/* Compute v1 and v2. */
secp256k1_scalar_add(&s, q, &secp256k1_ecmult_const_K);
secp256k1_scalar_half(&s, &s);
secp256k1_scalar_split_lambda(&v1, &v2, &s);
secp256k1_scalar_add(&v1, &v1, &S_OFFSET);
secp256k1_scalar_add(&v2, &v2, &S_OFFSET);
/* Calculate odd multiples of a.
#ifdef VERIFY
/* Verify that v1 and v2 are in range [0, 2^129-1]. */
for (i = 129; i < 256; ++i) {
VERIFY_CHECK(secp256k1_scalar_get_bits(&v1, i, 1) == 0);
VERIFY_CHECK(secp256k1_scalar_get_bits(&v2, i, 1) == 0);
}
#endif
/* Calculate odd multiples of A and A*lambda.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* in global_z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
VERIFY_CHECK(!a->infinity);
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ecmult_const_odd_multiples_table_globalz(pre_a, &global_z, r);
for (i = 0; i < ECMULT_CONST_TABLE_SIZE; i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
i = wnaf_lam[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
/* remaining loop iterations */
for (i = WNAF_SIZE_BITS(128, WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
/* Next, we compute r = C_l(v1, A) + C_l(v2, lambda*A).
*
* We proceed in groups of ECMULT_CONST_GROUP_SIZE bits, operating on that many bits
* at a time, from high in v1, v2 to low. Call these bits1 (from v1) and bits2 (from v2).
*
* Now note that ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1) loads into t a point equal
* to C_{ECMULT_CONST_GROUP_SIZE}(bits1, A), and analogously for pre_lam_a / bits2.
* This means that all we need to do is add these looked up values together, multiplied
* by 2^(ECMULT_GROUP_SIZE * group).
*/
for (group = ECMULT_CONST_GROUPS - 1; group >= 0; --group) {
/* Using the _var get_bits function is ok here, since it's only variable in offset and count, not in the scalar. */
unsigned int bits1 = secp256k1_scalar_get_bits_var(&v1, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
unsigned int bits2 = secp256k1_scalar_get_bits_var(&v2, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
secp256k1_ge t;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double(r, r);
ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1);
if (group == ECMULT_CONST_GROUPS - 1) {
/* Directly set r in the first iteration. */
secp256k1_gej_set_ge(r, &t);
} else {
/* Shift the result so far up. */
for (j = 0; j < ECMULT_CONST_GROUP_SIZE; ++j) {
secp256k1_gej_double(r, r);
}
secp256k1_gej_add_ge(r, r, &t);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
ECMULT_CONST_TABLE_GET_GE(&t, pre_a_lam, bits2);
secp256k1_gej_add_ge(r, r, &t);
}
{
/* Correct for wNAF skew */
secp256k1_gej tmpj;
secp256k1_ge_neg(&tmpa, &pre_a[0]);
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
secp256k1_gej_cmov(r, &tmpj, skew_1);
secp256k1_ge_neg(&tmpa, &pre_a_lam[0]);
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
secp256k1_gej_cmov(r, &tmpj, skew_lam);
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
/* Map the result back to the secp256k1 curve from the isomorphic curve. */
secp256k1_fe_mul(&r->z, &r->z, &global_z);
}
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve) {
@@ -276,7 +327,7 @@ static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n,
*
* It is easy to verify that both (n*g, g^2, v) and its negation (n*g, -g^2, v) have affine X
* coordinate n/d, and this holds even when the square root function doesn't have a
* determinstic sign. We choose the (n*g, g^2, v) version.
* deterministic sign. We choose the (n*g, g^2, v) version.
*
* Now switch to the effective affine curve using phi_v, where the input point has coordinates
* (n*g, g^2). Compute (X, Y, Z) = q * (n*g, g^2) there.
@@ -296,9 +347,7 @@ static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n,
secp256k1_fe_mul(&g, &g, n);
if (d) {
secp256k1_fe b;
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero(d));
#endif
secp256k1_fe_sqr(&b, d);
VERIFY_CHECK(SECP256K1_B <= 8); /* magnitude of b will be <= 8 after the next call */
secp256k1_fe_mul_int(&b, SECP256K1_B);
@@ -331,13 +380,9 @@ static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n,
p.infinity = 0;
/* Perform x-only EC multiplication of P with q. */
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_scalar_is_zero(q));
#endif
secp256k1_ecmult_const(&rj, &p, q);
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_gej_is_infinity(&rj));
#endif
/* The resulting (X, Y, Z) point on the effective-affine isomorphic curve corresponds to
* (X, Y, Z*v) on the secp256k1 curve. The affine version of that has X coordinate

View File

@@ -22,6 +22,9 @@ static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, cons
secp256k1_gej nums_gej;
int i, j;
VERIFY_CHECK(g > 0);
VERIFY_CHECK(n > 0);
/* get the generator */
secp256k1_gej_set_ge(&gj, gen);

View File

@@ -87,7 +87,6 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int overflow;
unsigned char keydata[64];
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
@@ -106,11 +105,9 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
memcpy(keydata + 32, seed32, 32);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
memset(keydata, 0, sizeof(keydata));
/* Accept unobservably small non-uniformity. */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
overflow = !secp256k1_fe_set_b32_limit(&s, nonce32);
overflow |= secp256k1_fe_is_zero(&s);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
secp256k1_fe_set_b32_mod(&s, nonce32);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, secp256k1_fe_normalizes_to_zero(&s));
/* Randomize the projection to defend against multiplier sidechannels.
Do this before our own call to secp256k1_ecmult_gen below. */
secp256k1_gej_rescale(&ctx->initial, &s);

View File

@@ -288,7 +288,9 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *
}
/* Bring them to the same Z denominator. */
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
if (no) {
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
}
for (np = 0; np < no; ++np) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
@@ -770,14 +772,12 @@ static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_cal
* require a scratch space */
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
size_t point_idx;
secp256k1_scalar szero;
secp256k1_gej tmpj;
secp256k1_scalar_set_int(&szero, 0);
secp256k1_gej_set_infinity(r);
secp256k1_gej_set_infinity(&tmpj);
/* r = inp_g_sc*G */
secp256k1_ecmult(r, &tmpj, &szero, inp_g_sc);
secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
for (point_idx = 0; point_idx < n_points; point_idx++) {
secp256k1_ge point;
secp256k1_gej pointj;
@@ -825,9 +825,7 @@ static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback,
if (inp_g_sc == NULL && n == 0) {
return 1;
} else if (n == 0) {
secp256k1_scalar szero;
secp256k1_scalar_set_int(&szero, 0);
secp256k1_ecmult(r, r, &szero, inp_g_sc);
secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
return 1;
}
if (scratch == NULL) {

View File

@@ -88,8 +88,8 @@ static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
# define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
# define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
# define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
# define secp256k1_fe_negate secp256k1_fe_impl_negate
# define secp256k1_fe_mul_int secp256k1_fe_impl_mul_int
# define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked
# define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked
# define secp256k1_fe_add secp256k1_fe_impl_add
# define secp256k1_fe_mul secp256k1_fe_impl_mul
# define secp256k1_fe_sqr secp256k1_fe_impl_sqr
@@ -176,12 +176,6 @@ static int secp256k1_fe_is_odd(const secp256k1_fe *a);
*/
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Determine whether two field elements are equal, without constant-time guarantee.
*
* Identical in behavior to secp256k1_fe_equal, but not constant time in either a or b.
*/
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare the values represented by 2 field elements, without constant-time guarantee.
*
* On input, a and b must be valid normalized field elements.
@@ -190,16 +184,17 @@ static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
*/
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to a provided 32-byte big endian value, reducing it.
/** Set a field element equal to the element represented by a provided 32-byte big endian value
* interpreted modulo p.
*
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
* On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
* On output, r = a (mod p). It will have magnitude 1, and not be normalized.
*/
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
*
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
* On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
* On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
* If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
*/
@@ -214,27 +209,39 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Negate a field element.
*
* On input, r does not need to be initialized. a must be a valid field element with
* magnitude not exceeding m. m must be an integer in [0,31].
* magnitude not exceeding m. m must be an integer constant expression in [0,31].
* Performs {r = -a}.
* On output, r will not be normalized, and will have magnitude m+1.
*/
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
#define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m))
/** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression.
*
* Should not be called directly outside of tests.
*/
static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Add a small integer to a field element.
*
* Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
* a must be in range [0,0xFFFF].
* a must be in range [0,0x7FFF].
*/
static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
/** Multiply a field element with a small integer.
*
* On input, r must be a valid field element. a must be an integer in [0,32].
* On input, r must be a valid field element. a must be an integer constant expression in [0,32].
* The magnitude of r times a must not exceed 32.
* Performs {r *= a}.
* On output, r's magnitude is multiplied by a, and r will not be normalized.
*/
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
#define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a))
/** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression.
*
* Should not be called directly outside of tests.
*/
static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a);
/** Increment a field element by another.
*
@@ -267,8 +274,10 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Compute a square root of a field element.
*
* On input, a must be a valid field element with magnitude<=8; r need not be initialized.
* Performs {r = sqrt(a)} or {r = sqrt(-a)}, whichever exists. The resulting value
* represented by r will be a square itself. Variables r and a must not point to the same object.
* If sqrt(a) exists, performs {r = sqrt(a)} and returns 1.
* Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0.
* The resulting value represented by r will be a square itself.
* Variables r and a must not point to the same object.
* On output, r will have magnitude 1 but will not be normalized.
*/
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
@@ -310,7 +319,9 @@ static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_f
*
* On input, both r and a must be valid field elements. Flag must be 0 or 1.
* Performs {r = flag ? a : r}.
* On output, r's magnitude and normalized will equal a's in case of flag=1, unchanged otherwise.
*
* On output, r's magnitude will be the maximum of both input magnitudes.
* It will be normalized if and only if both inputs were normalized.
*/
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
@@ -335,5 +346,10 @@ static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
/** Check invariants on a field element (no-op unless VERIFY is enabled). */
static void secp256k1_fe_verify(const secp256k1_fe *a);
#define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a)
/** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m);
#define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m)
#endif /* SECP256K1_FIELD_H */

View File

@@ -344,7 +344,7 @@ static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
r[31] = a->n[0] & 0xff;
}
SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
SECP256K1_INLINE static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
/* For all legal values of m (0..31), the following properties hold: */
VERIFY_CHECK(0x3FFFC2FUL * 2 * (m + 1) >= 0x3FFFFFFUL * 2 * m);
VERIFY_CHECK(0x3FFFFBFUL * 2 * (m + 1) >= 0x3FFFFFFUL * 2 * m);
@@ -365,7 +365,7 @@ SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const sec
r->n[9] = 0x03FFFFFUL * 2 * (m + 1) - a->n[9];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a) {
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
@@ -403,11 +403,7 @@ void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a);
#else
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
#define VERIFY_BITS(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b) {
uint64_t c, d;

View File

@@ -1,504 +0,0 @@
/***********************************************************************
* Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
#include "util.h"
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

View File

@@ -12,11 +12,7 @@
#include "field.h"
#include "modinv64_impl.h"
#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif
#ifdef VERIFY
static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
@@ -314,7 +310,7 @@ static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
r[31] = a->n[0] & 0xFF;
}
SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
SECP256K1_INLINE static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
/* For all legal values of m (0..31), the following properties hold: */
VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
@@ -329,7 +325,7 @@ SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const sec
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
}
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a) {
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;

View File

@@ -12,13 +12,8 @@
#include "int128.h"
#include "util.h"
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#define VERIFY_BITS_128(x, n) VERIFY_CHECK(secp256k1_u128_check_bits((x), (n)))
#else
#define VERIFY_BITS(x, n) do { } while(0)
#define VERIFY_BITS_128(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
secp256k1_uint128 c, d;
@@ -89,18 +84,18 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t
secp256k1_u128_accum_mul(&d, a2, b[3]);
secp256k1_u128_accum_mul(&d, a3, b[2]);
secp256k1_u128_accum_mul(&d, a4, b[1]);
VERIFY_BITS_128(&d, 115);
VERIFY_BITS_128(&d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = secp256k1_u128_to_u64(&d) & M; secp256k1_u128_rshift(&d, 52);
VERIFY_BITS(u0, 52);
VERIFY_BITS_128(&d, 63);
VERIFY_BITS_128(&d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
secp256k1_u128_accum_mul(&c, u0, R >> 4);
VERIFY_BITS_128(&c, 115);
VERIFY_BITS_128(&c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = secp256k1_u128_to_u64(&c) & M; secp256k1_u128_rshift(&c, 52);
VERIFY_BITS(r[0], 52);
@@ -159,7 +154,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
secp256k1_uint128 c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
int64_t t3, t4, tx, u0;
uint64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);

View File

@@ -20,31 +20,17 @@
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
#ifdef VERIFY
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 1);
VERIFY_CHECK(b->magnitude <= 31);
#endif
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 1);
SECP256K1_FE_VERIFY_MAGNITUDE(b, 31);
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
#ifdef VERIFY
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 1);
VERIFY_CHECK(b->magnitude <= 31);
#endif
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
@@ -57,11 +43,9 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j, ret;
#ifdef VERIFY
VERIFY_CHECK(r != a);
secp256k1_fe_verify(a);
VERIFY_CHECK(a->magnitude <= 8);
#endif
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
@@ -151,7 +135,7 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
if (!ret) {
secp256k1_fe_negate(&t1, &t1, 1);
secp256k1_fe_normalize_var(&t1);
VERIFY_CHECK(secp256k1_fe_equal_var(&t1, a));
VERIFY_CHECK(secp256k1_fe_equal(&t1, a));
}
#endif
return ret;
@@ -159,74 +143,93 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
#ifndef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; }
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) { (void)a; (void)m; }
#else
static void secp256k1_fe_impl_verify(const secp256k1_fe *a);
static void secp256k1_fe_verify(const secp256k1_fe *a) {
/* Magnitude between 0 and 32. */
VERIFY_CHECK((a->magnitude >= 0) && (a->magnitude <= 32));
SECP256K1_FE_VERIFY_MAGNITUDE(a, 32);
/* Normalized is 0 or 1. */
VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1));
/* If normalized, magnitude must be 0 or 1. */
if (a->normalized) VERIFY_CHECK(a->magnitude <= 1);
if (a->normalized) SECP256K1_FE_VERIFY_MAGNITUDE(a, 1);
/* Invoke implementation-specific checks. */
secp256k1_fe_impl_verify(a);
}
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) {
VERIFY_CHECK(m >= 0);
VERIFY_CHECK(m <= 32);
VERIFY_CHECK(a->magnitude <= m);
}
static void secp256k1_fe_impl_normalize(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) {
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize(r);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize_weak(r);
r->magnitude = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_normalize_var(r);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
return secp256k1_fe_impl_normalizes_to_zero(r);
}
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
return secp256k1_fe_impl_normalizes_to_zero_var(r);
}
static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
secp256k1_fe_impl_set_int(r, a);
r->magnitude = (a != 0);
r->normalized = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_add_int(r, a);
r->magnitude += 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_clear(secp256k1_fe *a);
@@ -234,29 +237,33 @@ SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
a->magnitude = 0;
a->normalized = 1;
secp256k1_fe_impl_clear(a);
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(a);
}
static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_zero(a);
}
static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
return secp256k1_fe_impl_is_odd(a);
}
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
return secp256k1_fe_impl_cmp_var(a, b);
}
@@ -265,7 +272,8 @@ SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const uns
secp256k1_fe_impl_set_b32_mod(r, a);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
@@ -273,7 +281,7 @@ SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const un
if (secp256k1_fe_impl_set_b32_limit(r, a)) {
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
return 1;
} else {
/* Mark the output field element as invalid. */
@@ -284,85 +292,97 @@ SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const un
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_get_b32(r, a);
}
static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
secp256k1_fe_verify(a);
static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
SECP256K1_INLINE static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(m >= 0 && m <= 31);
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_impl_negate(r, a, m);
SECP256K1_FE_VERIFY_MAGNITUDE(a, m);
secp256k1_fe_impl_negate_unchecked(r, a, m);
r->magnitude = m + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
secp256k1_fe_verify(r);
static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a) {
SECP256K1_FE_VERIFY(r);
VERIFY_CHECK(a >= 0 && a <= 32);
VERIFY_CHECK(a*r->magnitude <= 32);
secp256k1_fe_impl_mul_int(r, a);
secp256k1_fe_impl_mul_int_unchecked(r, a);
r->magnitude *= a;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_verify(r);
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(r);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(r->magnitude + a->magnitude <= 32);
secp256k1_fe_impl_add(r, a);
r->magnitude += a->magnitude;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(b);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
SECP256K1_FE_VERIFY_MAGNITUDE(b, 8);
VERIFY_CHECK(r != b);
VERIFY_CHECK(a != b);
secp256k1_fe_impl_mul(r, a, b);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
VERIFY_CHECK(a->magnitude <= 8);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY_MAGNITUDE(a, 8);
secp256k1_fe_impl_sqr(r, a);
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
VERIFY_CHECK(flag == 0 || flag == 1);
secp256k1_fe_verify(a);
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(a);
SECP256K1_FE_VERIFY(r);
secp256k1_fe_impl_cmov(r, a, flag);
if (flag) {
r->magnitude = a->magnitude;
r->normalized = a->normalized;
}
secp256k1_fe_verify(r);
if (a->magnitude > r->magnitude) r->magnitude = a->magnitude;
if (!a->normalized) r->normalized = 0;
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
secp256k1_fe_verify(a);
SECP256K1_FE_VERIFY(a);
VERIFY_CHECK(a->normalized);
secp256k1_fe_impl_to_storage(r, a);
}
@@ -371,36 +391,42 @@ SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const se
secp256k1_fe_impl_from_storage(r, a);
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
secp256k1_fe_verify(x);
SECP256K1_FE_VERIFY(x);
secp256k1_fe_impl_inv(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
secp256k1_fe_verify(x);
SECP256K1_FE_VERIFY(x);
secp256k1_fe_impl_inv_var(r, x);
r->magnitude = x->magnitude > 0;
r->normalized = 1;
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x);
SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
int ret;
secp256k1_fe tmp = *x, sqrt;
secp256k1_fe_verify(x);
SECP256K1_FE_VERIFY(x);
ret = secp256k1_fe_impl_is_square_var(x);
secp256k1_fe_normalize_weak(&tmp);
VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp));
@@ -411,20 +437,24 @@ static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m);
SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) {
VERIFY_CHECK(m >= 0);
VERIFY_CHECK(m <= 32);
secp256k1_fe_impl_get_bounds(r, m);
r->magnitude = m;
r->normalized = (m == 0);
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
static void secp256k1_fe_impl_half(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) {
secp256k1_fe_verify(r);
VERIFY_CHECK(r->magnitude < 32);
SECP256K1_FE_VERIFY(r);
SECP256K1_FE_VERIFY_MAGNITUDE(r, 31);
secp256k1_fe_impl_half(r);
r->magnitude = (r->magnitude >> 1) + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
SECP256K1_FE_VERIFY(r);
}
#endif /* defined(VERIFY) */

View File

@@ -44,6 +44,14 @@ typedef struct {
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Maximum allowed magnitudes for group element coordinates
* in affine (x, y) and jacobian (x, y, z) representation. */
#define SECP256K1_GE_X_MAGNITUDE_MAX 4
#define SECP256K1_GE_Y_MAGNITUDE_MAX 3
#define SECP256K1_GEJ_X_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Y_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Z_MAGNITUDE_MAX 1
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
@@ -51,6 +59,12 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Determine whether x is a valid X coordinate on the curve. */
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
@@ -88,6 +102,9 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
*/
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
/** Check two group elements (affine) for equality in variable time. */
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
@@ -100,7 +117,11 @@ static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Check two group elements (jacobian) for equality in variable time. */
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
/** Compare the X coordinate of a group element (jacobian). */
/** Check two group elements (jacobian and affine) for equality in variable time. */
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b);
/** Compare the X coordinate of a group element (jacobian).
* The magnitude of the group element's X coordinate must not exceed 31. */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
@@ -166,8 +187,10 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
static void secp256k1_ge_verify(const secp256k1_ge *a);
#define SECP256K1_GE_VERIFY(a) secp256k1_ge_verify(a)
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
static void secp256k1_gej_verify(const secp256k1_gej *a);
#define SECP256K1_GEJ_VERIFY(a) secp256k1_gej_verify(a)
#endif /* SECP256K1_GROUP_H */

View File

@@ -74,21 +74,22 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;
/* End of section generated by sage/gen_exhaustive_groups.sage. */
static void secp256k1_ge_verify(const secp256k1_ge *a) {
#ifdef VERIFY
secp256k1_fe_verify(&a->x);
secp256k1_fe_verify(&a->y);
SECP256K1_FE_VERIFY(&a->x);
SECP256K1_FE_VERIFY(&a->y);
SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GE_X_MAGNITUDE_MAX);
SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GE_Y_MAGNITUDE_MAX);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
#endif
(void)a;
}
static void secp256k1_gej_verify(const secp256k1_gej *a) {
#ifdef VERIFY
secp256k1_fe_verify(&a->x);
secp256k1_fe_verify(&a->y);
secp256k1_fe_verify(&a->z);
SECP256K1_FE_VERIFY(&a->x);
SECP256K1_FE_VERIFY(&a->y);
SECP256K1_FE_VERIFY(&a->z);
SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GEJ_X_MAGNITUDE_MAX);
SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GEJ_Y_MAGNITUDE_MAX);
SECP256K1_FE_VERIFY_MAGNITUDE(&a->z, SECP256K1_GEJ_Z_MAGNITUDE_MAX);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
#endif
(void)a;
}
@@ -96,57 +97,67 @@ static void secp256k1_gej_verify(const secp256k1_gej *a) {
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_gej_verify(a);
secp256k1_fe_verify(zi);
SECP256K1_GEJ_VERIFY(a);
SECP256K1_FE_VERIFY(zi);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_ge_verify(a);
secp256k1_fe_verify(zi);
SECP256K1_GE_VERIFY(a);
SECP256K1_FE_VERIFY(zi);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
secp256k1_fe_verify(x);
secp256k1_fe_verify(y);
SECP256K1_FE_VERIFY(x);
SECP256K1_FE_VERIFY(y);
r->infinity = 0;
r->x = *x;
r->y = *y;
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
secp256k1_ge_verify(a);
SECP256K1_GE_VERIFY(a);
return a->infinity;
}
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
secp256k1_ge_verify(a);
SECP256K1_GE_VERIFY(a);
*r = *a;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(a);
r->infinity = a->infinity;
secp256k1_fe_inv(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
@@ -156,12 +167,15 @@ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
secp256k1_ge_verify(r);
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(r);
}
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(a);
if (secp256k1_gej_is_infinity(a)) {
secp256k1_ge_set_infinity(r);
return;
@@ -174,16 +188,22 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
secp256k1_ge_set_xy(r, &a->x, &a->y);
secp256k1_ge_verify(r);
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(r);
}
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
secp256k1_fe u;
size_t i;
size_t last_i = SIZE_MAX;
#ifdef VERIFY
for (i = 0; i < len; i++) {
SECP256K1_GEJ_VERIFY(&a[i]);
}
#endif
for (i = 0; i < len; i++) {
secp256k1_gej_verify(&a[i]);
if (a[i].infinity) {
secp256k1_ge_set_infinity(&r[i]);
} else {
@@ -217,36 +237,46 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
}
secp256k1_ge_verify(&r[i]);
}
#ifdef VERIFY
for (i = 0; i < len; i++) {
SECP256K1_GE_VERIFY(&r[i]);
}
#endif
}
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) {
size_t i = len - 1;
size_t i;
secp256k1_fe zs;
#ifdef VERIFY
for (i = 0; i < len; i++) {
SECP256K1_GE_VERIFY(&a[i]);
SECP256K1_FE_VERIFY(&zr[i]);
}
#endif
if (len > 0) {
/* Verify inputs a[len-1] and zr[len-1]. */
secp256k1_ge_verify(&a[i]);
secp256k1_fe_verify(&zr[i]);
i = len - 1;
/* Ensure all y values are in weak normal form for fast negation of points */
secp256k1_fe_normalize_weak(&a[i].y);
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
/* Verify all inputs a[i] and zr[i]. */
secp256k1_fe_verify(&zr[i]);
secp256k1_ge_verify(&a[i]);
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs);
/* Verify the output a[i]. */
secp256k1_ge_verify(&a[i]);
}
}
#ifdef VERIFY
for (i = 0; i < len; i++) {
SECP256K1_GE_VERIFY(&a[i]);
}
#endif
}
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
@@ -254,14 +284,16 @@ static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
@@ -269,18 +301,23 @@ static void secp256k1_gej_clear(secp256k1_gej *r) {
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_ge_clear(secp256k1_ge *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
SECP256K1_GE_VERIFY(r);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
secp256k1_fe x2, x3;
int ret;
secp256k1_fe_verify(x);
SECP256K1_FE_VERIFY(x);
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
@@ -291,57 +328,94 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
if (secp256k1_fe_is_odd(&r->y) != odd) {
secp256k1_fe_negate(&r->y, &r->y, 1);
}
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
return ret;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
secp256k1_ge_verify(a);
SECP256K1_GE_VERIFY(a);
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) {
secp256k1_gej tmp;
secp256k1_gej_verify(b);
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(b);
SECP256K1_GEJ_VERIFY(a);
secp256k1_gej_neg(&tmp, a);
secp256k1_gej_add_var(&tmp, &tmp, b, NULL);
return secp256k1_gej_is_infinity(&tmp);
}
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b) {
secp256k1_gej tmp;
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(b);
secp256k1_gej_neg(&tmp, a);
secp256k1_gej_add_ge_var(&tmp, &tmp, b, NULL);
return secp256k1_gej_is_infinity(&tmp);
}
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b) {
secp256k1_fe tmp;
SECP256K1_GE_VERIFY(a);
SECP256K1_GE_VERIFY(b);
if (a->infinity != b->infinity) return 0;
if (a->infinity) return 1;
tmp = a->x;
secp256k1_fe_normalize_weak(&tmp);
if (!secp256k1_fe_equal(&tmp, &b->x)) return 0;
tmp = a->y;
secp256k1_fe_normalize_weak(&tmp);
if (!secp256k1_fe_equal(&tmp, &b->y)) return 0;
return 1;
}
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
secp256k1_fe r, r2;
secp256k1_fe_verify(x);
secp256k1_gej_verify(a);
secp256k1_fe r;
SECP256K1_FE_VERIFY(x);
SECP256K1_GEJ_VERIFY(a);
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
return secp256k1_fe_equal_var(&r, &r2);
return secp256k1_fe_equal(&r, &a->x);
}
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(a);
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(a);
return a->infinity;
}
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3;
secp256k1_ge_verify(a);
SECP256K1_GE_VERIFY(a);
if (a->infinity) {
return 0;
}
@@ -349,15 +423,14 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_add_int(&x3, SECP256K1_B);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
return secp256k1_fe_equal(&y2, &x3);
}
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) {
/* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */
secp256k1_fe l, s, t;
SECP256K1_GEJ_VERIFY(a);
secp256k1_gej_verify(a);
r->infinity = a->infinity;
/* Formula used:
@@ -384,10 +457,13 @@ static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp25
secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */
secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */
secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
SECP256K1_GEJ_VERIFY(a);
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
@@ -398,7 +474,6 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
secp256k1_gej_verify(a);
if (a->infinity) {
secp256k1_gej_set_infinity(r);
if (rzr != NULL) {
@@ -413,15 +488,16 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
}
secp256k1_gej_double(r, a);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
/* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t;
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GEJ_VERIFY(b);
secp256k1_gej_verify(a);
secp256k1_gej_verify(b);
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
*r = *b;
@@ -476,14 +552,16 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
/* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(b);
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
secp256k1_gej_set_ge(r, b);
@@ -498,11 +576,11 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
}
secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
u1 = a->x;
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
s1 = a->y;
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -536,16 +614,18 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
if (rzr != NULL) secp256k1_fe_verify(rzr);
SECP256K1_GEJ_VERIFY(r);
if (rzr != NULL) SECP256K1_FE_VERIFY(rzr);
}
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
/* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(b);
SECP256K1_FE_VERIFY(bzinv);
secp256k1_ge_verify(b);
secp256k1_fe_verify(bzinv);
if (a->infinity) {
secp256k1_fe bzinv2, bzinv3;
r->infinity = b->infinity;
@@ -554,6 +634,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
secp256k1_fe_set_int(&r->z, 1);
SECP256K1_GEJ_VERIFY(r);
return;
}
if (b->infinity) {
@@ -572,11 +653,11 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
secp256k1_fe_mul(&az, &a->z, bzinv);
secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
u1 = a->x;
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
s1 = a->y;
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -604,19 +685,19 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
secp256k1_fe_mul(&r->y, &t, &i);
secp256k1_fe_mul(&h3, &h3, &s1);
secp256k1_fe_add(&r->y, &h3);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
/* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int degenerate;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
SECP256K1_GEJ_VERIFY(a);
SECP256K1_GE_VERIFY(b);
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
/* In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
@@ -669,17 +750,17 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
*/
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
u1 = a->x; /* u1 = U1 = X1*Z2^2 (GEJ_X_M) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
s1 = a->y; /* s1 = S1 = Y1*Z2^3 (GEJ_Y_M) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (GEJ_X_M+1) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (GEJ_Y_M+1) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m);
@@ -689,24 +770,25 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (GEJ_Y_M*2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (GEJ_X_M+2) */
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (GEJ_Y_M*2) */
secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (GEJ_X_M+2) */
/* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */
secp256k1_fe_negate(&q, &t,
SECP256K1_GEJ_X_MAGNITUDE_MAX + 1); /* q = -T (GEJ_X_M+2) */
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (GEJ_Y_M+1) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
@@ -714,9 +796,10 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (GEJ_Y_M+2) */
secp256k1_fe_negate(&r->y, &t,
SECP256K1_GEJ_Y_MAGNITUDE_MAX + 2); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (GEJ_Y_M+3) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 ((GEJ_Y_M+3)/2 + 1) */
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
@@ -740,29 +823,31 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
* We have degenerate = false, r->z = (y1 + y2) * Z.
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
/* Operations: 4 mul, 1 sqr */
secp256k1_fe zz;
secp256k1_gej_verify(r);
secp256k1_fe_verify(s);
#ifdef VERIFY
SECP256K1_GEJ_VERIFY(r);
SECP256K1_FE_VERIFY(s);
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s));
#endif
secp256k1_fe_sqr(&zz, s);
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
secp256k1_fe_mul(&r->y, &r->y, &zz);
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
secp256k1_fe x, y;
secp256k1_ge_verify(a);
SECP256K1_GE_VERIFY(a);
VERIFY_CHECK(!a->infinity);
x = a->x;
secp256k1_fe_normalize(&x);
y = a->y;
@@ -775,18 +860,20 @@ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storag
secp256k1_fe_from_storage(&r->x, &a->x);
secp256k1_fe_from_storage(&r->y, &a->y);
r->infinity = 0;
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) {
secp256k1_gej_verify(r);
secp256k1_gej_verify(a);
SECP256K1_GEJ_VERIFY(r);
SECP256K1_GEJ_VERIFY(a);
secp256k1_fe_cmov(&r->x, &a->x, flag);
secp256k1_fe_cmov(&r->y, &a->y, flag);
secp256k1_fe_cmov(&r->z, &a->z, flag);
r->infinity ^= (r->infinity ^ a->infinity) & flag;
secp256k1_gej_verify(r);
SECP256K1_GEJ_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
@@ -795,18 +882,20 @@ static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r,
}
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
SECP256K1_GE_VERIFY(a);
*r = *a;
secp256k1_ge_verify(a);
secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta);
secp256k1_ge_verify(r);
SECP256K1_GE_VERIFY(r);
}
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
#ifdef EXHAUSTIVE_TEST_ORDER
secp256k1_gej out;
int i;
SECP256K1_GE_VERIFY(ge);
secp256k1_ge_verify(ge);
/* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
secp256k1_gej_set_infinity(&out);
for (i = 0; i < 32; ++i) {
@@ -817,10 +906,39 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
}
return secp256k1_gej_is_infinity(&out);
#else
SECP256K1_GE_VERIFY(ge);
(void)ge;
/* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
return 1;
#endif
}
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) {
secp256k1_fe c;
secp256k1_fe_sqr(&c, x);
secp256k1_fe_mul(&c, &c, x);
secp256k1_fe_add_int(&c, SECP256K1_B);
return secp256k1_fe_is_square_var(&c);
}
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) {
/* We want to determine whether (xn/xd) is on the curve.
*
* (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
*/
secp256k1_fe r, t;
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd));
secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
VERIFY_CHECK(SECP256K1_B <= 31);
secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */
secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
return secp256k1_fe_is_square_var(&r);
}
#endif /* SECP256K1_GROUP_IMPL_H */

View File

@@ -138,7 +138,7 @@ static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
memcpy(hash->buf + bufsize, data, len);
}
}

View File

@@ -80,7 +80,12 @@ static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigne
r->lo = r->hi >> (n-64);
r->hi = 0;
} else if (n > 0) {
#if defined(_MSC_VER) && defined(_M_X64)
VERIFY_CHECK(n < 64);
r->lo = __shiftright128(r->lo, r->hi, n);
#else
r->lo = ((1U * r->hi) << (64-n)) | r->lo >> n;
#endif
r->hi >>= n;
}
}

View File

@@ -144,7 +144,6 @@ static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int3
r->v[7] = r7;
r->v[8] = r8;
#ifdef VERIFY
VERIFY_CHECK(r0 >> 30 == 0);
VERIFY_CHECK(r1 >> 30 == 0);
VERIFY_CHECK(r2 >> 30 == 0);
@@ -156,7 +155,6 @@ static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int3
VERIFY_CHECK(r8 >> 30 == 0);
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
}
/* Data type for transition matrices (see section 3 of explanation).
@@ -413,14 +411,13 @@ static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp
int32_t di, ei, md, me, sd, se;
int64_t cd, ce;
int i;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK(labs(u) <= (M30 + 1 - labs(v))); /* |u|+|v| <= 2^30 */
VERIFY_CHECK(labs(q) <= (M30 + 1 - labs(r))); /* |q|+|r| <= 2^30 */
#endif
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d->v[8] >> 31;
se = e->v[8] >> 31;
@@ -455,12 +452,11 @@ static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp
/* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
d->v[8] = (int32_t)cd;
e->v[8] = (int32_t)ce;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
#endif
}
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
@@ -550,25 +546,23 @@ static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_m
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30(&f, &g, &t);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
@@ -578,7 +572,6 @@ static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_m
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
@@ -607,12 +600,12 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of g is 0, there is a chance g=0. */
if (g.v[0] == 0) {
@@ -637,18 +630,17 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
g.v[len - 2] |= (uint32_t)gn << 30;
--len;
}
#ifdef VERIFY
VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
@@ -658,7 +650,6 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
@@ -697,12 +688,11 @@ static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, co
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of f is 1, there is a chance that f=1. */
if (f.v[0] == 1) {
@@ -723,12 +713,11 @@ static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, co
cond |= gn;
/* If so, reduce length. */
if (cond == 0) --len;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* The loop failed to converge to f=g after 1500 iterations. Return 0, indicating unknown result. */

View File

@@ -144,7 +144,6 @@ static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int6
r->v[3] = r3;
r->v[4] = r4;
#ifdef VERIFY
VERIFY_CHECK(r0 >> 62 == 0);
VERIFY_CHECK(r1 >> 62 == 0);
VERIFY_CHECK(r2 >> 62 == 0);
@@ -152,7 +151,6 @@ static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int6
VERIFY_CHECK(r4 >> 62 == 0);
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
}
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
@@ -216,7 +214,7 @@ static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
@@ -224,7 +222,7 @@ static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_
* 8*identity (which has determinant 2^6) means the overall outputs has determinant
* 2^65. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0));
#endif
return zeta;
}
@@ -301,13 +299,13 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 62 of them will have determinant 2^62. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0));
#endif
return eta;
}
@@ -392,13 +390,13 @@ static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, u
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
#ifdef VERIFY
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
* the aggregate of 62 of them will have determinant 2^62 or -2^62. */
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1));
#endif
*jacp = jac;
return eta;
}
@@ -417,14 +415,13 @@ static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t md, me, sd, se;
secp256k1_int128 cd, ce;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK(secp256k1_modinv64_abs(u) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(v))); /* |u|+|v| <= 2^62 */
VERIFY_CHECK(secp256k1_modinv64_abs(q) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(r))); /* |q|+|r| <= 2^62 */
#endif
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d4 >> 63;
se = e4 >> 63;
@@ -489,12 +486,11 @@ static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp
/* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
d->v[4] = secp256k1_i128_to_i64(&cd);
e->v[4] = secp256k1_i128_to_i64(&ce);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
#endif
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
@@ -606,25 +602,23 @@ static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_m
/* Update d,e using that transition matrix. */
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62(&f, &g, &t);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
@@ -634,7 +628,6 @@ static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_m
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
@@ -663,12 +656,11 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
/* Update d,e using that transition matrix. */
secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
/* If the bottom limb of g is zero, there is a chance that g=0. */
if (g.v[0] == 0) {
@@ -693,18 +685,17 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
g.v[len - 2] |= (uint64_t)gn << 62;
--len;
}
#ifdef VERIFY
VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
@@ -714,7 +705,6 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
@@ -753,12 +743,11 @@ static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, co
secp256k1_modinv64_trans2x2 t;
eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
/* If the bottom limb of f is 1, there is a chance that f=1. */
if (f.v[0] == 1) {
@@ -779,12 +768,11 @@ static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, co
cond |= gn;
/* If so, reduce length. */
if (cond == 0) --len;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */

View File

@@ -25,32 +25,19 @@ static int ecdh_hash_function_custom(unsigned char *output, const unsigned char
}
static void test_ecdh_api(void) {
/* Setup context that just counts errors */
secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_pubkey point;
unsigned char res[32];
unsigned char s_one[32] = { 0 };
int32_t ecount = 0;
s_one[31] = 1;
secp256k1_context_set_error_callback(tctx, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(tctx, counting_illegal_callback_fn, &ecount);
CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1);
CHECK(secp256k1_ec_pubkey_create(CTX, &point, s_one) == 1);
/* Check all NULLs are detected */
CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one, NULL, NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdh(tctx, res, NULL, s_one, NULL, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdh(tctx, res, &point, NULL, NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_ecdh(tctx, res, &point, s_one, NULL, NULL) == 1);
CHECK(ecount == 3);
/* Cleanup */
secp256k1_context_destroy(tctx);
CHECK(secp256k1_ecdh(CTX, res, &point, s_one, NULL, NULL) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdh(CTX, NULL, &point, s_one, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdh(CTX, res, NULL, s_one, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdh(CTX, res, &point, NULL, NULL, NULL));
CHECK(secp256k1_ecdh(CTX, res, &point, s_one, NULL, NULL) == 1);
}
static void test_ecdh_generator_basepoint(void) {

View File

@@ -0,0 +1,5 @@
include_HEADERS += include/secp256k1_ellswift.h
noinst_HEADERS += src/modules/ellswift/bench_impl.h
noinst_HEADERS += src/modules/ellswift/main_impl.h
noinst_HEADERS += src/modules/ellswift/tests_impl.h
noinst_HEADERS += src/modules/ellswift/tests_exhaustive_impl.h

View File

@@ -0,0 +1,106 @@
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_BENCH_H
#define SECP256K1_MODULE_ELLSWIFT_BENCH_H
#include "../../../include/secp256k1_ellswift.h"
typedef struct {
secp256k1_context *ctx;
secp256k1_pubkey point[256];
unsigned char rnd64[64];
} bench_ellswift_data;
static void bench_ellswift_setup(void *arg) {
int i;
bench_ellswift_data *data = (bench_ellswift_data*)arg;
static const unsigned char init[64] = {
0x78, 0x1f, 0xb7, 0xd4, 0x67, 0x7f, 0x08, 0x68,
0xdb, 0xe3, 0x1d, 0x7f, 0x1b, 0xb0, 0xf6, 0x9e,
0x0a, 0x64, 0xca, 0x32, 0x9e, 0xc6, 0x20, 0x79,
0x03, 0xf3, 0xd0, 0x46, 0x7a, 0x0f, 0xd2, 0x21,
0xb0, 0x2c, 0x46, 0xd8, 0xba, 0xca, 0x26, 0x4f,
0x8f, 0x8c, 0xd4, 0xdd, 0x2d, 0x04, 0xbe, 0x30,
0x48, 0x51, 0x1e, 0xd4, 0x16, 0xfd, 0x42, 0x85,
0x62, 0xc9, 0x02, 0xf9, 0x89, 0x84, 0xff, 0xdc
};
memcpy(data->rnd64, init, 64);
for (i = 0; i < 256; ++i) {
int j;
CHECK(secp256k1_ellswift_decode(data->ctx, &data->point[i], data->rnd64));
for (j = 0; j < 64; ++j) {
data->rnd64[j] += 1;
}
}
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[255], init + 16));
}
static void bench_ellswift_encode(void *arg, int iters) {
int i;
bench_ellswift_data *data = (bench_ellswift_data*)arg;
for (i = 0; i < iters; i++) {
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[i & 255], data->rnd64 + 16));
}
}
static void bench_ellswift_create(void *arg, int iters) {
int i;
bench_ellswift_data *data = (bench_ellswift_data*)arg;
for (i = 0; i < iters; i++) {
unsigned char buf[64];
CHECK(secp256k1_ellswift_create(data->ctx, buf, data->rnd64, data->rnd64 + 32));
memcpy(data->rnd64, buf, 64);
}
}
static void bench_ellswift_decode(void *arg, int iters) {
int i;
secp256k1_pubkey out;
size_t len;
bench_ellswift_data *data = (bench_ellswift_data*)arg;
for (i = 0; i < iters; i++) {
CHECK(secp256k1_ellswift_decode(data->ctx, &out, data->rnd64) == 1);
len = 33;
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->rnd64 + (i % 32), &len, &out, SECP256K1_EC_COMPRESSED));
}
}
static void bench_ellswift_xdh(void *arg, int iters) {
int i;
bench_ellswift_data *data = (bench_ellswift_data*)arg;
for (i = 0; i < iters; i++) {
int party = i & 1;
CHECK(secp256k1_ellswift_xdh(data->ctx,
data->rnd64 + (i % 33),
data->rnd64,
data->rnd64,
data->rnd64 + ((i + 16) % 33),
party,
secp256k1_ellswift_xdh_hash_function_bip324,
NULL) == 1);
}
}
void run_ellswift_bench(int iters, int argc, char **argv) {
bench_ellswift_data data;
int d = argc == 1;
/* create a context with signing capabilities */
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "encode") || have_flag(argc, argv, "ellswift_encode")) run_benchmark("ellswift_encode", bench_ellswift_encode, bench_ellswift_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_decode")) run_benchmark("ellswift_decode", bench_ellswift_decode, bench_ellswift_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ellswift_keygen")) run_benchmark("ellswift_keygen", bench_ellswift_create, bench_ellswift_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ecdh") || have_flag(argc, argv, "ellswift_ecdh")) run_benchmark("ellswift_ecdh", bench_ellswift_xdh, bench_ellswift_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
}
#endif

View File

@@ -0,0 +1,590 @@
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_ellswift.h"
#include "../../eckey.h"
#include "../../hash.h"
/** c1 = (sqrt(-3)-1)/2 */
static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
/** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
/* The implemented algorithm is the following (all operations in GF(p)):
*
* - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - If u^3+7+t^2 = 0, set t = 2*t.
* - Let X = (u^3+7-t^2)/(2*t).
* - Let Y = (X+t)/(c0*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
*
* Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
*
* - Let c0 = ...
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - Let s = t^2
* - Let g = u^3+7
* - If g+s = 0, set t = 2*t, s = 4*s
* - Let X = (g-s)/(2*t).
* - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
* means X and Y do not need to be evaluated explicitly anymore.
*
* - ...
* - If g+s = 0, set s = 4*s.
* - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Simplifying x2 using 2 additional constants:
*
* - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - ...
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - ...
*
* Writing x3 as a fraction:
*
* - ...
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
* - ...
* Overall, we get:
*
* - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - If u = 0, set u = 1.
* - If t = 0, set s = 1, else set s = t^2.
* - Let g = u^3+7.
* - If g+s = 0, set s = 4*s.
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*/
secp256k1_fe u1, s, g, p, d, n, l;
u1 = *u;
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
secp256k1_fe_sqr(&s, t);
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3 + 7 */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
secp256k1_fe_mul_int(&s, 4);
/* Recompute p = g+s */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
}
secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
/* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
*xn = n;
*xd = d;
return;
}
*xd = p;
secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
/* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
* which we already have computed above. This could be deduplicated. */
if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
/* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
*xn = n;
return;
}
secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*(g+s) */
secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)-u*(g+s) */
VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
/* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
}
/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe xn, xd;
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
secp256k1_fe_inv_var(&xd, &xd);
secp256k1_fe_mul(x, &xn, &xd);
}
/** Decode ElligatorSwift encoding (u, t) to point P. */
static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe x;
secp256k1_ellswift_xswiftec_var(&x, u, t);
secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
}
/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
*
* There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
* fewer, or none at all. Each such partial inverse can be accessed individually using a
* distinct input argument c (in range 0-7), and some or all of these may return failure.
* The following guarantees exist:
* - Given (x, u), no two distinct c values give the same successful result t.
* - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
* - Given (x, u), all t values that map back to x can be reached by combining the
* successful results from this function over all c values, with the exception of:
* - this function cannot be called with u=0
* - no result with t=0 will be returned
* - no result for which u^3 + t^2 + 7 = 0 will be returned.
*
* The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
* using the low and high bits to pick signs of square roots) is to match the paper's
* encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
* c=7 are copies of those with an additional negation of sqrt(w).
*/
static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
/* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
*
* - If (c & 2) = 0:
* - If (-x-u) is a valid X coordinate, fail.
* - Let s=-(u^3+7)/(u^2+u*x+x^2).
* - If s is not square, fail.
* - Let v=x.
* - If (c & 2) = 2:
* - Let s=x-u.
* - If s is not square, fail.
* - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
* - If (c & 1) = 1 and r = 0, fail.
* - If s=0, fail.
* - Let v=(r/s-u)/2.
* - Let w=sqrt(s).
* - If (c & 5) = 0: return -w*(c3*u + v).
* - If (c & 5) = 1: return w*(c4*u + v).
* - If (c & 5) = 4: return w*(c3*u + v).
* - If (c & 5) = 5: return -w*(c4*u + v).
*/
secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
int ret;
secp256k1_fe_normalize_weak(&x);
secp256k1_fe_normalize_weak(&u);
VERIFY_CHECK(c >= 0 && c < 8);
VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
if (!(c & 2)) {
/* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
* c=4) formula, or x2 (if c=1 or c=5) formula. */
/* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
* back under the x3 formula instead (which has priority over x1 and x2, so the decoding
* would not match x). */
m = x; /* m = x */
secp256k1_fe_add(&m, &u); /* m = u+x */
secp256k1_fe_negate(&m, &m, 2); /* m = -u-x */
/* Test if (-u-x) is a valid X coordinate. If so, fail. */
if (secp256k1_ge_x_on_curve_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
secp256k1_fe_sqr(&s, &m); /* s = (u+x)^2 */
secp256k1_fe_negate(&s, &s, 1); /* s = -(u+x)^2 */
secp256k1_fe_mul(&m, &u, &x); /* m = u*x */
secp256k1_fe_add(&s, &m); /* s = -(u^2 + u*x + x^2) */
/* Note that at this point, s = 0 is impossible. If it were the case:
* s = -(u^2 + u*x + x^2) = 0
* => u^2 + u*x + x^2 = 0
* => (u + 2*x) * (u^2 + u*x + x^2) = 0
* => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
* => (x + u)^3 + x^3 = 0
* => x^3 = -(x + u)^3
* => x^3 + B = (-u - x)^3 + B
*
* However, we know x^3 + B is square (because x is on the curve) and
* that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
* test above would have failed). This is a contradiction, and thus the
* assumption s=0 is false. */
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
/* If s is not square, fail. We have not fully computed s yet, but s is square iff
* -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
* nonzero). */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3+7 */
secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
if (!secp256k1_fe_is_square_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
/* Let v = x. */
v = x;
} else {
/* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
/* Let s = x-u. */
secp256k1_fe_negate(&m, &u, 1); /* m = -u */
s = m; /* s = -u */
secp256k1_fe_add(&s, &x); /* s = x-u */
/* If s is not square, fail. */
if (!secp256k1_fe_is_square_var(&s)) return 0;
/* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&q, &s, &g); /* q = s*u^2 */
secp256k1_fe_mul_int(&q, 3); /* q = 3*s*u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_mul_int(&g, 4); /* g = 4*u^3 */
secp256k1_fe_add_int(&g, 4 * SECP256K1_B); /* g = 4*(u^3+7) */
secp256k1_fe_add(&q, &g); /* q = 4*(u^3+7)+3*s*u^2 */
secp256k1_fe_mul(&q, &q, &s); /* q = s*(4*(u^3+7)+3*u^2*s) */
secp256k1_fe_negate(&q, &q, 1); /* q = -s*(4*(u^3+7)+3*u^2*s) */
if (!secp256k1_fe_is_square_var(&q)) return 0;
ret = secp256k1_fe_sqrt(&r, &q); /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
#ifdef VERIFY
VERIFY_CHECK(ret);
#else
(void)ret;
#endif
/* If (c & 1) = 1 and r = 0, fail. */
if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
/* If s = 0, fail. */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
/* Let v = (r/s-u)/2. */
secp256k1_fe_inv_var(&v, &s); /* v = 1/s [no div by 0] */
secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
secp256k1_fe_add(&v, &m); /* v = r/s-u */
secp256k1_fe_half(&v); /* v = (r/s-u)/2 */
}
/* Let w = sqrt(s). */
ret = secp256k1_fe_sqrt(&m, &s); /* m = sqrt(s) = w */
VERIFY_CHECK(ret);
/* Return logic. */
if ((c & 5) == 0 || (c & 5) == 5) {
secp256k1_fe_negate(&m, &m, 1); /* m = -w */
}
/* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
/* u = {c4 if c&1=1; c3 otherwise}*u */
secp256k1_fe_add(&u, &v); /* u = {c4 if c&1=1; c3 otherwise}*u + v */
secp256k1_fe_mul(t, &m, &u);
return 1;
}
/** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
*
* hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
* Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
* 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
secp256k1_sha256 hash = *hasher;
unsigned char buf4[4];
#ifdef VERIFY
size_t blocks = hash.bytes >> 6;
#endif
buf4[0] = cnt;
buf4[1] = cnt >> 8;
buf4[2] = cnt >> 16;
buf4[3] = cnt >> 24;
secp256k1_sha256_write(&hash, buf4, 4);
secp256k1_sha256_finalize(&hash, out32);
/* Writing and finalizing together should trigger exactly one SHA256 compression. */
VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
}
/** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
*
* u32 is the 32-byte big endian encoding of u; t is the output field element t that still
* needs encoding.
*
* hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
/* Pool of 3-bit branch values. */
unsigned char branch_hash[32];
/* Number of 3-bit values in branch_hash left. */
int branches_left = 0;
/* Field elements u and branch values are extracted from RNG based on hasher for consecutive
* values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
* cnt values that follow are used to generate field elements u. cnt==65 (and multiples
* thereof) are used to repopulate the pool and start over, if that were ever necessary.
* On average, 4 iterations are needed. */
uint32_t cnt = 0;
while (1) {
int branch;
secp256k1_fe u;
/* If the pool of branch values is empty, populate it. */
if (branches_left == 0) {
secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
branches_left = 64;
}
/* Take a 3-bit branch value from the branch pool (top bit is discarded). */
--branches_left;
branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
/* Compute a new u value by hashing. */
secp256k1_ellswift_prng(u32, hasher, cnt++);
/* overflow is not a problem (we prefer uniform u32 over uniform u). */
secp256k1_fe_set_b32_mod(&u, u32);
/* Since u is the output of a hash, it should practically never be 0. We could apply the
* u=0 to u=1 correction here too to deal with that case still, but it's such a low
* probability event that we do not bother. */
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
/* Find a remainder t, and return it if found. */
if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
}
}
/** Find an ElligatorSwift encoding (u, t) for point P.
*
* This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
* as input, and returns an encoding that matches the provided Y coordinate rather than a random
* one.
*/
static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
secp256k1_fe_normalize_var(t);
if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
secp256k1_fe_negate(t, t, 1);
secp256k1_fe_normalize_var(t);
}
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd1a6524bul;
hash->s[1] = 0x028594b3ul;
hash->s[2] = 0x96e42f4eul;
hash->s[3] = 0x1037a177ul;
hash->s[4] = 0x1b8fcb8bul;
hash->s[5] = 0x56023885ul;
hash->s[6] = 0x2560ede1ul;
hash->s[7] = 0xd626b715ul;
hash->bytes = 64;
}
int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(rnd32 != NULL);
if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
secp256k1_fe t;
unsigned char p64[64] = {0};
size_t ser_size;
int ser_ret;
secp256k1_sha256 hash;
/* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
* BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
secp256k1_ellswift_sha256_init_encode(&hash);
ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
#ifdef VERIFY
VERIFY_CHECK(ser_ret && ser_size == 33);
#else
(void)ser_ret;
#endif
secp256k1_sha256_write(&hash, p64, sizeof(p64));
secp256k1_sha256_write(&hash, rnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
return 1;
}
/* Only reached in case the provided pubkey is invalid. */
memset(ell64, 0, 64);
return 0;
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd29e1bf5ul;
hash->s[1] = 0xf7025f42ul;
hash->s[2] = 0x9b024773ul;
hash->s[3] = 0x094cb7d5ul;
hash->s[4] = 0xe59ed789ul;
hash->s[5] = 0x03bc9786ul;
hash->s[6] = 0x68335b35ul;
hash->s[7] = 0x4e363b53ul;
hash->bytes = 64;
}
int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
secp256k1_ge p;
secp256k1_fe t;
secp256k1_sha256 hash;
secp256k1_scalar seckey_scalar;
int ret;
static const unsigned char zero32[32] = {0};
/* Sanity check inputs. */
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
memset(ell64, 0, 64);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
/* Compute (affine) public key */
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
secp256k1_fe_normalize_var(&p.x);
secp256k1_fe_normalize_var(&p.y);
/* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
* using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
secp256k1_ellswift_sha256_init_create(&hash);
secp256k1_sha256_write(&hash, seckey32, 32);
secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
secp256k1_memczero(ell64, 64, !ret);
secp256k1_scalar_clear(&seckey_scalar);
return ret;
}
int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
secp256k1_fe u, t;
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(ell64 != NULL);
secp256k1_fe_set_b32_mod(&u, ell64);
secp256k1_fe_set_b32_mod(&t, ell64 + 32);
secp256k1_fe_normalize_var(&t);
secp256k1_ellswift_swiftec_var(&p, &u, &t);
secp256k1_pubkey_save(pubkey, &p);
return 1;
}
static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data, 64);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
return 1;
}
/** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0x8c12d730ul;
hash->s[1] = 0x827bd392ul;
hash->s[2] = 0x9e4fb2eeul;
hash->s[3] = 0x207b373eul;
hash->s[4] = 0x2292bd7aul;
hash->s[5] = 0xaa5441bcul;
hash->s[6] = 0x15c3779ful;
hash->s[7] = 0xcfb52549ul;
hash->bytes = 64;
}
static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
(void)data;
secp256k1_ellswift_sha256_init_bip324(&sha);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
return 1;
}
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
int ret = 0;
int overflow;
secp256k1_scalar s;
secp256k1_fe xn, xd, px, u, t;
unsigned char sx[32];
const unsigned char* theirs64;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(ell_a64 != NULL);
ARG_CHECK(ell_b64 != NULL);
ARG_CHECK(seckey32 != NULL);
ARG_CHECK(hashfp != NULL);
/* Load remote public key (as fraction). */
theirs64 = party ? ell_a64 : ell_b64;
secp256k1_fe_set_b32_mod(&u, theirs64);
secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
/* Load private key (using one if invalid). */
secp256k1_scalar_set_b32(&s, seckey32, &overflow);
overflow = secp256k1_scalar_is_zero(&s);
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
/* Compute shared X coordinate. */
secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
secp256k1_fe_normalize(&px);
secp256k1_fe_get_b32(sx, &px);
/* Invoke hasher */
ret = hashfp(output, sx, ell_a64, ell_b64, data);
memset(sx, 0, 32);
secp256k1_fe_clear(&px);
secp256k1_scalar_clear(&s);
return !!ret & !overflow;
}
#endif

View File

@@ -0,0 +1,39 @@
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_EXHAUSTIVE_H
#define SECP256K1_MODULE_ELLSWIFT_TESTS_EXHAUSTIVE_H
#include "../../../include/secp256k1_ellswift.h"
#include "main_impl.h"
static void test_exhaustive_ellswift(const secp256k1_context *ctx, const secp256k1_ge *group) {
int i;
/* Note that SwiftEC/ElligatorSwift are inherently curve operations, not
* group operations, and this test only checks the curve points which are in
* a tiny subgroup. In that sense it can't be really seen as exhaustive as
* it doesn't (and for computational reasons obviously cannot) test the
* entire domain ellswift operates under. */
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_scalar scalar_i;
unsigned char sec32[32];
unsigned char ell64[64];
secp256k1_pubkey pub_decoded;
secp256k1_ge ge_decoded;
/* Construct ellswift pubkey from exhaustive loop scalar i. */
secp256k1_scalar_set_int(&scalar_i, i);
secp256k1_scalar_get_b32(sec32, &scalar_i);
CHECK(secp256k1_ellswift_create(ctx, ell64, sec32, NULL));
/* Decode ellswift pubkey and check that it matches the precomputed group element. */
secp256k1_ellswift_decode(ctx, &pub_decoded, ell64);
secp256k1_pubkey_load(ctx, &ge_decoded, &pub_decoded);
CHECK(secp256k1_ge_eq_var(&ge_decoded, &group[i]));
}
}
#endif

View File

@@ -0,0 +1,436 @@
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_H
#define SECP256K1_MODULE_ELLSWIFT_TESTS_H
#include "../../../include/secp256k1_ellswift.h"
struct ellswift_xswiftec_inv_test {
int enc_bitmap;
secp256k1_fe u;
secp256k1_fe x;
secp256k1_fe encs[8];
};
struct ellswift_decode_test {
unsigned char enc[64];
secp256k1_fe x;
int odd_y;
};
struct ellswift_xdh_test {
unsigned char priv_ours[32];
unsigned char ellswift_ours[64];
unsigned char ellswift_theirs[64];
int initiating;
unsigned char shared_secret[32];
};
/* Set of (point, encodings) test vectors, selected to maximize branch coverage, part of the BIP324
* test vectors. Created using an independent implementation, and tested decoding against paper
* authors' code. */
static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
{0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x45654798, 0xece071ba, 0x79286d04, 0xf7f3eb1c, 0x3f1d17dd, 0x883610f2, 0xad2efd82, 0xa287466b), SECP256K1_FE_CONST(0x0aeaa886, 0xf6b76c71, 0x58452418, 0xcbf5033a, 0xdc5747e9, 0xe9b5d3b2, 0x303db969, 0x36528557), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xba9ab867, 0x131f8e45, 0x86d792fb, 0x080c14e3, 0xc0e2e822, 0x77c9ef0d, 0x52d1027c, 0x5d78b5c4), SECP256K1_FE_CONST(0xf5155779, 0x0948938e, 0xa7badbe7, 0x340afcc5, 0x23a8b816, 0x164a2c4d, 0xcfc24695, 0xc9ad76d8)}},
{0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP256K1_FE_CONST(0x1be8cc0b, 0x04be0c68, 0x1d0c6a68, 0xf733f82c, 0x6c896e0c, 0x8a262fcd, 0x392918e3, 0x03a7abf4), SECP256K1_FE_CONST(0x605b5814, 0xbf9b8cb0, 0x66667c9e, 0x5480d22d, 0xc5b6c92f, 0x14b4af3e, 0xe0a9eb83, 0xb03685e3), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xe41733f4, 0xfb41f397, 0xe2f39597, 0x08cc07d3, 0x937691f3, 0x75d9d032, 0xc6d6e71b, 0xfc58503b), SECP256K1_FE_CONST(0x9fa4a7eb, 0x4064734f, 0x99998361, 0xab7f2dd2, 0x3a4936d0, 0xeb4b50c1, 0x1f56147b, 0x4fc9764c), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP256K1_FE_CONST(0xf63580b8, 0xaa49c484, 0x6de56e39, 0xe1b3e73f, 0x171e881e, 0xba8c66f6, 0x14e67e5c, 0x975dfc07), SECP256K1_FE_CONST(0xb6307b33, 0x2e699f1c, 0xf77841d9, 0x0af25365, 0x404deb7f, 0xed5edb30, 0x90db49e6, 0x42a156b6), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x09ca7f47, 0x55b63b7b, 0x921a91c6, 0x1e4c18c0, 0xe8e177e1, 0x45739909, 0xeb1981a2, 0x68a20028), SECP256K1_FE_CONST(0x49cf84cc, 0xd19660e3, 0x0887be26, 0xf50dac9a, 0xbfb21480, 0x12a124cf, 0x6f24b618, 0xbd5ea579), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP256K1_FE_CONST(0xe69df7d9, 0xc026c366, 0x00ebdf58, 0x80726758, 0x47c0c431, 0xc8eb7306, 0x82533e96, 0x4b6252c9), SECP256K1_FE_CONST(0x4f18bbdf, 0x7c2d6c5f, 0x818c1880, 0x2fa35cd0, 0x69eaa79f, 0xff74e4fc, 0x837c80d9, 0x3fece2f8), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x19620826, 0x3fd93c99, 0xff1420a7, 0x7f8d98a7, 0xb83f3bce, 0x37148cf9, 0x7dacc168, 0xb49da966), SECP256K1_FE_CONST(0xb0e74420, 0x83d293a0, 0x7e73e77f, 0xd05ca32f, 0x96155860, 0x008b1b03, 0x7c837f25, 0xc0131937), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb3dae4b7, 0xdcf858e4, 0xc6968057, 0xcef2b156, 0x46543152, 0x6538199c, 0xf52dc1b2, 0xd62fda30), SECP256K1_FE_CONST(0x4aa77dd5, 0x5d6b6d3c, 0xfa10cc9d, 0x0fe42f79, 0x232e4575, 0x661049ae, 0x36779c1d, 0x0c666d88), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x4c251b48, 0x2307a71b, 0x39697fa8, 0x310d4ea9, 0xb9abcead, 0x9ac7e663, 0x0ad23e4c, 0x29d021ff), SECP256K1_FE_CONST(0xb558822a, 0xa29492c3, 0x05ef3362, 0xf01bd086, 0xdcd1ba8a, 0x99efb651, 0xc98863e1, 0xf3998ea7)}},
{0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xff, SECP256K1_FE_CONST(0x587c1a0c, 0xee91939e, 0x7f784d23, 0xb963004a, 0x3bf44f5d, 0x4e32a008, 0x1995ba20, 0xb0fca59e), SECP256K1_FE_CONST(0x2ea98853, 0x0715e8d1, 0x0363907f, 0xf2512452, 0x4d471ba2, 0x454d5ce3, 0xbe3f0419, 0x4dfd3a3c), {SECP256K1_FE_CONST(0xcfd5a094, 0xaa0b9b88, 0x91b76c6a, 0xb9438f66, 0xaa1c095a, 0x65f9f701, 0x35e81712, 0x92245e74), SECP256K1_FE_CONST(0xa89057d7, 0xc6563f0d, 0x6efa19ae, 0x84412b8a, 0x7b47e791, 0xa191ecdf, 0xdf2af84f, 0xd97bc339), SECP256K1_FE_CONST(0x475d0ae9, 0xef46920d, 0xf07b3411, 0x7be5a081, 0x7de1023e, 0x3cc32689, 0xe9be145b, 0x406b0aef), SECP256K1_FE_CONST(0xa0759178, 0xad802324, 0x54f827ef, 0x05ea3e72, 0xad8d7541, 0x8e6d4cc1, 0xcd4f5306, 0xc5e7c453), SECP256K1_FE_CONST(0x302a5f6b, 0x55f46477, 0x6e489395, 0x46bc7099, 0x55e3f6a5, 0x9a0608fe, 0xca17e8ec, 0x6ddb9dbb), SECP256K1_FE_CONST(0x576fa828, 0x39a9c0f2, 0x9105e651, 0x7bbed475, 0x84b8186e, 0x5e6e1320, 0x20d507af, 0x268438f6), SECP256K1_FE_CONST(0xb8a2f516, 0x10b96df2, 0x0f84cbee, 0x841a5f7e, 0x821efdc1, 0xc33cd976, 0x1641eba3, 0xbf94f140), SECP256K1_FE_CONST(0x5f8a6e87, 0x527fdcdb, 0xab07d810, 0xfa15c18d, 0x52728abe, 0x7192b33e, 0x32b0acf8, 0x3a1837dc)}},
{0xcc, SECP256K1_FE_CONST(0x5fa88b33, 0x65a635cb, 0xbcee003c, 0xce9ef51d, 0xd1a310de, 0x277e441a, 0xbccdb7be, 0x1e4ba249), SECP256K1_FE_CONST(0x79461ff6, 0x2bfcbcac, 0x4249ba84, 0xdd040f2c, 0xec3c63f7, 0x25204dc7, 0xf464c16b, 0xf0ff3170), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x6bb700e1, 0xf4d7e236, 0xe8d193ff, 0x4a76c1b3, 0xbcd4e2b2, 0x5acac3d5, 0x1c8dac65, 0x3fe909a0), SECP256K1_FE_CONST(0xf4c73410, 0x633da7f6, 0x3a4f1d55, 0xaec6dd32, 0xc4c6d89e, 0xe74075ed, 0xb5515ed9, 0x0da9e683), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x9448ff1e, 0x0b281dc9, 0x172e6c00, 0xb5893e4c, 0x432b1d4d, 0xa5353c2a, 0xe3725399, 0xc016f28f), SECP256K1_FE_CONST(0x0b38cbef, 0x9cc25809, 0xc5b0e2aa, 0x513922cd, 0x3b392761, 0x18bf8a12, 0x4aaea125, 0xf25615ac)}},
{0xcc, SECP256K1_FE_CONST(0x6fb31c75, 0x31f03130, 0xb42b155b, 0x952779ef, 0xbb46087d, 0xd9807d24, 0x1a48eac6, 0x3c3d96d6), SECP256K1_FE_CONST(0x56f81be7, 0x53e8d4ae, 0x4940ea6f, 0x46f6ec9f, 0xda66a6f9, 0x6cc95f50, 0x6cb2b574, 0x90e94260), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x59059774, 0x795bdb7a, 0x837fbe11, 0x40a5fa59, 0x984f48af, 0x8df95d57, 0xdd6d1c05, 0x437dcec1), SECP256K1_FE_CONST(0x22a644db, 0x79376ad4, 0xe7b3a009, 0xe58b3f13, 0x137c54fd, 0xf911122c, 0xc93667c4, 0x7077d784), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xa6fa688b, 0x86a42485, 0x7c8041ee, 0xbf5a05a6, 0x67b0b750, 0x7206a2a8, 0x2292e3f9, 0xbc822d6e), SECP256K1_FE_CONST(0xdd59bb24, 0x86c8952b, 0x184c5ff6, 0x1a74c0ec, 0xec83ab02, 0x06eeedd3, 0x36c9983a, 0x8f8824ab)}},
{0x00, SECP256K1_FE_CONST(0x704cd226, 0xe71cb682, 0x6a590e80, 0xdac90f2d, 0x2f5830f0, 0xfdf135a3, 0xeae3965b, 0xff25ff12), SECP256K1_FE_CONST(0x138e0afa, 0x68936ee6, 0x70bd2b8d, 0xb53aedbb, 0x7bea2a85, 0x97388b24, 0xd0518edd, 0x22ad66ec), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x33, SECP256K1_FE_CONST(0x725e9147, 0x92cb8c89, 0x49e7e116, 0x8b7cdd8a, 0x8094c91c, 0x6ec2202c, 0xcd53a6a1, 0x8771edeb), SECP256K1_FE_CONST(0x8da16eb8, 0x6d347376, 0xb6181ee9, 0x74832275, 0x7f6b36e3, 0x913ddfd3, 0x32ac595d, 0x788e0e44), {SECP256K1_FE_CONST(0xdd357786, 0xb9f68733, 0x30391aa5, 0x62580965, 0x4e43116e, 0x82a5a5d8, 0x2ffd1d66, 0x24101fc4), SECP256K1_FE_CONST(0xa0b7efca, 0x01814594, 0xc59c9aae, 0x8e497001, 0x86ca5d95, 0xe88bcc80, 0x399044d9, 0xc2d8613d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x22ca8879, 0x460978cc, 0xcfc6e55a, 0x9da7f69a, 0xb1bcee91, 0x7d5a5a27, 0xd002e298, 0xdbefdc6b), SECP256K1_FE_CONST(0x5f481035, 0xfe7eba6b, 0x3a636551, 0x71b68ffe, 0x7935a26a, 0x1774337f, 0xc66fbb25, 0x3d279af2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0x78fe6b71, 0x7f2ea4a3, 0x2708d79c, 0x151bf503, 0xa5312a18, 0xc0963437, 0xe865cc6e, 0xd3f6ae97), SECP256K1_FE_CONST(0x8701948e, 0x80d15b5c, 0xd8f72863, 0xeae40afc, 0x5aced5e7, 0x3f69cbc8, 0x179a3390, 0x2c094d98), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x44, SECP256K1_FE_CONST(0x7c37bb9c, 0x5061dc07, 0x413f11ac, 0xd5a34006, 0xe64c5c45, 0x7fdb9a43, 0x8f217255, 0xa961f50d), SECP256K1_FE_CONST(0x5c1a76b4, 0x4568eb59, 0xd6789a74, 0x42d9ed7c, 0xdc6226b7, 0x752b4ff8, 0xeaf8e1a9, 0x5736e507), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb94d30cd, 0x7dbff60b, 0x64620c17, 0xca0fafaa, 0x40b3d1f5, 0x2d077a60, 0xa2e0cafd, 0x145086c2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x46b2cf32, 0x824009f4, 0x9b9df3e8, 0x35f05055, 0xbf4c2e0a, 0xd2f8859f, 0x5d1f3501, 0xebaf756d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0x82388888, 0x967f82a6, 0xb444438a, 0x7d44838e, 0x13c0d478, 0xb9ca060d, 0xa95a41fb, 0x94303de6), SECP256K1_FE_CONST(0x29e96541, 0x70628fec, 0x8b497289, 0x8b113cf9, 0x8807f460, 0x9274f4f3, 0x140d0674, 0x157c90a0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x33, SECP256K1_FE_CONST(0x91298f57, 0x70af7a27, 0xf0a47188, 0xd24c3b7b, 0xf98ab299, 0x0d84b0b8, 0x98507e3c, 0x561d6472), SECP256K1_FE_CONST(0x144f4ccb, 0xd9a74698, 0xa88cbf6f, 0xd00ad886, 0xd339d29e, 0xa19448f2, 0xc572cac0, 0xa07d5562), {SECP256K1_FE_CONST(0xe6a0ffa3, 0x807f09da, 0xdbe71e0f, 0x4be4725f, 0x2832e76c, 0xad8dc1d9, 0x43ce8393, 0x75eff248), SECP256K1_FE_CONST(0x837b8e68, 0xd4917544, 0x764ad090, 0x3cb11f86, 0x15d2823c, 0xefbb06d8, 0x9049dbab, 0xc69befda), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x195f005c, 0x7f80f625, 0x2418e1f0, 0xb41b8da0, 0xd7cd1893, 0x52723e26, 0xbc317c6b, 0x8a1009e7), SECP256K1_FE_CONST(0x7c847197, 0x2b6e8abb, 0x89b52f6f, 0xc34ee079, 0xea2d7dc3, 0x1044f927, 0x6fb62453, 0x39640c55), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0xb682f3d0, 0x3bbb5dee, 0x4f54b5eb, 0xfba931b4, 0xf52f6a19, 0x1e5c2f48, 0x3c73c66e, 0x9ace97e1), SECP256K1_FE_CONST(0x904717bf, 0x0bc0cb78, 0x73fcdc38, 0xaa97f19e, 0x3a626309, 0x72acff92, 0xb24cc6dd, 0xa197cb96), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x77, SECP256K1_FE_CONST(0xc17ec69e, 0x665f0fb0, 0xdbab48d9, 0xc2f94d12, 0xec8a9d7e, 0xacb58084, 0x83309180, 0x1eb0b80b), SECP256K1_FE_CONST(0x147756e6, 0x6d96e31c, 0x426d3cc8, 0x5ed0c4cf, 0xbef6341d, 0xd8b28558, 0x5aa574ea, 0x0204b55e), {SECP256K1_FE_CONST(0x6f4aea43, 0x1a0043bd, 0xd03134d6, 0xd9159119, 0xce034b88, 0xc32e50e8, 0xe36c4ee4, 0x5eac7ae9), SECP256K1_FE_CONST(0xfd5be16d, 0x4ffa2690, 0x126c67c3, 0xef7cb9d2, 0x9b74d397, 0xc78b06b3, 0x605fda34, 0xdc9696a6), SECP256K1_FE_CONST(0x5e9c6079, 0x2a2f000e, 0x45c6250f, 0x296f875e, 0x174efc0e, 0x9703e628, 0x706103a9, 0xdd2d82c7), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x90b515bc, 0xe5ffbc42, 0x2fcecb29, 0x26ea6ee6, 0x31fcb477, 0x3cd1af17, 0x1c93b11a, 0xa1538146), SECP256K1_FE_CONST(0x02a41e92, 0xb005d96f, 0xed93983c, 0x1083462d, 0x648b2c68, 0x3874f94c, 0x9fa025ca, 0x23696589), SECP256K1_FE_CONST(0xa1639f86, 0xd5d0fff1, 0xba39daf0, 0xd69078a1, 0xe8b103f1, 0x68fc19d7, 0x8f9efc55, 0x22d27968), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xcc, SECP256K1_FE_CONST(0xc25172fc, 0x3f29b6fc, 0x4a1155b8, 0x57523315, 0x5486b274, 0x64b74b8b, 0x260b499a, 0x3f53cb14), SECP256K1_FE_CONST(0x1ea9cbdb, 0x35cf6e03, 0x29aa31b0, 0xbb0a702a, 0x65123ed0, 0x08655a93, 0xb7dcd528, 0x0e52e1ab), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x7422edc7, 0x843136af, 0x0053bb88, 0x54448a82, 0x99994f9d, 0xdcefd3a9, 0xa92d4546, 0x2c59298a), SECP256K1_FE_CONST(0x78c7774a, 0x266f8b97, 0xea23d05d, 0x064f033c, 0x77319f92, 0x3f6b78bc, 0xe4e20bf0, 0x5fa5398d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x8bdd1238, 0x7bcec950, 0xffac4477, 0xabbb757d, 0x6666b062, 0x23102c56, 0x56d2bab8, 0xd3a6d2a5), SECP256K1_FE_CONST(0x873888b5, 0xd9907468, 0x15dc2fa2, 0xf9b0fcc3, 0x88ce606d, 0xc0948743, 0x1b1df40e, 0xa05ac2a2)}},
{0x00, SECP256K1_FE_CONST(0xcab6626f, 0x832a4b12, 0x80ba7add, 0x2fc5322f, 0xf011caed, 0xedf7ff4d, 0xb6735d50, 0x26dc0367), SECP256K1_FE_CONST(0x2b2bef08, 0x52c6f7c9, 0x5d72ac99, 0xa23802b8, 0x75029cd5, 0x73b248d1, 0xf1b3fc80, 0x33788eb6), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x33, SECP256K1_FE_CONST(0xd8621b4f, 0xfc85b9ed, 0x56e99d8d, 0xd1dd24ae, 0xdcecb147, 0x63b861a1, 0x7112dc77, 0x1a104fd2), SECP256K1_FE_CONST(0x812cabe9, 0x72a22aa6, 0x7c7da0c9, 0x4d8a9362, 0x96eb9949, 0xd70c37cb, 0x2b248757, 0x4cb3ce58), {SECP256K1_FE_CONST(0xfbc5febc, 0x6fdbc9ae, 0x3eb88a93, 0xb982196e, 0x8b6275a6, 0xd5a73c17, 0x387e000c, 0x711bd0e3), SECP256K1_FE_CONST(0x8724c96b, 0xd4e5527f, 0x2dd195a5, 0x1c468d2d, 0x211ba2fa, 0xc7cbe0b4, 0xb3434253, 0x409fb42d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x043a0143, 0x90243651, 0xc147756c, 0x467de691, 0x749d8a59, 0x2a58c3e8, 0xc781fff2, 0x8ee42b4c), SECP256K1_FE_CONST(0x78db3694, 0x2b1aad80, 0xd22e6a5a, 0xe3b972d2, 0xdee45d05, 0x38341f4b, 0x4cbcbdab, 0xbf604802), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0xda463164, 0xc6f4bf71, 0x29ee5f0e, 0xc00f65a6, 0x75a8adf1, 0xbd931b39, 0xb64806af, 0xdcda9a22), SECP256K1_FE_CONST(0x25b9ce9b, 0x390b408e, 0xd611a0f1, 0x3ff09a59, 0x8a57520e, 0x426ce4c6, 0x49b7f94f, 0x2325620d), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xcc, SECP256K1_FE_CONST(0xdafc971e, 0x4a3a7b6d, 0xcfb42a08, 0xd9692d82, 0xad9e7838, 0x523fcbda, 0x1d4827e1, 0x4481ae2d), SECP256K1_FE_CONST(0x250368e1, 0xb5c58492, 0x304bd5f7, 0x2696d27d, 0x526187c7, 0xadc03425, 0xe2b7d81d, 0xbb7e4e02), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x370c28f1, 0xbe665efa, 0xcde6aa43, 0x6bf86fe2, 0x1e6e314c, 0x1e53dd04, 0x0e6c73a4, 0x6b4c8c49), SECP256K1_FE_CONST(0xcd8acee9, 0x8ffe5653, 0x1a84d7eb, 0x3e48fa40, 0x34206ce8, 0x25ace907, 0xd0edf0ea, 0xeb5e9ca2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xc8f3d70e, 0x4199a105, 0x321955bc, 0x9407901d, 0xe191ceb3, 0xe1ac22fb, 0xf1938c5a, 0x94b36fe6), SECP256K1_FE_CONST(0x32753116, 0x7001a9ac, 0xe57b2814, 0xc1b705bf, 0xcbdf9317, 0xda5316f8, 0x2f120f14, 0x14a15f8d)}},
{0x44, SECP256K1_FE_CONST(0xe0294c8b, 0xc1a36b41, 0x66ee92bf, 0xa70a5c34, 0x976fa982, 0x9405efea, 0x8f9cd54d, 0xcb29b99e), SECP256K1_FE_CONST(0xae9690d1, 0x3b8d20a0, 0xfbbf37be, 0xd8474f67, 0xa04e142f, 0x56efd787, 0x70a76b35, 0x9165d8a1), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xdcd45d93, 0x5613916a, 0xf167b029, 0x058ba3a7, 0x00d37150, 0xb9df3472, 0x8cb05412, 0xc16d4182), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x232ba26c, 0xa9ec6e95, 0x0e984fd6, 0xfa745c58, 0xff2c8eaf, 0x4620cb8d, 0x734fabec, 0x3e92baad), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP256K1_FE_CONST(0xc88d25f4, 0x1407376b, 0xb2c03a7f, 0xffeb3ec7, 0x811cc434, 0x91a0c3aa, 0xc0378cdc, 0x78357bee), SECP256K1_FE_CONST(0x51c02636, 0xce00c234, 0x5ecd89ad, 0xb6089fe4, 0xd5e18ac9, 0x24e3145e, 0x6669501c, 0xd37a00d4), SECP256K1_FE_CONST(0x205b3512, 0xdb40521c, 0xb200952e, 0x67b46f67, 0xe09e7839, 0xe0de4400, 0x4138329e, 0xbd9138c5), SECP256K1_FE_CONST(0x58aab390, 0xab6fb55c, 0x1d1b8089, 0x7a207ce9, 0x4a78fa5b, 0x4aa61a33, 0x398bcae9, 0xadb20d3e), SECP256K1_FE_CONST(0x3772da0b, 0xebf8c894, 0x4d3fc580, 0x0014c138, 0x7ee33bcb, 0x6e5f3c55, 0x3fc87322, 0x87ca8041), SECP256K1_FE_CONST(0xae3fd9c9, 0x31ff3dcb, 0xa1327652, 0x49f7601b, 0x2a1e7536, 0xdb1ceba1, 0x9996afe2, 0x2c85fb5b), SECP256K1_FE_CONST(0xdfa4caed, 0x24bfade3, 0x4dff6ad1, 0x984b9098, 0x1f6187c6, 0x1f21bbff, 0xbec7cd60, 0x426ec36a), SECP256K1_FE_CONST(0xa7554c6f, 0x54904aa3, 0xe2e47f76, 0x85df8316, 0xb58705a4, 0xb559e5cc, 0xc6743515, 0x524deef1)}},
{0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP256K1_FE_CONST(0x67119877, 0x832ab8f4, 0x59a82165, 0x6d8261f5, 0x44a553b8, 0x9ae4f25c, 0x52a97134, 0xb70f3426), SECP256K1_FE_CONST(0xffee02f5, 0xe649c07f, 0x0560eff1, 0x867ec7b3, 0x2d0e595e, 0x9b1c0ea6, 0xe2a4fc70, 0xc97cd71f), SECP256K1_FE_CONST(0xb5e0c189, 0xeb5b4bac, 0xd025b744, 0x4d74178b, 0xe8d5246c, 0xfa4a9a20, 0x7964a057, 0xee969992), SECP256K1_FE_CONST(0x5746e459, 0x1bf7f4c3, 0x044609ea, 0x372e9086, 0x03975d27, 0x9fdef834, 0x9f0b08d3, 0x2f07619d), SECP256K1_FE_CONST(0x98ee6788, 0x7cd5470b, 0xa657de9a, 0x927d9e0a, 0xbb5aac47, 0x651b0da3, 0xad568eca, 0x48f0c809), SECP256K1_FE_CONST(0x0011fd0a, 0x19b63f80, 0xfa9f100e, 0x7981384c, 0xd2f1a6a1, 0x64e3f159, 0x1d5b038e, 0x36832510), SECP256K1_FE_CONST(0x4a1f3e76, 0x14a4b453, 0x2fda48bb, 0xb28be874, 0x172adb93, 0x05b565df, 0x869b5fa7, 0x1169629d), SECP256K1_FE_CONST(0xa8b91ba6, 0xe4080b3c, 0xfbb9f615, 0xc8d16f79, 0xfc68a2d8, 0x602107cb, 0x60f4f72b, 0xd0f89a92)}},
{0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP256K1_FE_CONST(0x4f867ad8, 0xbb3d8404, 0x09d26b67, 0x307e6210, 0x0153273f, 0x72fa4b74, 0x84becfa1, 0x4ebe7408), SECP256K1_FE_CONST(0x5bbc4f59, 0xe452cc5f, 0x22a99144, 0xb10ce898, 0x9a89a995, 0xec3cea1c, 0x91ae10e8, 0xf721bb5d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb0798527, 0x44c27bfb, 0xf62d9498, 0xcf819def, 0xfeacd8c0, 0x8d05b48b, 0x7b41305d, 0xb1418827), SECP256K1_FE_CONST(0xa443b0a6, 0x1bad33a0, 0xdd566ebb, 0x4ef31767, 0x6576566a, 0x13c315e3, 0x6e51ef16, 0x08de40d2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
{0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x0c00c571, 0x5b56fe63, 0x2d814ad8, 0xa77f8e66, 0x628ea47a, 0x6116834f, 0x8c1218f3, 0xa03cbd50), SECP256K1_FE_CONST(0xdf88e44f, 0xac84fa52, 0xdf4d59f4, 0x8819f18f, 0x6a8cd415, 0x1d162afa, 0xf773166f, 0x57c7ff46), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xf3ff3a8e, 0xa4a9019c, 0xd27eb527, 0x58807199, 0x9d715b85, 0x9ee97cb0, 0x73ede70b, 0x5fc33edf), SECP256K1_FE_CONST(0x20771bb0, 0x537b05ad, 0x20b2a60b, 0x77e60e70, 0x95732bea, 0xe2e9d505, 0x088ce98f, 0xa837fce9)}},
{0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP256K1_FE_CONST(0x6c4c580b, 0x76c75940, 0x43569f9d, 0xae16dc28, 0x01c16a1f, 0xbe128608, 0x81b75f8e, 0xf929bce5), SECP256K1_FE_CONST(0x94231355, 0xe7385c5f, 0x25ca436a, 0xa6419147, 0x1aea4393, 0xd6e86ab7, 0xa35fe2af, 0xacaefd0d), SECP256K1_FE_CONST(0xdff2a195, 0x1ada6db5, 0x74df8340, 0x48149da3, 0x397a75b8, 0x29abf58c, 0x7e69db1b, 0x41ac0989), SECP256K1_FE_CONST(0xa52b66d3, 0xc9070355, 0x48028bf8, 0x04711bf4, 0x22aba95f, 0x1a666fc8, 0x6f4648e0, 0x5f29caae), SECP256K1_FE_CONST(0x93b3a7f4, 0x8938a6bf, 0xbca96062, 0x51e923d7, 0xfe3e95e0, 0x41ed79f7, 0x7e48a070, 0x06d63f4a), SECP256K1_FE_CONST(0x6bdcecaa, 0x18c7a3a0, 0xda35bc95, 0x59be6eb8, 0xe515bc6c, 0x29179548, 0x5ca01d4f, 0x5350ff22), SECP256K1_FE_CONST(0x200d5e6a, 0xe525924a, 0x8b207cbf, 0xb7eb625c, 0xc6858a47, 0xd6540a73, 0x819624e3, 0xbe53f2a6), SECP256K1_FE_CONST(0x5ad4992c, 0x36f8fcaa, 0xb7fd7407, 0xfb8ee40b, 0xdd5456a0, 0xe5999037, 0x90b9b71e, 0xa0d63181)}},
{0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
};
/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage, part of the BIP324
* test vectors. Created using an independent implementation, and tested decoding against the paper
* authors' code. */
static const struct ellswift_decode_test ellswift_decode_tests[] = {
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 1},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x74e880b3, 0xffd18fe3, 0xcddf7902, 0x522551dd, 0xf97fa4a3, 0x5a3cfda8, 0x197f9470, 0x81a57b8f), 0},
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x377b643f, 0xce2271f6, 0x4e5c8101, 0x566107c1, 0xbe498074, 0x50917838, 0x04f65478, 0x1ac9217c), 1},
{{0x12, 0x36, 0x58, 0x44, 0x4f, 0x32, 0xbe, 0x8f, 0x02, 0xea, 0x20, 0x34, 0xaf, 0xa7, 0xef, 0x4b, 0xbe, 0x8a, 0xdc, 0x91, 0x8c, 0xeb, 0x49, 0xb1, 0x27, 0x73, 0xb6, 0x25, 0xf4, 0x90, 0xb3, 0x68, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8d, 0xc5, 0xfe, 0x11}, SECP256K1_FE_CONST(0xed16d65c, 0xf3a9538f, 0xcb2c139f, 0x1ecbc143, 0xee148271, 0x20cbc265, 0x9e667256, 0x800b8142), 0},
{{0x14, 0x6f, 0x92, 0x46, 0x4d, 0x15, 0xd3, 0x6e, 0x35, 0x38, 0x2b, 0xd3, 0xca, 0x5b, 0x0f, 0x97, 0x6c, 0x95, 0xcb, 0x08, 0xac, 0xdc, 0xf2, 0xd5, 0xb3, 0x57, 0x06, 0x17, 0x99, 0x08, 0x39, 0xd7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x45, 0xe9, 0x3b}, SECP256K1_FE_CONST(0x0d5cd840, 0x427f941f, 0x65193079, 0xab8e2e83, 0x024ef2ee, 0x7ca558d8, 0x8879ffd8, 0x79fb6657), 0},
{{0x15, 0xfd, 0xf5, 0xcf, 0x09, 0xc9, 0x07, 0x59, 0xad, 0xd2, 0x27, 0x2d, 0x57, 0x4d, 0x2b, 0xb5, 0xfe, 0x14, 0x29, 0xf9, 0xf3, 0xc1, 0x4c, 0x65, 0xe3, 0x19, 0x4b, 0xf6, 0x1b, 0x82, 0xaa, 0x73, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0xcf, 0xd9, 0x06}, SECP256K1_FE_CONST(0x16d0e439, 0x46aec93f, 0x62d57eb8, 0xcde68951, 0xaf136cf4, 0xb307938d, 0xd1447411, 0xe07bffe1), 1},
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
{{0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x98bec3b2, 0xa351fa96, 0xcfd191c1, 0x77835193, 0x1b9e9ba9, 0xad1149f6, 0xd9eadca8, 0x0981b801), 0},
{{0x40, 0x56, 0xa3, 0x4a, 0x21, 0x0e, 0xec, 0x78, 0x92, 0xe8, 0x82, 0x06, 0x75, 0xc8, 0x60, 0x09, 0x9f, 0x85, 0x7b, 0x26, 0xaa, 0xd8, 0x54, 0x70, 0xee, 0x6d, 0x3c, 0xf1, 0x30, 0x4a, 0x9d, 0xcf, 0x37, 0x5e, 0x70, 0x37, 0x42, 0x71, 0xf2, 0x0b, 0x13, 0xc9, 0x98, 0x6e, 0xd7, 0xd3, 0xc1, 0x77, 0x99, 0x69, 0x8c, 0xfc, 0x43, 0x5d, 0xbe, 0xd3, 0xa9, 0xf3, 0x4b, 0x38, 0xc8, 0x23, 0xc2, 0xb4}, SECP256K1_FE_CONST(0x868aac20, 0x03b29dbc, 0xad1a3e80, 0x3855e078, 0xa89d1654, 0x3ac64392, 0xd1224172, 0x98cec76e), 0},
{{0x41, 0x97, 0xec, 0x37, 0x23, 0xc6, 0x54, 0xcf, 0xdd, 0x32, 0xab, 0x07, 0x55, 0x06, 0x64, 0x8b, 0x2f, 0xf5, 0x07, 0x03, 0x62, 0xd0, 0x1a, 0x4f, 0xff, 0x14, 0xb3, 0x36, 0xb7, 0x8f, 0x96, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0xab, 0x1e, 0x95}, SECP256K1_FE_CONST(0xba5a6314, 0x502a8952, 0xb8f456e0, 0x85928105, 0xf665377a, 0x8ce27726, 0xa5b0eb7e, 0xc1ac0286), 0},
{{0x47, 0xeb, 0x3e, 0x20, 0x8f, 0xed, 0xcd, 0xf8, 0x23, 0x4c, 0x94, 0x21, 0xe9, 0xcd, 0x9a, 0x7a, 0xe8, 0x73, 0xbf, 0xbd, 0xbc, 0x39, 0x37, 0x23, 0xd1, 0xba, 0x1e, 0x1e, 0x6a, 0x8e, 0x6b, 0x24, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xd1, 0x2c, 0xb1}, SECP256K1_FE_CONST(0xd192d520, 0x07e541c9, 0x807006ed, 0x0468df77, 0xfd214af0, 0xa795fe11, 0x9359666f, 0xdcf08f7c), 0},
{{0x5e, 0xb9, 0x69, 0x6a, 0x23, 0x36, 0xfe, 0x2c, 0x3c, 0x66, 0x6b, 0x02, 0xc7, 0x55, 0xdb, 0x4c, 0x0c, 0xfd, 0x62, 0x82, 0x5c, 0x7b, 0x58, 0x9a, 0x7b, 0x7b, 0xb4, 0x42, 0xe1, 0x41, 0xc1, 0xd6, 0x93, 0x41, 0x3f, 0x00, 0x52, 0xd4, 0x9e, 0x64, 0xab, 0xec, 0x6d, 0x58, 0x31, 0xd6, 0x6c, 0x43, 0x61, 0x28, 0x30, 0xa1, 0x7d, 0xf1, 0xfe, 0x43, 0x83, 0xdb, 0x89, 0x64, 0x68, 0x10, 0x02, 0x21}, SECP256K1_FE_CONST(0xef6e1da6, 0xd6c7627e, 0x80f7a723, 0x4cb08a02, 0x2c1ee1cf, 0x29e4d0f9, 0x642ae924, 0xcef9eb38), 1},
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
{{0x85, 0x1b, 0x1c, 0xa9, 0x45, 0x49, 0x37, 0x1c, 0x4f, 0x1f, 0x71, 0x87, 0x32, 0x1d, 0x39, 0xbf, 0x51, 0xc6, 0xb7, 0xfb, 0x61, 0xf7, 0xcb, 0xf0, 0x27, 0xc9, 0xda, 0x62, 0x02, 0x1b, 0x7a, 0x65, 0xfc, 0x54, 0xc9, 0x68, 0x37, 0xfb, 0x22, 0xb3, 0x62, 0xed, 0xa6, 0x3e, 0xc5, 0x2e, 0xc8, 0x3d, 0x81, 0xbe, 0xdd, 0x16, 0x0c, 0x11, 0xb2, 0x2d, 0x96, 0x5d, 0x9f, 0x4a, 0x6d, 0x64, 0xd2, 0x51}, SECP256K1_FE_CONST(0x3e731051, 0xe12d3323, 0x7eb324f2, 0xaa5b16bb, 0x868eb49a, 0x1aa1fadc, 0x19b6e876, 0x1b5a5f7b), 1},
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
{{0xa0, 0xf1, 0x84, 0x92, 0x18, 0x3e, 0x61, 0xe8, 0x06, 0x3e, 0x57, 0x36, 0x06, 0x59, 0x14, 0x21, 0xb0, 0x6b, 0xc3, 0x51, 0x36, 0x31, 0x57, 0x8a, 0x73, 0xa3, 0x9c, 0x1c, 0x33, 0x06, 0x23, 0x9f, 0x2f, 0x32, 0x90, 0x4f, 0x0d, 0x2a, 0x33, 0xec, 0xca, 0x8a, 0x54, 0x51, 0x70, 0x5b, 0xb5, 0x37, 0xd3, 0xbf, 0x44, 0xe0, 0x71, 0x22, 0x60, 0x25, 0xcd, 0xbf, 0xd2, 0x49, 0xfe, 0x0f, 0x7a, 0xd6}, SECP256K1_FE_CONST(0x97a09cf1, 0xa2eae7c4, 0x94df3c6f, 0x8a9445bf, 0xb8c09d60, 0x832f9b0b, 0x9d5eabe2, 0x5fbd14b9), 0},
{{0xa1, 0xed, 0x0a, 0x0b, 0xd7, 0x9d, 0x8a, 0x23, 0xcf, 0xe4, 0xec, 0x5f, 0xef, 0x5b, 0xa5, 0xcc, 0xcf, 0xd8, 0x44, 0xe4, 0xff, 0x5c, 0xb4, 0xb0, 0xf2, 0xe7, 0x16, 0x27, 0x34, 0x1f, 0x1c, 0x5b, 0x17, 0xc4, 0x99, 0x24, 0x9e, 0x0a, 0xc0, 0x8d, 0x5d, 0x11, 0xea, 0x1c, 0x2c, 0x8c, 0xa7, 0x00, 0x16, 0x16, 0x55, 0x9a, 0x79, 0x94, 0xea, 0xde, 0xc9, 0xca, 0x10, 0xfb, 0x4b, 0x85, 0x16, 0xdc}, SECP256K1_FE_CONST(0x65a89640, 0x744192cd, 0xac64b2d2, 0x1ddf989c, 0xdac75007, 0x25b645be, 0xf8e2200a, 0xe39691f2), 0},
{{0xba, 0x94, 0x59, 0x4a, 0x43, 0x27, 0x21, 0xaa, 0x35, 0x80, 0xb8, 0x4c, 0x16, 0x1d, 0x0d, 0x13, 0x4b, 0xc3, 0x54, 0xb6, 0x90, 0x40, 0x4d, 0x7c, 0xd4, 0xec, 0x57, 0xc1, 0x6d, 0x3f, 0xbe, 0x98, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0x50, 0x7d, 0xd7}, SECP256K1_FE_CONST(0x5e0d7656, 0x4aae92cb, 0x347e01a6, 0x2afd389a, 0x9aa401c7, 0x6c8dd227, 0x543dc9cd, 0x0efe685a), 0},
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x2d97f96c, 0xac882dfe, 0x73dc44db, 0x6ce0f1d3, 0x1d624135, 0x8dd5d74e, 0xb3d3b500, 0x03d24c2b), 0},
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x65, 0x07, 0xd0, 0x9a}, SECP256K1_FE_CONST(0xe7008afe, 0x6e8cbd50, 0x55df120b, 0xd748757c, 0x686dadb4, 0x1cce75e4, 0xaddcc5e0, 0x2ec02b44), 1},
{{0xc5, 0x98, 0x1b, 0xae, 0x27, 0xfd, 0x84, 0x40, 0x1c, 0x72, 0xa1, 0x55, 0xe5, 0x70, 0x7f, 0xbb, 0x81, 0x1b, 0x2b, 0x62, 0x06, 0x45, 0xd1, 0x02, 0x8e, 0xa2, 0x70, 0xcb, 0xe0, 0xee, 0x22, 0x5d, 0x4b, 0x62, 0xaa, 0x4d, 0xca, 0x65, 0x06, 0xc1, 0xac, 0xdb, 0xec, 0xc0, 0x55, 0x25, 0x69, 0xb4, 0xb2, 0x14, 0x36, 0xa5, 0x69, 0x2e, 0x25, 0xd9, 0x0d, 0x3b, 0xc2, 0xeb, 0x7c, 0xe2, 0x40, 0x78}, SECP256K1_FE_CONST(0x948b40e7, 0x181713bc, 0x018ec170, 0x2d3d054d, 0x15746c59, 0xa7020730, 0xdd13ecf9, 0x85a010d7), 0},
{{0xc8, 0x94, 0xce, 0x48, 0xbf, 0xec, 0x43, 0x30, 0x14, 0xb9, 0x31, 0xa6, 0xad, 0x42, 0x26, 0xd7, 0xdb, 0xd8, 0xea, 0xa7, 0xb6, 0xe3, 0xfa, 0xa8, 0xd0, 0xef, 0x94, 0x05, 0x2b, 0xcf, 0x8c, 0xff, 0x33, 0x6e, 0xeb, 0x39, 0x19, 0xe2, 0xb4, 0xef, 0xb7, 0x46, 0xc7, 0xf7, 0x1b, 0xbc, 0xa7, 0xe9, 0x38, 0x32, 0x30, 0xfb, 0xbc, 0x48, 0xff, 0xaf, 0xe7, 0x7e, 0x8b, 0xcc, 0x69, 0x54, 0x24, 0x71}, SECP256K1_FE_CONST(0xf1c91acd, 0xc2525330, 0xf9b53158, 0x434a4d43, 0xa1c547cf, 0xf29f1550, 0x6f5da4eb, 0x4fe8fa5a), 1},
{{0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x872d81ed, 0x8831d999, 0x8b67cb71, 0x05243edb, 0xf86c10ed, 0xfebb786c, 0x110b02d0, 0x7b2e67cd), 0},
{{0xd9, 0x17, 0xb7, 0x86, 0xda, 0xc3, 0x56, 0x70, 0xc3, 0x30, 0xc9, 0xc5, 0xae, 0x59, 0x71, 0xdf, 0xb4, 0x95, 0xc8, 0xae, 0x52, 0x3e, 0xd9, 0x7e, 0xe2, 0x42, 0x01, 0x17, 0xb1, 0x71, 0xf4, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x20, 0x01, 0xf6, 0xf6}, SECP256K1_FE_CONST(0xe45b71e1, 0x10b831f2, 0xbdad8651, 0x994526e5, 0x8393fde4, 0x328b1ec0, 0x4d598971, 0x42584691), 1},
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
{{0xe7, 0xee, 0x58, 0x14, 0xc1, 0x70, 0x6b, 0xf8, 0xa8, 0x93, 0x96, 0xa9, 0xb0, 0x32, 0xbc, 0x01, 0x4c, 0x2c, 0xac, 0x9c, 0x12, 0x11, 0x27, 0xdb, 0xf6, 0xc9, 0x92, 0x78, 0xf8, 0xbb, 0x53, 0xd1, 0xdf, 0xd0, 0x4d, 0xbc, 0xda, 0x8e, 0x35, 0x24, 0x66, 0xb6, 0xfc, 0xd5, 0xf2, 0xde, 0xa3, 0xe1, 0x7d, 0x5e, 0x13, 0x31, 0x15, 0x88, 0x6e, 0xda, 0x20, 0xdb, 0x8a, 0x12, 0xb5, 0x4d, 0xe7, 0x1b}, SECP256K1_FE_CONST(0xe842c6e3, 0x529b2342, 0x70a5e977, 0x44edc34a, 0x04d7ba94, 0xe44b6d25, 0x23c9cf01, 0x95730a50), 1},
{{0xf2, 0x92, 0xe4, 0x68, 0x25, 0xf9, 0x22, 0x5a, 0xd2, 0x3d, 0xc0, 0x57, 0xc1, 0xd9, 0x1c, 0x4f, 0x57, 0xfc, 0xb1, 0x38, 0x6f, 0x29, 0xef, 0x10, 0x48, 0x1c, 0xb1, 0xd2, 0x25, 0x18, 0x59, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x11, 0xc9, 0x89}, SECP256K1_FE_CONST(0x3cea2c53, 0xb8b01701, 0x66ac7da6, 0x7194694a, 0xdacc84d5, 0x6389225e, 0x330134da, 0xb85a4d55), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x8c, 0x59, 0x00, 0x63, 0xf6, 0x4d, 0x5a, 0x7f, 0x1c, 0x14, 0x91, 0x5c, 0xd6, 0x1e, 0xac, 0x88, 0x6a, 0xb2, 0x95, 0xbe, 0xbd, 0x91, 0x99, 0x25, 0x04, 0xcf, 0x77, 0xed, 0xb0, 0x28, 0xbd, 0xd6, 0x26, 0x7f}, SECP256K1_FE_CONST(0x3fde5713, 0xf8282eea, 0xd7d39d42, 0x01f44a7c, 0x85a5ac8a, 0x0681f35e, 0x54085c6b, 0x69543374), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2c, 0x2c, 0x57, 0x09, 0xe7, 0x15, 0x6c, 0x41, 0x77, 0x17, 0xf2, 0xfe, 0xab, 0x14, 0x71, 0x41, 0xec, 0x3d, 0xa1, 0x9f, 0xb7, 0x59, 0x57, 0x5c, 0xc6, 0xe3, 0x7b, 0x2e, 0xa5, 0xac, 0x93, 0x09, 0xf2, 0x6f, 0x0f, 0x66}, SECP256K1_FE_CONST(0xd2469ab3, 0xe04acbb2, 0x1c65a180, 0x9f39caaf, 0xe7a77c13, 0xd10f9dd3, 0x8f391c01, 0xdc499c52), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3a, 0x08, 0xcc, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x60, 0xe9, 0xf0}, SECP256K1_FE_CONST(0x38e2a5ce, 0x6a93e795, 0xe16d2c39, 0x8bc99f03, 0x69202ce2, 0x1e8f09d5, 0x6777b40f, 0xc512bccc), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3e, 0x91, 0x25, 0x7d, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x864b3dc9, 0x02c37670, 0x9c10a93a, 0xd4bbe29f, 0xce0012f3, 0xdc8672c6, 0x286bba28, 0xd7d6d6fc), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0x5d, 0x6c, 0x1c, 0x32, 0x2c, 0xad, 0xf5, 0x99, 0xdb, 0xb8, 0x64, 0x81, 0x52, 0x2b, 0x3c, 0xc5, 0x5f, 0x15, 0xa6, 0x79, 0x32, 0xdb, 0x2a, 0xfa, 0x01, 0x11, 0xd9, 0xed, 0x69, 0x81, 0xbc, 0xd1, 0x24, 0xbf, 0x44}, SECP256K1_FE_CONST(0x766dfe4a, 0x700d9bee, 0x288b903a, 0xd58870e3, 0xd4fe2f0e, 0xf780bcac, 0x5c823f32, 0x0d9a9bef), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8e, 0x42, 0x6f, 0x03, 0x92, 0x38, 0x90, 0x78, 0xc1, 0x2b, 0x1a, 0x89, 0xe9, 0x54, 0x2f, 0x05, 0x93, 0xbc, 0x96, 0xb6, 0xbf, 0xde, 0x82, 0x24, 0xf8, 0x65, 0x4e, 0xf5, 0xd5, 0xcd, 0xa9, 0x35, 0xa3, 0x58, 0x21, 0x94}, SECP256K1_FE_CONST(0xfaec7bc1, 0x987b6323, 0x3fbc5f95, 0x6edbf37d, 0x54404e74, 0x61c58ab8, 0x631bc68e, 0x451a0478), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x91, 0x19, 0x21, 0x39, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0xf0, 0xf1, 0xeb}, SECP256K1_FE_CONST(0xec29a50b, 0xae138dbf, 0x7d8e2482, 0x5006bb5f, 0xc1a2cc12, 0x43ba335b, 0xc6116fb9, 0xe498ec1f), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x98, 0xeb, 0x9a, 0xb7, 0x6e, 0x84, 0x49, 0x9c, 0x48, 0x3b, 0x3b, 0xf0, 0x62, 0x14, 0xab, 0xfe, 0x06, 0x5d, 0xdd, 0xf4, 0x3b, 0x86, 0x01, 0xde, 0x59, 0x6d, 0x63, 0xb9, 0xe4, 0x5a, 0x16, 0x6a, 0x58, 0x05, 0x41, 0xfe}, SECP256K1_FE_CONST(0x1e0ff2de, 0xe9b09b13, 0x6292a9e9, 0x10f0d6ac, 0x3e552a64, 0x4bba39e6, 0x4e9dd3e3, 0xbbd3d4d4), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x8b7dd5c3, 0xedba9ee9, 0x7b70eff4, 0x38f22dca, 0x9849c825, 0x4a2f3345, 0xa0a572ff, 0xeaae0928), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x0881950c, 0x8f51d6b9, 0xa6387465, 0xd5f12609, 0xef1bb254, 0x12a08a74, 0xcb2dfb20, 0x0c74bfbf), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa2, 0xf5, 0xcd, 0x83, 0x88, 0x16, 0xc1, 0x6c, 0x4f, 0xe8, 0xa1, 0x66, 0x1d, 0x60, 0x6f, 0xdb, 0x13, 0xcf, 0x9a, 0xf0, 0x4b, 0x97, 0x9a, 0x2e, 0x15, 0x9a, 0x09, 0x40, 0x9e, 0xbc, 0x86, 0x45, 0xd5, 0x8f, 0xde, 0x02}, SECP256K1_FE_CONST(0x2f083207, 0xb9fd9b55, 0x0063c31c, 0xd62b8746, 0xbd543bdc, 0x5bbf10e3, 0xa35563e9, 0x27f440c8), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x64, 0xd1, 0x62, 0x75, 0x05, 0x46, 0xce, 0x42, 0xb0, 0x43, 0x13, 0x61, 0xe5, 0x2d, 0x4f, 0x52, 0x42, 0xd8, 0xf2, 0x4f, 0x33, 0xe6, 0xb1, 0xf9, 0x9b, 0x59, 0x16, 0x47, 0xcb, 0xc8, 0x08, 0xf4, 0x62, 0xaf, 0x51}, SECP256K1_FE_CONST(0xd41244d1, 0x1ca4f652, 0x40687759, 0xf95ca9ef, 0xbab767ed, 0xedb38fd1, 0x8c36e18c, 0xd3b6f6a9), 1},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xe5, 0xbe, 0x52, 0x37, 0x2d, 0xd6, 0xe8, 0x94, 0xb2, 0xa3, 0x26, 0xfc, 0x36, 0x05, 0xa6, 0xe8, 0xf3, 0xc6, 0x9c, 0x71, 0x0b, 0xf2, 0x7d, 0x63, 0x0d, 0xfe, 0x20, 0x04, 0x98, 0x8b, 0x78, 0xeb, 0x6e, 0xab, 0x36}, SECP256K1_FE_CONST(0x64bf84dd, 0x5e03670f, 0xdb24c0f5, 0xd3c2c365, 0x736f51db, 0x6c92d950, 0x10716ad2, 0xd36134c8), 0},
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfb, 0xb9, 0x82, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xd6, 0xdb, 0x1f}, SECP256K1_FE_CONST(0x1c92ccdf, 0xcf4ac550, 0xc28db57c, 0xff0c8515, 0xcb26936c, 0x786584a7, 0x0114008d, 0x6c33a34b), 0},
};
/* Set of expected ellswift_xdh BIP324 shared secrets, given private key, encodings, initiating,
* taken from the BIP324 test vectors. Created using an independent implementation, and tested
* against the paper authors' decoding code. */
static const struct ellswift_xdh_test ellswift_xdh_tests_bip324[] = {
{{0x61, 0x06, 0x2e, 0xa5, 0x07, 0x1d, 0x80, 0x0b, 0xbf, 0xd5, 0x9e, 0x2e, 0x8b, 0x53, 0xd4, 0x7d, 0x19, 0x4b, 0x09, 0x5a, 0xe5, 0xa4, 0xdf, 0x04, 0x93, 0x6b, 0x49, 0x77, 0x2e, 0xf0, 0xd4, 0xd7}, {0xec, 0x0a, 0xdf, 0xf2, 0x57, 0xbb, 0xfe, 0x50, 0x0c, 0x18, 0x8c, 0x80, 0xb4, 0xfd, 0xd6, 0x40, 0xf6, 0xb4, 0x5a, 0x48, 0x2b, 0xbc, 0x15, 0xfc, 0x7c, 0xef, 0x59, 0x31, 0xde, 0xff, 0x0a, 0xa1, 0x86, 0xf6, 0xeb, 0x9b, 0xba, 0x7b, 0x85, 0xdc, 0x4d, 0xcc, 0x28, 0xb2, 0x87, 0x22, 0xde, 0x1e, 0x3d, 0x91, 0x08, 0xb9, 0x85, 0xe2, 0x96, 0x70, 0x45, 0x66, 0x8f, 0x66, 0x09, 0x8e, 0x47, 0x5b}, {0xa4, 0xa9, 0x4d, 0xfc, 0xe6, 0x9b, 0x4a, 0x2a, 0x0a, 0x09, 0x93, 0x13, 0xd1, 0x0f, 0x9f, 0x7e, 0x7d, 0x64, 0x9d, 0x60, 0x50, 0x1c, 0x9e, 0x1d, 0x27, 0x4c, 0x30, 0x0e, 0x0d, 0x89, 0xaa, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8f, 0xaf, 0x88, 0xd5}, 1, {0xc6, 0x99, 0x2a, 0x11, 0x7f, 0x5e, 0xdb, 0xea, 0x70, 0xc3, 0xf5, 0x11, 0xd3, 0x2d, 0x26, 0xb9, 0x79, 0x8b, 0xe4, 0xb8, 0x1a, 0x62, 0xea, 0xee, 0x1a, 0x5a, 0xca, 0xa8, 0x45, 0x9a, 0x35, 0x92}},
{{0x1f, 0x9c, 0x58, 0x1b, 0x35, 0x23, 0x18, 0x38, 0xf0, 0xf1, 0x7c, 0xf0, 0xc9, 0x79, 0x83, 0x5b, 0xac, 0xcb, 0x7f, 0x3a, 0xbb, 0xbb, 0x96, 0xff, 0xcc, 0x31, 0x8a, 0xb7, 0x1e, 0x6e, 0x12, 0x6f}, {0xa1, 0x85, 0x5e, 0x10, 0xe9, 0x4e, 0x00, 0xba, 0xa2, 0x30, 0x41, 0xd9, 0x16, 0xe2, 0x59, 0xf7, 0x04, 0x4e, 0x49, 0x1d, 0xa6, 0x17, 0x12, 0x69, 0x69, 0x47, 0x63, 0xf0, 0x18, 0xc7, 0xe6, 0x36, 0x93, 0xd2, 0x95, 0x75, 0xdc, 0xb4, 0x64, 0xac, 0x81, 0x6b, 0xaa, 0x1b, 0xe3, 0x53, 0xba, 0x12, 0xe3, 0x87, 0x6c, 0xba, 0x76, 0x28, 0xbd, 0x0b, 0xd8, 0xe7, 0x55, 0xe7, 0x21, 0xeb, 0x01, 0x40}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 0, {0xa0, 0x13, 0x8f, 0x56, 0x4f, 0x74, 0xd0, 0xad, 0x70, 0xbc, 0x33, 0x7d, 0xac, 0xc9, 0xd0, 0xbf, 0x1d, 0x23, 0x49, 0x36, 0x4c, 0xaf, 0x11, 0x88, 0xa1, 0xe6, 0xe8, 0xdd, 0xb3, 0xb7, 0xb1, 0x84}},
{{0x02, 0x86, 0xc4, 0x1c, 0xd3, 0x09, 0x13, 0xdb, 0x0f, 0xdf, 0xf7, 0xa6, 0x4e, 0xbd, 0xa5, 0xc8, 0xe3, 0xe7, 0xce, 0xf1, 0x0f, 0x2a, 0xeb, 0xc0, 0x0a, 0x76, 0x50, 0x44, 0x3c, 0xf4, 0xc6, 0x0d}, {0xd1, 0xee, 0x8a, 0x93, 0xa0, 0x11, 0x30, 0xcb, 0xf2, 0x99, 0x24, 0x9a, 0x25, 0x8f, 0x94, 0xfe, 0xb5, 0xf4, 0x69, 0xe7, 0xd0, 0xf2, 0xf2, 0x8f, 0x69, 0xee, 0x5e, 0x9a, 0xa8, 0xf9, 0xb5, 0x4a, 0x60, 0xf2, 0xc3, 0xff, 0x2d, 0x02, 0x36, 0x34, 0xec, 0x7f, 0x41, 0x27, 0xa9, 0x6c, 0xc1, 0x16, 0x62, 0xe4, 0x02, 0x89, 0x4c, 0xf1, 0xf6, 0x94, 0xfb, 0x9a, 0x7e, 0xaa, 0x5f, 0x1d, 0x92, 0x44}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x22, 0xd5, 0xe4, 0x41, 0x52, 0x4d, 0x57, 0x1a, 0x52, 0xb3, 0xde, 0xf1, 0x26, 0x18, 0x9d, 0x3f, 0x41, 0x68, 0x90, 0xa9, 0x9d, 0x4d, 0xa6, 0xed, 0xe2, 0xb0, 0xcd, 0xe1, 0x76, 0x0c, 0xe2, 0xc3, 0xf9, 0x84, 0x57, 0xae}, 1, {0x25, 0x0b, 0x93, 0x57, 0x0d, 0x41, 0x11, 0x49, 0x10, 0x5a, 0xb8, 0xcb, 0x0b, 0xc5, 0x07, 0x99, 0x14, 0x90, 0x63, 0x06, 0x36, 0x8c, 0x23, 0xe9, 0xd7, 0x7c, 0x2a, 0x33, 0x26, 0x5b, 0x99, 0x4c}},
{{0x6c, 0x77, 0x43, 0x2d, 0x1f, 0xda, 0x31, 0xe9, 0xf9, 0x42, 0xf8, 0xaf, 0x44, 0x60, 0x7e, 0x10, 0xf3, 0xad, 0x38, 0xa6, 0x5f, 0x8a, 0x4b, 0xdd, 0xae, 0x82, 0x3e, 0x5e, 0xff, 0x90, 0xdc, 0x38}, {0xd2, 0x68, 0x50, 0x70, 0xc1, 0xe6, 0x37, 0x6e, 0x63, 0x3e, 0x82, 0x52, 0x96, 0x63, 0x4f, 0xd4, 0x61, 0xfa, 0x9e, 0x5b, 0xdf, 0x21, 0x09, 0xbc, 0xeb, 0xd7, 0x35, 0xe5, 0xa9, 0x1f, 0x3e, 0x58, 0x7c, 0x5c, 0xb7, 0x82, 0xab, 0xb7, 0x97, 0xfb, 0xf6, 0xbb, 0x50, 0x74, 0xfd, 0x15, 0x42, 0xa4, 0x74, 0xf2, 0xa4, 0x5b, 0x67, 0x37, 0x63, 0xec, 0x2d, 0xb7, 0xfb, 0x99, 0xb7, 0x37, 0xbb, 0xb9}, {0x56, 0xbd, 0x0c, 0x06, 0xf1, 0x03, 0x52, 0xc3, 0xa1, 0xa9, 0xf4, 0xb4, 0xc9, 0x2f, 0x6f, 0xa2, 0xb2, 0x6d, 0xf1, 0x24, 0xb5, 0x78, 0x78, 0x35, 0x3c, 0x1f, 0xc6, 0x91, 0xc5, 0x1a, 0xbe, 0xa7, 0x7c, 0x88, 0x17, 0xda, 0xee, 0xb9, 0xfa, 0x54, 0x6b, 0x77, 0xc8, 0xda, 0xf7, 0x9d, 0x89, 0xb2, 0x2b, 0x0e, 0x1b, 0x87, 0x57, 0x4e, 0xce, 0x42, 0x37, 0x1f, 0x00, 0x23, 0x7a, 0xa9, 0xd8, 0x3a}, 0, {0x19, 0x18, 0xb7, 0x41, 0xef, 0x5f, 0x9d, 0x1d, 0x76, 0x70, 0xb0, 0x50, 0xc1, 0x52, 0xb4, 0xa4, 0xea, 0xd2, 0xc3, 0x1b, 0xe9, 0xae, 0xcb, 0x06, 0x81, 0xc0, 0xcd, 0x43, 0x24, 0x15, 0x08, 0x53}},
{{0xa6, 0xec, 0x25, 0x12, 0x7c, 0xa1, 0xaa, 0x4c, 0xf1, 0x6b, 0x20, 0x08, 0x4b, 0xa1, 0xe6, 0x51, 0x6b, 0xaa, 0xe4, 0xd3, 0x24, 0x22, 0x28, 0x8e, 0x9b, 0x36, 0xd8, 0xbd, 0xdd, 0x2d, 0xe3, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x05, 0x3d, 0x7e, 0xcc, 0xa5, 0x3e, 0x33, 0xe1, 0x85, 0xa8, 0xb9, 0xbe, 0x4e, 0x76, 0x99, 0xa9, 0x7c, 0x6f, 0xf4, 0xc7, 0x95, 0x52, 0x2e, 0x59, 0x18, 0xab, 0x7c, 0xd6, 0xb6, 0x88, 0x4f, 0x67, 0xe6, 0x83, 0xf3, 0xdc}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, 0x73, 0x0b, 0xe3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 1, {0xdd, 0x21, 0x0a, 0xa6, 0x62, 0x9f, 0x20, 0xbb, 0x32, 0x8e, 0x5d, 0x89, 0xda, 0xa6, 0xeb, 0x2a, 0xc3, 0xd1, 0xc6, 0x58, 0xa7, 0x25, 0x53, 0x6f, 0xf1, 0x54, 0xf3, 0x1b, 0x53, 0x6c, 0x23, 0xb2}},
{{0x0a, 0xf9, 0x52, 0x65, 0x9e, 0xd7, 0x6f, 0x80, 0xf5, 0x85, 0x96, 0x6b, 0x95, 0xab, 0x6e, 0x6f, 0xd6, 0x86, 0x54, 0x67, 0x28, 0x27, 0x87, 0x86, 0x84, 0xc8, 0xb5, 0x47, 0xb1, 0xb9, 0x4f, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x10, 0x17, 0xfd, 0x92, 0xfd, 0x31, 0x63, 0x7c, 0x26, 0xc9, 0x06, 0xb4, 0x20, 0x92, 0xe1, 0x1c, 0xc0, 0xd3, 0xaf, 0xae, 0x8d, 0x90, 0x19, 0xd2, 0x57, 0x8a, 0xf2, 0x27, 0x35, 0xce, 0x7b, 0xc4, 0x69, 0xc7, 0x2d}, {0x96, 0x52, 0xd7, 0x8b, 0xae, 0xfc, 0x02, 0x8c, 0xd3, 0x7a, 0x6a, 0x92, 0x62, 0x5b, 0x8b, 0x8f, 0x85, 0xfd, 0xe1, 0xe4, 0xc9, 0x44, 0xad, 0x3f, 0x20, 0xe1, 0x98, 0xbe, 0xf8, 0xc0, 0x2f, 0x19, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf2, 0xe9, 0x18, 0x70}, 0, {0x35, 0x68, 0xf2, 0xae, 0xa2, 0xe1, 0x4e, 0xf4, 0xee, 0x4a, 0x3c, 0x2a, 0x8b, 0x8d, 0x31, 0xbc, 0x5e, 0x31, 0x87, 0xba, 0x86, 0xdb, 0x10, 0x73, 0x9b, 0x4f, 0xf8, 0xec, 0x92, 0xff, 0x66, 0x55}},
{{0xf9, 0x0e, 0x08, 0x0c, 0x64, 0xb0, 0x58, 0x24, 0xc5, 0xa2, 0x4b, 0x25, 0x01, 0xd5, 0xae, 0xaf, 0x08, 0xaf, 0x38, 0x72, 0xee, 0x86, 0x0a, 0xa8, 0x0b, 0xdc, 0xd4, 0x30, 0xf7, 0xb6, 0x34, 0x94}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, 0x51, 0x73, 0x76, 0x5d, 0xc2, 0x02, 0xcf, 0x02, 0x9a, 0xd3, 0xf1, 0x54, 0x79, 0x73, 0x5d, 0x57, 0x69, 0x7a, 0xf1, 0x2b, 0x01, 0x31, 0xdd, 0x21, 0x43, 0x0d, 0x57, 0x72, 0xe4, 0xef, 0x11, 0x47, 0x4d, 0x58, 0xb9}, {0x12, 0xa5, 0x0f, 0x3f, 0xaf, 0xea, 0x7c, 0x1e, 0xea, 0xda, 0x4c, 0xf8, 0xd3, 0x37, 0x77, 0x70, 0x4b, 0x77, 0x36, 0x14, 0x53, 0xaf, 0xc8, 0x3b, 0xda, 0x91, 0xee, 0xf3, 0x49, 0xae, 0x04, 0x4d, 0x20, 0x12, 0x6c, 0x62, 0x00, 0x54, 0x7e, 0xa5, 0xa6, 0x91, 0x17, 0x76, 0xc0, 0x5d, 0xee, 0x2a, 0x7f, 0x1a, 0x9b, 0xa7, 0xdf, 0xba, 0xbb, 0xbd, 0x27, 0x3c, 0x3e, 0xf2, 0x9e, 0xf4, 0x6e, 0x46}, 1, {0xe2, 0x54, 0x61, 0xfb, 0x0e, 0x4c, 0x16, 0x2e, 0x18, 0x12, 0x3e, 0xcd, 0xe8, 0x83, 0x42, 0xd5, 0x4d, 0x44, 0x96, 0x31, 0xe9, 0xb7, 0x5a, 0x26, 0x6f, 0xd9, 0x26, 0x0c, 0x2b, 0xb2, 0xf4, 0x1d}},
};
/** This is a hasher for ellswift_xdh which just returns the shared X coordinate.
*
* This is generally a bad idea as it means changes to the encoding of the
* exchanged public keys do not affect the shared secret. However, it's used here
* in tests to be able to verify the X coordinate through other means.
*/
static int ellswift_xdh_hash_x32(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
(void)ell_a64;
(void)ell_b64;
(void)data;
memcpy(output, x32, 32);
return 1;
}
void run_ellswift_tests(void) {
int i = 0;
/* Test vectors. */
for (i = 0; (unsigned)i < sizeof(ellswift_xswiftec_inv_tests) / sizeof(ellswift_xswiftec_inv_tests[0]); ++i) {
const struct ellswift_xswiftec_inv_test *testcase = &ellswift_xswiftec_inv_tests[i];
int c;
for (c = 0; c < 8; ++c) {
secp256k1_fe t;
int ret = secp256k1_ellswift_xswiftec_inv_var(&t, &testcase->x, &testcase->u, c);
CHECK(ret == ((testcase->enc_bitmap >> c) & 1));
if (ret) {
secp256k1_fe x2;
CHECK(check_fe_equal(&t, &testcase->encs[c]));
secp256k1_ellswift_xswiftec_var(&x2, &testcase->u, &testcase->encs[c]);
CHECK(check_fe_equal(&testcase->x, &x2));
}
}
}
for (i = 0; (unsigned)i < sizeof(ellswift_decode_tests) / sizeof(ellswift_decode_tests[0]); ++i) {
const struct ellswift_decode_test *testcase = &ellswift_decode_tests[i];
secp256k1_pubkey pubkey;
secp256k1_ge ge;
int ret;
ret = secp256k1_ellswift_decode(CTX, &pubkey, testcase->enc);
CHECK(ret);
ret = secp256k1_pubkey_load(CTX, &ge, &pubkey);
CHECK(ret);
CHECK(check_fe_equal(&testcase->x, &ge.x));
CHECK(secp256k1_fe_is_odd(&ge.y) == testcase->odd_y);
}
for (i = 0; (unsigned)i < sizeof(ellswift_xdh_tests_bip324) / sizeof(ellswift_xdh_tests_bip324[0]); ++i) {
const struct ellswift_xdh_test *test = &ellswift_xdh_tests_bip324[i];
unsigned char shared_secret[32];
int ret;
int party = !test->initiating;
const unsigned char* ell_a64 = party ? test->ellswift_theirs : test->ellswift_ours;
const unsigned char* ell_b64 = party ? test->ellswift_ours : test->ellswift_theirs;
ret = secp256k1_ellswift_xdh(CTX, shared_secret,
ell_a64, ell_b64,
test->priv_ours,
party,
secp256k1_ellswift_xdh_hash_function_bip324,
NULL);
CHECK(ret);
CHECK(secp256k1_memcmp_var(shared_secret, test->shared_secret, 32) == 0);
}
/* Verify that secp256k1_ellswift_encode + decode roundtrips. */
for (i = 0; i < 1000 * COUNT; i++) {
unsigned char rnd32[32];
unsigned char ell64[64];
secp256k1_ge g, g2;
secp256k1_pubkey pubkey, pubkey2;
/* Generate random public key and random randomizer. */
random_group_element_test(&g);
secp256k1_pubkey_save(&pubkey, &g);
secp256k1_testrand256(rnd32);
/* Convert the public key to ElligatorSwift and back. */
secp256k1_ellswift_encode(CTX, ell64, &pubkey, rnd32);
secp256k1_ellswift_decode(CTX, &pubkey2, ell64);
secp256k1_pubkey_load(CTX, &g2, &pubkey2);
/* Compare with original. */
CHECK(secp256k1_ge_eq_var(&g, &g2));
}
/* Verify the behavior of secp256k1_ellswift_create */
for (i = 0; i < 400 * COUNT; i++) {
unsigned char auxrnd32[32], sec32[32];
secp256k1_scalar sec;
secp256k1_gej res;
secp256k1_ge dec;
secp256k1_pubkey pub;
unsigned char ell64[64];
int ret;
/* Generate random secret key and random randomizer. */
if (i & 1) secp256k1_testrand256_test(auxrnd32);
random_scalar_order_test(&sec);
secp256k1_scalar_get_b32(sec32, &sec);
/* Construct ElligatorSwift-encoded public keys for that key. */
ret = secp256k1_ellswift_create(CTX, ell64, sec32, (i & 1) ? auxrnd32 : NULL);
CHECK(ret);
/* Decode it, and compare with traditionally-computed public key. */
secp256k1_ellswift_decode(CTX, &pub, ell64);
secp256k1_pubkey_load(CTX, &dec, &pub);
secp256k1_ecmult(&res, NULL, &secp256k1_scalar_zero, &sec);
CHECK(secp256k1_gej_eq_ge_var(&res, &dec));
}
/* Verify that secp256k1_ellswift_xdh computes the right shared X coordinate. */
for (i = 0; i < 800 * COUNT; i++) {
unsigned char ell64[64], sec32[32], share32[32];
secp256k1_scalar sec;
secp256k1_ge dec, res;
secp256k1_fe share_x;
secp256k1_gej decj, resj;
secp256k1_pubkey pub;
int ret;
/* Generate random secret key. */
random_scalar_order_test(&sec);
secp256k1_scalar_get_b32(sec32, &sec);
/* Generate random ElligatorSwift encoding for the remote key and decode it. */
secp256k1_testrand256_test(ell64);
secp256k1_testrand256_test(ell64 + 32);
secp256k1_ellswift_decode(CTX, &pub, ell64);
secp256k1_pubkey_load(CTX, &dec, &pub);
secp256k1_gej_set_ge(&decj, &dec);
/* Compute the X coordinate of seckey*pubkey using ellswift_xdh. Note that we
* pass ell64 as claimed (but incorrect) encoding for sec32 here; this works
* because the "hasher" function we use here ignores the ell64 arguments. */
ret = secp256k1_ellswift_xdh(CTX, share32, ell64, ell64, sec32, i & 1, &ellswift_xdh_hash_x32, NULL);
CHECK(ret);
(void)secp256k1_fe_set_b32_limit(&share_x, share32); /* no overflow is possible */
SECP256K1_FE_VERIFY(&share_x);
/* Compute seckey*pubkey directly. */
secp256k1_ecmult(&resj, &decj, &sec, NULL);
secp256k1_ge_set_gej(&res, &resj);
/* Compare. */
CHECK(check_fe_equal(&res.x, &share_x));
}
/* Verify the joint behavior of secp256k1_ellswift_xdh */
for (i = 0; i < 200 * COUNT; i++) {
unsigned char auxrnd32a[32], auxrnd32b[32], auxrnd32a_bad[32], auxrnd32b_bad[32];
unsigned char sec32a[32], sec32b[32], sec32a_bad[32], sec32b_bad[32];
secp256k1_scalar seca, secb;
unsigned char ell64a[64], ell64b[64], ell64a_bad[64], ell64b_bad[64];
unsigned char share32a[32], share32b[32], share32_bad[32];
unsigned char prefix64[64];
secp256k1_ellswift_xdh_hash_function hash_function;
void* data;
int ret;
/* Pick hasher to use. */
if ((i % 3) == 0) {
hash_function = ellswift_xdh_hash_x32;
data = NULL;
} else if ((i % 3) == 1) {
hash_function = secp256k1_ellswift_xdh_hash_function_bip324;
data = NULL;
} else {
hash_function = secp256k1_ellswift_xdh_hash_function_prefix;
secp256k1_testrand256_test(prefix64);
secp256k1_testrand256_test(prefix64 + 32);
data = prefix64;
}
/* Generate random secret keys and random randomizers. */
secp256k1_testrand256_test(auxrnd32a);
secp256k1_testrand256_test(auxrnd32b);
random_scalar_order_test(&seca);
/* Draw secb uniformly at random to make sure that the secret keys
* differ */
random_scalar_order(&secb);
secp256k1_scalar_get_b32(sec32a, &seca);
secp256k1_scalar_get_b32(sec32b, &secb);
/* Construct ElligatorSwift-encoded public keys for those keys. */
/* For A: */
ret = secp256k1_ellswift_create(CTX, ell64a, sec32a, auxrnd32a);
CHECK(ret);
/* For B: */
ret = secp256k1_ellswift_create(CTX, ell64b, sec32b, auxrnd32b);
CHECK(ret);
/* Compute the shared secret both ways and compare with each other. */
/* For A: */
ret = secp256k1_ellswift_xdh(CTX, share32a, ell64a, ell64b, sec32a, 0, hash_function, data);
CHECK(ret);
/* For B: */
ret = secp256k1_ellswift_xdh(CTX, share32b, ell64a, ell64b, sec32b, 1, hash_function, data);
CHECK(ret);
/* And compare: */
CHECK(secp256k1_memcmp_var(share32a, share32b, 32) == 0);
/* Verify that the shared secret doesn't match if other side's public key is incorrect. */
/* For A (using a bad public key for B): */
memcpy(ell64b_bad, ell64b, sizeof(ell64a_bad));
secp256k1_testrand_flip(ell64b_bad, sizeof(ell64b_bad));
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
CHECK(ret); /* Mismatching encodings don't get detected by secp256k1_ellswift_xdh. */
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
/* For B (using a bad public key for A): */
memcpy(ell64a_bad, ell64a, sizeof(ell64a_bad));
secp256k1_testrand_flip(ell64a_bad, sizeof(ell64a_bad));
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
CHECK(ret);
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
/* Verify that the shared secret doesn't match if the private key is incorrect. */
/* For A: */
memcpy(sec32a_bad, sec32a, sizeof(sec32a_bad));
secp256k1_testrand_flip(sec32a_bad, sizeof(sec32a_bad));
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a_bad, 0, hash_function, data);
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
/* For B: */
memcpy(sec32b_bad, sec32b, sizeof(sec32b_bad));
secp256k1_testrand_flip(sec32b_bad, sizeof(sec32b_bad));
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b_bad, 1, hash_function, data);
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
if (hash_function != ellswift_xdh_hash_x32) {
/* Verify that the shared secret doesn't match when a different encoding of the same public key is used. */
/* For A (changing B's public key): */
memcpy(auxrnd32b_bad, auxrnd32b, sizeof(auxrnd32b_bad));
secp256k1_testrand_flip(auxrnd32b_bad, sizeof(auxrnd32b_bad));
ret = secp256k1_ellswift_create(CTX, ell64b_bad, sec32b, auxrnd32b_bad);
CHECK(ret);
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
CHECK(ret);
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
/* For B (changing A's public key): */
memcpy(auxrnd32a_bad, auxrnd32a, sizeof(auxrnd32a_bad));
secp256k1_testrand_flip(auxrnd32a_bad, sizeof(auxrnd32a_bad));
ret = secp256k1_ellswift_create(CTX, ell64a_bad, sec32a, auxrnd32a_bad);
CHECK(ret);
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
CHECK(ret);
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
/* Verify that swapping sides changes the shared secret. */
/* For A (claiming to be B): */
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a, 1, hash_function, data);
CHECK(ret);
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
/* For B (claiming to be A): */
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b, 0, hash_function, data);
CHECK(ret);
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
}
}
/* Test hash initializers. */
{
secp256k1_sha256 sha, sha_optimized;
static const unsigned char encode_tag[25] = "secp256k1_ellswift_encode";
static const unsigned char create_tag[25] = "secp256k1_ellswift_create";
static const unsigned char bip324_tag[26] = "bip324_ellswift_xonly_ecdh";
/* Check that hash initialized by
* secp256k1_ellswift_sha256_init_encode has the expected
* state. */
secp256k1_sha256_initialize_tagged(&sha, encode_tag, sizeof(encode_tag));
secp256k1_ellswift_sha256_init_encode(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
/* Check that hash initialized by
* secp256k1_ellswift_sha256_init_create has the expected
* state. */
secp256k1_sha256_initialize_tagged(&sha, create_tag, sizeof(create_tag));
secp256k1_ellswift_sha256_init_create(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
/* Check that hash initialized by
* secp256k1_ellswift_sha256_init_bip324 has the expected
* state. */
secp256k1_sha256_initialize_tagged(&sha, bip324_tag, sizeof(bip324_tag));
secp256k1_ellswift_sha256_init_bip324(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
}
}
#endif

View File

@@ -48,7 +48,7 @@ static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp25
/* Compare the xonly_pubkey bytes against the precomputed group. */
secp256k1_fe_set_b32_mod(&fe, xonly_pubkey_bytes[i - 1]);
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));
CHECK(secp256k1_fe_equal(&fe, &group[i].x));
/* Check the parity against the precomputed group. */
fe = group[i].y;

View File

@@ -9,11 +9,6 @@
#include "../../../include/secp256k1_extrakeys.h"
static void set_counting_callbacks(secp256k1_context *ctx0, int *ecount) {
secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount);
secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount);
}
static void test_xonly_pubkey(void) {
secp256k1_pubkey pk;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
@@ -28,10 +23,6 @@ static void test_xonly_pubkey(void) {
int pk_parity;
int i;
int ecount;
set_counting_callbacks(CTX, &ecount);
secp256k1_testrand256(sk);
memset(ones32, 0xFF, 32);
secp256k1_testrand256(xy_sk);
@@ -39,16 +30,12 @@ static void test_xonly_pubkey(void) {
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, &pk) == 1);
/* Test xonly_pubkey_from_pubkey */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, NULL, &pk_parity, &pk) == 0);
CHECK(ecount == 1);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_from_pubkey(CTX, NULL, &pk_parity, &pk));
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, NULL, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, NULL));
memset(&pk, 0, sizeof(pk));
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, &pk) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, &pk_parity, &pk));
/* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */
memset(sk, 0, sizeof(sk));
@@ -72,28 +59,21 @@ static void test_xonly_pubkey(void) {
CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1);
/* Test xonly_pubkey_serialize and xonly_pubkey_parse */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_serialize(CTX, NULL, &xonly_pk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_serialize(CTX, buf32, NULL) == 0);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_serialize(CTX, NULL, &xonly_pk));
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_serialize(CTX, buf32, NULL));
CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0);
CHECK(ecount == 2);
{
/* A pubkey filled with 0s will fail to serialize due to pubkey_load
* special casing. */
secp256k1_xonly_pubkey pk_tmp;
memset(&pk_tmp, 0, sizeof(pk_tmp));
CHECK(secp256k1_xonly_pubkey_serialize(CTX, buf32, &pk_tmp) == 0);
/* pubkey_load calls illegal callback */
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_serialize(CTX, buf32, &pk_tmp));
}
/* pubkey_load called illegal callback */
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_serialize(CTX, buf32, &xonly_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_parse(CTX, NULL, buf32) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_parse(CTX, &xonly_pk, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_parse(CTX, NULL, buf32));
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_parse(CTX, &xonly_pk, NULL));
/* Serialization and parse roundtrip */
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &xonly_pk, NULL, &pk) == 1);
@@ -125,7 +105,6 @@ static void test_xonly_pubkey(void) {
CHECK(secp256k1_xonly_pubkey_parse(CTX, &xonly_pk, &rand33[1]) == 1);
}
}
CHECK(ecount == 2);
}
static void test_xonly_pubkey_comparison(void) {
@@ -139,29 +118,26 @@ static void test_xonly_pubkey_comparison(void) {
};
secp256k1_xonly_pubkey pk1;
secp256k1_xonly_pubkey pk2;
int ecount = 0;
set_counting_callbacks(CTX, &ecount);
CHECK(secp256k1_xonly_pubkey_parse(CTX, &pk1, pk1_ser) == 1);
CHECK(secp256k1_xonly_pubkey_parse(CTX, &pk2, pk2_ser) == 1);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, NULL, &pk2) < 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, NULL) > 0);
CHECK(ecount == 2);
CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_xonly_pubkey_cmp(CTX, NULL, &pk2) < 0));
CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, NULL) > 0));
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk2) < 0);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk2, &pk1) > 0);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk1) == 0);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk2, &pk2) == 0);
CHECK(ecount == 2);
memset(&pk1, 0, sizeof(pk1)); /* illegal pubkey */
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk2) < 0);
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk1) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk2, &pk1) > 0);
CHECK(ecount == 6);
CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk2) < 0));
{
int32_t ecount = 0;
secp256k1_context_set_illegal_callback(CTX, counting_callback_fn, &ecount);
CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk1, &pk1) == 0);
CHECK(ecount == 2);
secp256k1_context_set_illegal_callback(CTX, NULL, NULL);
}
CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_xonly_pubkey_cmp(CTX, &pk2, &pk1) > 0));
}
static void test_xonly_pubkey_tweak(void) {
@@ -175,30 +151,20 @@ static void test_xonly_pubkey_tweak(void) {
unsigned char tweak[32];
int i;
int ecount;
set_counting_callbacks(CTX, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_testrand256(tweak);
secp256k1_testrand256(sk);
CHECK(secp256k1_ec_pubkey_create(CTX, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, NULL, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, NULL, tweak) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add(CTX, NULL, &internal_xonly_pk, tweak));
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, NULL, tweak));
/* NULL internal_xonly_pk zeroes the output_pk */
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, NULL));
/* NULL tweak zeroes the output_pk */
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
@@ -225,9 +191,7 @@ static void test_xonly_pubkey_tweak(void) {
/* Invalid pk with a valid tweak */
memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
secp256k1_testrand256(tweak);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak));
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
}
@@ -244,34 +208,23 @@ static void test_xonly_pubkey_tweak_check(void) {
int pk_parity;
unsigned char tweak[32];
int ecount;
set_counting_callbacks(CTX, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_testrand256(tweak);
secp256k1_testrand256(sk);
CHECK(secp256k1_ec_pubkey_create(CTX, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &output_xonly_pk, &pk_parity, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(CTX, buf32, &output_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, NULL, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add_check(CTX, NULL, pk_parity, &internal_xonly_pk, tweak));
/* invalid pk_parity value */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, 2, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, NULL, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, NULL, tweak));
CHECK_ILLEGAL(CTX, secp256k1_xonly_pubkey_tweak_add_check(CTX, buf32, pk_parity, &internal_xonly_pk, NULL));
memset(tweak, 1, sizeof(tweak));
CHECK(secp256k1_xonly_pubkey_from_pubkey(CTX, &internal_xonly_pk, NULL, &internal_pk) == 1);
@@ -290,7 +243,6 @@ static void test_xonly_pubkey_tweak_check(void) {
CHECK(secp256k1_xonly_pubkey_tweak_add_check(CTX, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(CTX, &output_pk, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(ecount == 3);
}
/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1
@@ -335,33 +287,22 @@ static void test_keypair(void) {
secp256k1_pubkey pk, pk_tmp;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
int pk_parity, pk_parity_tmp;
int ecount;
set_counting_callbacks(CTX, &ecount);
set_counting_callbacks(STATIC_CTX, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
memset(overflows, 0xFF, sizeof(overflows));
/* Test keypair_create */
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) != 0);
CHECK(ecount == 0);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) != 0);
CHECK(ecount == 0);
CHECK(secp256k1_keypair_create(CTX, NULL, sk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_create(CTX, &keypair, NULL) == 0);
CHECK_ILLEGAL(CTX, secp256k1_keypair_create(CTX, NULL, sk));
CHECK_ILLEGAL(CTX, secp256k1_keypair_create(CTX, &keypair, NULL));
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_create(STATIC_CTX, &keypair, sk) == 0);
CHECK_ILLEGAL(STATIC_CTX, secp256k1_keypair_create(STATIC_CTX, &keypair, sk));
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 3);
/* Invalid secret key */
CHECK(secp256k1_keypair_create(CTX, &keypair, zeros96) == 0);
@@ -370,14 +311,11 @@ static void test_keypair(void) {
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
/* Test keypair_pub */
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_keypair_pub(CTX, &pk, &keypair) == 1);
CHECK(secp256k1_keypair_pub(CTX, NULL, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_pub(CTX, &pk, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_keypair_pub(CTX, NULL, &keypair));
CHECK_ILLEGAL(CTX, secp256k1_keypair_pub(CTX, &pk, NULL));
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
/* Using an invalid keypair is fine for keypair_pub */
@@ -392,23 +330,19 @@ static void test_keypair(void) {
CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0);
/** Test keypair_xonly_pub **/
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(CTX, NULL, &pk_parity, &keypair) == 0);
CHECK(ecount == 1);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_pub(CTX, NULL, &pk_parity, &keypair));
CHECK(secp256k1_keypair_xonly_pub(CTX, &xonly_pk, NULL, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, NULL));
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
/* Using an invalid keypair will set the xonly_pk to 0 (first reset
* xonly_pk). */
CHECK(secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, &keypair) == 1);
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, &keypair) == 0);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_pub(CTX, &xonly_pk, &pk_parity, &keypair));
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
CHECK(ecount == 3);
/** keypair holds the same xonly pubkey as pubkey_create **/
CHECK(secp256k1_ec_pubkey_create(CTX, &pk, sk) == 1);
@@ -419,14 +353,11 @@ static void test_keypair(void) {
CHECK(pk_parity == pk_parity_tmp);
/* Test keypair_seckey */
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_keypair_sec(CTX, sk_tmp, &keypair) == 1);
CHECK(secp256k1_keypair_sec(CTX, NULL, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_sec(CTX, sk_tmp, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_keypair_sec(CTX, NULL, &keypair));
CHECK_ILLEGAL(CTX, secp256k1_keypair_sec(CTX, sk_tmp, NULL));
CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
/* keypair returns the same seckey it got */
@@ -439,9 +370,6 @@ static void test_keypair(void) {
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_sec(CTX, sk_tmp, &keypair) == 1);
CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
secp256k1_context_set_error_callback(STATIC_CTX, NULL, NULL);
secp256k1_context_set_illegal_callback(STATIC_CTX, NULL, NULL);
}
static void test_keypair_add(void) {
@@ -451,9 +379,6 @@ static void test_keypair_add(void) {
unsigned char zeros96[96] = { 0 };
unsigned char tweak[32];
int i;
int ecount = 0;
set_counting_callbacks(CTX, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
secp256k1_testrand256(sk);
@@ -462,14 +387,10 @@ static void test_keypair_add(void) {
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, NULL, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_tweak_add(CTX, NULL, tweak));
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_tweak_add(CTX, &keypair, NULL));
/* This does not set the keypair to zeroes */
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0);
@@ -503,20 +424,16 @@ static void test_keypair_add(void) {
/* Invalid keypair with a valid tweak */
memset(&keypair, 0, sizeof(keypair));
secp256k1_testrand256(tweak);
ecount = 0;
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 0);
CHECK(ecount == 1);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak));
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
/* Only seckey part of keypair invalid */
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
memset(&keypair, 0, 32);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak));
/* Only pubkey part of keypair invalid */
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);
memset(&keypair.data[32], 0, 64);
CHECK(secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_keypair_xonly_tweak_add(CTX, &keypair, tweak));
/* Check that the keypair_tweak_add implementation is correct */
CHECK(secp256k1_keypair_create(CTX, &keypair, sk) == 1);

View File

@@ -36,7 +36,6 @@ static void test_ecdsa_recovery_api(void) {
secp256k1_ecdsa_recoverable_signature recsig;
unsigned char privkey[32] = { 1 };
unsigned char message[32] = { 2 };
int32_t ecount = 0;
int recid = 0;
unsigned char sig[74];
unsigned char zero_privkey[32] = { 0 };
@@ -45,86 +44,52 @@ static void test_ecdsa_recovery_api(void) {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
secp256k1_context_set_error_callback(CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(STATIC_CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(STATIC_CTX, counting_illegal_callback_fn, &ecount);
/* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(CTX, privkey) == 1);
CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, privkey) == 1);
/* Check bad contexts and NULLs for signing */
ecount = 0;
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, NULL, message, privkey, NULL, NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, NULL, privkey, NULL, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, NULL, NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_ecdsa_sign_recoverable(STATIC_CTX, &recsig, message, privkey, NULL, NULL) == 0);
CHECK(ecount == 4);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, NULL, message, privkey, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, &recsig, NULL, privkey, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, NULL, NULL, NULL));
CHECK_ILLEGAL(STATIC_CTX, secp256k1_ecdsa_sign_recoverable(STATIC_CTX, &recsig, message, privkey, NULL, NULL));
/* This will fail or succeed randomly, and in either case will not ARG_CHECK failure */
secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, recovery_test_nonce_function, NULL);
CHECK(ecount == 4);
/* These will all fail, but not in ARG_CHECK way */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, zero_privkey, NULL, NULL) == 0);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, over_privkey, NULL, NULL) == 0);
/* This one will succeed. */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
CHECK(ecount == 4);
/* Check signing with a goofy nonce function */
/* Check bad contexts and NULLs for recovery */
ecount = 0;
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, &recsig, message) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_ecdsa_recover(CTX, NULL, &recsig, message) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, NULL, message) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, &recsig, NULL) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, NULL, &recsig, message));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, &recpubkey, NULL, message));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, &recpubkey, &recsig, NULL));
/* Check NULLs for conversion */
CHECK(secp256k1_ecdsa_sign(CTX, &normal_sig, message, privkey, NULL, NULL) == 1);
ecount = 0;
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, NULL, &recsig) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &normal_sig, NULL) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_convert(CTX, NULL, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_convert(CTX, &normal_sig, NULL));
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &normal_sig, &recsig) == 1);
/* Check NULLs for de/serialization */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
ecount = 0;
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, NULL, &recid, &recsig) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, NULL, &recsig) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, NULL) == 0);
CHECK(ecount == 3);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, NULL, &recid, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, NULL, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, NULL));
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, &recsig) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, NULL, sig, recid) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, NULL, recid) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, -1) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, 5) == 0);
CHECK(ecount == 7);
/* overflow in signature will fail but not affect ecount */
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, NULL, sig, recid));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, NULL, recid));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, -1));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, 5));
/* overflow in signature will not result in calling illegal_callback */
memcpy(sig, over_privkey, 32);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, recid) == 0);
CHECK(ecount == 7);
/* cleanup */
secp256k1_context_set_error_callback(STATIC_CTX, NULL, NULL);
secp256k1_context_set_illegal_callback(STATIC_CTX, NULL, NULL);
}
static void test_ecdsa_recovery_end_to_end(void) {

View File

@@ -261,7 +261,7 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha
secp256k1_fe_normalize_var(&r.y);
return !secp256k1_fe_is_odd(&r.y) &&
secp256k1_fe_equal_var(&rx, &r.x);
secp256k1_fe_equal(&rx, &r.x);
}
#endif

View File

@@ -110,15 +110,15 @@ static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, cons
if (!e_done[e]) {
/* Iterate over the possible valid last 32 bytes in the signature.
0..order=that s value; order+1=random bytes */
int count_valid = 0, s;
int count_valid = 0;
unsigned int s;
for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) {
int expect_valid, valid;
if (s <= EXHAUSTIVE_TEST_ORDER) {
secp256k1_scalar s_s;
secp256k1_scalar_set_int(&s_s, s);
secp256k1_scalar_get_b32(sig64 + 32, &s_s);
memset(sig64 + 32, 0, 32);
secp256k1_write_be32(sig64 + 60, s);
expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER &&
(s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER);
(s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER);
} else {
secp256k1_testrand256(sig64 + 32);
expect_valid = 0;

View File

@@ -20,17 +20,6 @@ static void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, s
CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0);
}
/* Tests for the equality of two sha256 structs. This function only produces a
* correct result if an integer multiple of 64 many bytes have been written
* into the hash functions. */
static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
/* Is buffer fully consumed? */
CHECK((sha1->bytes & 0x3F) == 0);
CHECK(sha1->bytes == sha2->bytes);
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
}
static void run_nonce_function_bip340_tests(void) {
unsigned char tag[13] = "BIP0340/nonce";
unsigned char aux_tag[11] = "BIP0340/aux";
@@ -127,14 +116,6 @@ static void test_schnorrsig_api(void) {
secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
secp256k1_schnorrsig_extraparams invalid_extraparams = {{ 0 }, NULL, NULL};
/** setup **/
int ecount = 0;
secp256k1_context_set_error_callback(CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(STATIC_CTX, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(STATIC_CTX, counting_illegal_callback_fn, &ecount);
secp256k1_testrand256(sk1);
secp256k1_testrand256(sk2);
secp256k1_testrand256(sk3);
@@ -148,57 +129,30 @@ static void test_schnorrsig_api(void) {
memset(&zero_pk, 0, sizeof(zero_pk));
/** main test body **/
ecount = 0;
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg, &keypairs[0], NULL) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_schnorrsig_sign32(CTX, NULL, msg, &keypairs[0], NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, NULL, &keypairs[0], NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg, NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg, &invalid_keypair, NULL) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_sign32(STATIC_CTX, sig, msg, &keypairs[0], NULL) == 0);
CHECK(ecount == 5);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign32(CTX, NULL, msg, &keypairs[0], NULL));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign32(CTX, sig, NULL, &keypairs[0], NULL));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign32(CTX, sig, msg, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign32(CTX, sig, msg, &invalid_keypair, NULL));
CHECK_ILLEGAL(STATIC_CTX, secp256k1_schnorrsig_sign32(STATIC_CTX, sig, msg, &keypairs[0], NULL));
ecount = 0;
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &keypairs[0], &extraparams) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_schnorrsig_sign_custom(CTX, NULL, msg, sizeof(msg), &keypairs[0], &extraparams) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, NULL, sizeof(msg), &keypairs[0], &extraparams) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign_custom(CTX, NULL, msg, sizeof(msg), &keypairs[0], &extraparams));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign_custom(CTX, sig, NULL, sizeof(msg), &keypairs[0], &extraparams));
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, NULL, 0, &keypairs[0], &extraparams) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), NULL, &extraparams) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &invalid_keypair, &extraparams) == 0);
CHECK(ecount == 4);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), NULL, &extraparams));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &invalid_keypair, &extraparams));
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &keypairs[0], NULL) == 1);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &keypairs[0], &invalid_extraparams) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_schnorrsig_sign_custom(STATIC_CTX, sig, msg, sizeof(msg), &keypairs[0], &extraparams) == 0);
CHECK(ecount == 6);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_sign_custom(CTX, sig, msg, sizeof(msg), &keypairs[0], &invalid_extraparams));
CHECK_ILLEGAL(STATIC_CTX, secp256k1_schnorrsig_sign_custom(STATIC_CTX, sig, msg, sizeof(msg), &keypairs[0], &extraparams));
ecount = 0;
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg, &keypairs[0], NULL) == 1);
CHECK(secp256k1_schnorrsig_verify(CTX, sig, msg, sizeof(msg), &pk[0]) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_schnorrsig_verify(CTX, NULL, msg, sizeof(msg), &pk[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_verify(CTX, sig, NULL, sizeof(msg), &pk[0]) == 0);
CHECK(ecount == 2);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_verify(CTX, NULL, msg, sizeof(msg), &pk[0]));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_verify(CTX, sig, NULL, sizeof(msg), &pk[0]));
CHECK(secp256k1_schnorrsig_verify(CTX, sig, NULL, 0, &pk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify(CTX, sig, msg, sizeof(msg), NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_verify(CTX, sig, msg, sizeof(msg), &zero_pk) == 0);
CHECK(ecount == 4);
secp256k1_context_set_error_callback(STATIC_CTX, NULL, NULL);
secp256k1_context_set_illegal_callback(STATIC_CTX, NULL, NULL);
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_verify(CTX, sig, msg, sizeof(msg), NULL));
CHECK_ILLEGAL(CTX, secp256k1_schnorrsig_verify(CTX, sig, msg, sizeof(msg), &zero_pk));
}
/* Checks that hash initialized by secp256k1_schnorrsig_sha256_tagged has the

View File

@@ -56,11 +56,12 @@ static void print_two_tables(FILE *fp, int window_g) {
int main(void) {
/* Always compute all tables for window sizes up to 15. */
int window_g = (ECMULT_WINDOW_SIZE < 15) ? 15 : ECMULT_WINDOW_SIZE;
const char outfile[] = "src/precomputed_ecmult.c";
FILE* fp;
fp = fopen("src/precomputed_ecmult.c","w");
fp = fopen(outfile, "w");
if (fp == NULL) {
fprintf(stderr, "Could not open src/precomputed_ecmult.h for writing!\n");
fprintf(stderr, "Could not open %s for writing!\n", outfile);
return -1;
}
@@ -68,7 +69,6 @@ int main(void) {
fprintf(fp, "/* This file contains an array secp256k1_pre_g with odd multiples of the base point G and\n");
fprintf(fp, " * an array secp256k1_pre_g_128 with odd multiples of 2^128*G for accelerating the computation of a*P + b*G.\n");
fprintf(fp, " */\n");
fprintf(fp, "#include \"../include/secp256k1.h\"\n");
fprintf(fp, "#include \"group.h\"\n");
fprintf(fp, "#include \"ecmult.h\"\n");
fprintf(fp, "#include \"precomputed_ecmult.h\"\n");

View File

@@ -33,7 +33,6 @@ int main(int argc, char **argv) {
fprintf(fp, "/* This file was automatically generated by precompute_ecmult_gen. */\n");
fprintf(fp, "/* See ecmult_gen_impl.h for details about the contents of this file. */\n");
fprintf(fp, "#include \"../include/secp256k1.h\"\n");
fprintf(fp, "#include \"group.h\"\n");
fprintf(fp, "#include \"ecmult_gen.h\"\n");
fprintf(fp, "#include \"precomputed_ecmult_gen.h\"\n");

View File

@@ -2,7 +2,6 @@
/* This file contains an array secp256k1_pre_g with odd multiples of the base point G and
* an array secp256k1_pre_g_128 with odd multiples of 2^128*G for accelerating the computation of a*P + b*G.
*/
#include "../include/secp256k1.h"
#include "group.h"
#include "ecmult.h"
#include "precomputed_ecmult.h"

View File

@@ -11,6 +11,7 @@
extern "C" {
#endif
#include "ecmult.h"
#include "group.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 7

View File

@@ -1,6 +1,5 @@
/* This file was automatically generated by precompute_ecmult_gen. */
/* See ecmult_gen_impl.h for details about the contents of this file. */
#include "../include/secp256k1.h"
#include "group.h"
#include "ecmult_gen.h"
#include "precomputed_ecmult_gen.h"

View File

@@ -25,7 +25,7 @@ static void secp256k1_scalar_clear(secp256k1_scalar *r);
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Access bits from a scalar. Not constant time. */
/** Access bits from a scalar. Not constant time in offset and count. */
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Set a scalar from a big endian byte array. The scalar will be reduced modulo group order `n`.
@@ -54,10 +54,6 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
/** Multiply two scalars (modulo the group order). */
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Shift a scalar right by some amount strictly between 0 and 16, returning
* the low bits that were shifted off */
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
/** Compute the inverse of a scalar (modulo the group order). */
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
@@ -67,6 +63,9 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc
/** Compute the complement of a scalar (modulo the group order). */
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Multiply a scalar with the multiplicative inverse of 2. */
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Check whether a scalar equals zero. */
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
@@ -99,4 +98,8 @@ static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag);
/** Check invariants on a scalar (no-op unless VERIFY is enabled). */
static void secp256k1_scalar_verify(const secp256k1_scalar *r);
#define SECP256K1_SCALAR_VERIFY(r) secp256k1_scalar_verify(r)
#endif /* SECP256K1_SCALAR_H */

View File

@@ -41,16 +41,22 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsig
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 6 == offset >> 6) {
return secp256k1_scalar_get_bits(a, offset, count);
} else {
@@ -74,6 +80,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
secp256k1_uint128 t;
VERIFY_CHECK(overflow <= 1);
secp256k1_u128_from_u64(&t, r->d[0]);
secp256k1_u128_accum_u64(&t, overflow * SECP256K1_N_C_0);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
@@ -85,12 +92,17 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigne
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, r->d[3]);
r->d[3] = secp256k1_u128_to_u64(&t);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_u128_from_u64(&t, a->d[0]);
secp256k1_u128_accum_u64(&t, b->d[0]);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
@@ -106,13 +118,17 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a,
overflow = secp256k1_u128_to_u64(&t) + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
secp256k1_uint128 t;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
secp256k1_u128_from_u64(&t, r->d[0]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
@@ -126,37 +142,45 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
secp256k1_u128_accum_u64(&t, r->d[3]);
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
r->d[3] = secp256k1_u128_to_u64(&t);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_u128_hi_u64(&t) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
r->d[0] = secp256k1_read_be64(&b32[24]);
r->d[1] = secp256k1_read_be64(&b32[16]);
r->d[2] = secp256k1_read_be64(&b32[8]);
r->d[3] = secp256k1_read_be64(&b32[0]);
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
SECP256K1_SCALAR_VERIFY(a);
secp256k1_write_be64(&bin[0], a->d[3]);
secp256k1_write_be64(&bin[8], a->d[2]);
secp256k1_write_be64(&bin[16], a->d[1]);
secp256k1_write_be64(&bin[24], a->d[0]);
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
secp256k1_u128_from_u64(&t, ~a->d[0]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_0 + 1);
r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
@@ -169,15 +193,62 @@ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar
secp256k1_u128_accum_u64(&t, ~a->d[3]);
secp256k1_u128_accum_u64(&t, SECP256K1_N_3);
r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
/* Writing `/` for field division and `//` for integer division, we compute
*
* a/2 = (a - (a&1))/2 + (a&1)/2
* = (a >> 1) + (a&1 ? 1/2 : 0)
* = (a >> 1) + (a&1 ? n//2+1 : 0),
*
* where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
* For n//2, we have the constants SECP256K1_N_H_0, ...
*
* This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
* - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
* - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
* Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
*/
uint64_t mask = -(uint64_t)(a->d[0] & 1U);
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(a);
secp256k1_u128_from_u64(&t, (a->d[0] >> 1) | (a->d[1] << 63));
secp256k1_u128_accum_u64(&t, (SECP256K1_N_H_0 + 1U) & mask);
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, (a->d[1] >> 1) | (a->d[2] << 63));
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_1 & mask);
r->d[1] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
secp256k1_u128_accum_u64(&t, (a->d[2] >> 1) | (a->d[3] << 63));
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_2 & mask);
r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
r->d[3] = secp256k1_u128_to_u64(&t) + (a->d[3] >> 1) + (SECP256K1_N_H_3 & mask);
#ifdef VERIFY
/* The line above only computed the bottom 64 bits of r->d[3]; redo the computation
* in full 128 bits to make sure the top 64 bits are indeed zero. */
secp256k1_u128_accum_u64(&t, a->d[3] >> 1);
secp256k1_u128_accum_u64(&t, SECP256K1_N_H_3 & mask);
secp256k1_u128_rshift(&t, 64);
VERIFY_CHECK(secp256k1_u128_to_u64(&t) == 0);
SECP256K1_SCALAR_VERIFY(r);
#endif
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
SECP256K1_SCALAR_VERIFY(a);
no |= (a->d[3] < SECP256K1_N_H_3);
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
@@ -194,6 +265,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
uint64_t mask = -vflag;
uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
secp256k1_uint128 t;
SECP256K1_SCALAR_VERIFY(r);
secp256k1_u128_from_u64(&t, r->d[0] ^ mask);
secp256k1_u128_accum_u64(&t, (SECP256K1_N_0 + 1) & mask);
r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
@@ -206,6 +279,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
secp256k1_u128_accum_u64(&t, r->d[3] ^ mask);
secp256k1_u128_accum_u64(&t, SECP256K1_N_3 & mask);
r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
SECP256K1_SCALAR_VERIFY(r);
return 2 * (mask == 0) - 1;
}
@@ -764,23 +839,18 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, c
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint64_t l[8];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = r->d[0] & ((1 << n) - 1);
r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
r->d[3] = (r->d[3] >> n);
return ret;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
SECP256K1_SCALAR_VERIFY(k);
r1->d[0] = k->d[0];
r1->d[1] = k->d[1];
r1->d[2] = 0;
@@ -789,9 +859,15 @@ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r
r2->d[1] = k->d[3];
r2->d[2] = 0;
r2->d[3] = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
}
@@ -800,7 +876,10 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r,
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 6;
shiftlow = shift & 0x3F;
@@ -810,18 +889,24 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r,
r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
SECP256K1_SCALAR_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint64_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
mask0 = vflag + ~((uint64_t)0);
mask1 = ~mask0;
r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) {
@@ -841,18 +926,13 @@ static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_
r->d[2] = a2 >> 4 | a3 << 58;
r->d[3] = a3 >> 6 | a4 << 56;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) {
const uint64_t M62 = UINT64_MAX >> 2;
const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
#ifdef VERIFY
VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0);
#endif
SECP256K1_SCALAR_VERIFY(a);
r->v[0] = a0 & M62;
r->v[1] = (a0 >> 62 | a1 << 2) & M62;
@@ -871,13 +951,14 @@ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed62(&s, x);
secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed62(r, &s);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
#endif
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
@@ -885,16 +966,19 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed62(&s, x);
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed62(r, &s);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
#endif
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(a->d[0] & 1);
}

View File

@@ -58,16 +58,22 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsig
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 5 == offset >> 5) {
return secp256k1_scalar_get_bits(a, offset, count);
} else {
@@ -97,6 +103,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
uint64_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
@@ -113,12 +120,17 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_
r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[7];
r->d[7] = t & 0xFFFFFFFFUL;
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint64_t t = (uint64_t)a->d[0] + b->d[0];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[1] + b->d[1];
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
@@ -137,13 +149,17 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a,
overflow = t + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint64_t t;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
@@ -161,46 +177,53 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
r->d[7] = t & 0xFFFFFFFFULL;
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK((t >> 32) == 0);
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
r->d[0] = secp256k1_read_be32(&b32[28]);
r->d[1] = secp256k1_read_be32(&b32[24]);
r->d[2] = secp256k1_read_be32(&b32[20]);
r->d[3] = secp256k1_read_be32(&b32[16]);
r->d[4] = secp256k1_read_be32(&b32[12]);
r->d[5] = secp256k1_read_be32(&b32[8]);
r->d[6] = secp256k1_read_be32(&b32[4]);
r->d[7] = secp256k1_read_be32(&b32[0]);
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
SECP256K1_SCALAR_VERIFY(a);
secp256k1_write_be32(&bin[0], a->d[7]);
secp256k1_write_be32(&bin[4], a->d[6]);
secp256k1_write_be32(&bin[8], a->d[5]);
secp256k1_write_be32(&bin[12], a->d[4]);
secp256k1_write_be32(&bin[16], a->d[3]);
secp256k1_write_be32(&bin[20], a->d[2]);
secp256k1_write_be32(&bin[24], a->d[1]);
secp256k1_write_be32(&bin[28], a->d[0]);
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
SECP256K1_SCALAR_VERIFY(a);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
r->d[1] = t & nonzero; t >>= 32;
@@ -216,15 +239,69 @@ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
r->d[7] = t & nonzero;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
/* Writing `/` for field division and `//` for integer division, we compute
*
* a/2 = (a - (a&1))/2 + (a&1)/2
* = (a >> 1) + (a&1 ? 1/2 : 0)
* = (a >> 1) + (a&1 ? n//2+1 : 0),
*
* where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
* For n//2, we have the constants SECP256K1_N_H_0, ...
*
* This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
* - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
* - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
* Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
*/
uint32_t mask = -(uint32_t)(a->d[0] & 1U);
uint64_t t = (uint32_t)((a->d[0] >> 1) | (a->d[1] << 31));
SECP256K1_SCALAR_VERIFY(a);
t += (SECP256K1_N_H_0 + 1U) & mask;
r->d[0] = t; t >>= 32;
t += (uint32_t)((a->d[1] >> 1) | (a->d[2] << 31));
t += SECP256K1_N_H_1 & mask;
r->d[1] = t; t >>= 32;
t += (uint32_t)((a->d[2] >> 1) | (a->d[3] << 31));
t += SECP256K1_N_H_2 & mask;
r->d[2] = t; t >>= 32;
t += (uint32_t)((a->d[3] >> 1) | (a->d[4] << 31));
t += SECP256K1_N_H_3 & mask;
r->d[3] = t; t >>= 32;
t += (uint32_t)((a->d[4] >> 1) | (a->d[5] << 31));
t += SECP256K1_N_H_4 & mask;
r->d[4] = t; t >>= 32;
t += (uint32_t)((a->d[5] >> 1) | (a->d[6] << 31));
t += SECP256K1_N_H_5 & mask;
r->d[5] = t; t >>= 32;
t += (uint32_t)((a->d[6] >> 1) | (a->d[7] << 31));
t += SECP256K1_N_H_6 & mask;
r->d[6] = t; t >>= 32;
r->d[7] = (uint32_t)t + (uint32_t)(a->d[7] >> 1) + (SECP256K1_N_H_7 & mask);
/* The line above only computed the bottom 32 bits of r->d[7]. Redo the computation
* in full 64 bits to make sure the top 32 bits are indeed zero. */
VERIFY_CHECK((t + (a->d[7] >> 1) + (SECP256K1_N_H_7 & mask)) >> 32 == 0);
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
SECP256K1_SCALAR_VERIFY(a);
no |= (a->d[7] < SECP256K1_N_H_7);
yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
@@ -247,6 +324,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
uint32_t mask = -vflag;
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
SECP256K1_SCALAR_VERIFY(r);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
r->d[1] = t & nonzero; t >>= 32;
@@ -262,6 +341,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
r->d[7] = t & nonzero;
SECP256K1_SCALAR_VERIFY(r);
return 2 * (mask == 0) - 1;
}
@@ -569,27 +650,18 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, con
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint32_t l[16];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = r->d[0] & ((1 << n) - 1);
r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
r->d[7] = (r->d[7] >> n);
return ret;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
SECP256K1_SCALAR_VERIFY(k);
r1->d[0] = k->d[0];
r1->d[1] = k->d[1];
r1->d[2] = k->d[2];
@@ -606,9 +678,15 @@ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r
r2->d[5] = 0;
r2->d[6] = 0;
r2->d[7] = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}
@@ -617,7 +695,10 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r,
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 5;
shiftlow = shift & 0x1F;
@@ -631,12 +712,16 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r,
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
SECP256K1_SCALAR_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint32_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
mask0 = vflag + ~((uint32_t)0);
mask1 = ~mask0;
r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
@@ -647,6 +732,8 @@ static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const se
r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1);
r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1);
r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) {
@@ -675,19 +762,14 @@ static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_
r->d[6] = a6 >> 12 | a7 << 18;
r->d[7] = a7 >> 14 | a8 << 16;
#ifdef VERIFY
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) {
const uint32_t M30 = UINT32_MAX >> 2;
const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3],
a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7];
#ifdef VERIFY
VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0);
#endif
SECP256K1_SCALAR_VERIFY(a);
r->v[0] = a0 & M30;
r->v[1] = (a0 >> 30 | a1 << 2) & M30;
@@ -710,13 +792,14 @@ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed30(&s, x);
secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed30(r, &s);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
#endif
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
@@ -724,16 +807,19 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed30(&s, x);
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed30(r, &s);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
#endif
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(a->d[0] & 1);
}

View File

@@ -30,9 +30,17 @@ static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0,
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
int overflow;
secp256k1_scalar_set_b32(r, bin, &overflow);
SECP256K1_SCALAR_VERIFY(r);
return (!overflow) & (!secp256k1_scalar_is_zero(r));
}
static void secp256k1_scalar_verify(const secp256k1_scalar *r) {
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
(void)r;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
# if EXHAUSTIVE_TEST_ORDER == 7
@@ -53,11 +61,16 @@ static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned c
* (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n).
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) {
SECP256K1_SCALAR_VERIFY(k);
VERIFY_CHECK(r1 != k);
VERIFY_CHECK(r2 != k);
VERIFY_CHECK(r1 != r2);
*r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
*r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
#else
/**
@@ -140,9 +153,11 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
);
SECP256K1_SCALAR_VERIFY(k);
VERIFY_CHECK(r1 != k);
VERIFY_CHECK(r2 != k);
VERIFY_CHECK(r1 != r2);
/* these _var calls are constant time since the shift amount is constant */
secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
@@ -153,6 +168,8 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT
secp256k1_scalar_negate(r1, r1);
secp256k1_scalar_add(r1, r1, k);
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
#ifdef VERIFY
secp256k1_scalar_split_lambda_verify(r1, r2, k);
#endif

View File

@@ -1,5 +1,5 @@
/***********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Copyright (c) 2015, 2022 Andrew Poelstra, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
@@ -12,6 +12,13 @@
/** A scalar modulo the group order of the secp256k1 curve. */
typedef uint32_t secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) (d0)
/* A compile-time constant equal to 2^32 (modulo order). */
#define SCALAR_2P32 ((0xffffffffUL % EXHAUSTIVE_TEST_ORDER) + 1U)
/* Compute a*2^32 + b (modulo order). */
#define SCALAR_HORNER(a, b) (((uint64_t)(a) * SCALAR_2P32 + (b)) % EXHAUSTIVE_TEST_ORDER)
/* Evaluates to the provided 256-bit constant reduced modulo order. */
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) SCALAR_HORNER(SCALAR_HORNER(SCALAR_HORNER(SCALAR_HORNER(SCALAR_HORNER(SCALAR_HORNER(SCALAR_HORNER((d7), (d6)), (d5)), (d4)), (d3)), (d2)), (d1)), (d0))
#endif /* SECP256K1_SCALAR_REPR_H */

View File

@@ -14,13 +14,22 @@
#include <string.h>
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(*a & 1);
}
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = 0; }
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v; }
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
*r = v % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
if (offset < 32)
return ((*a >> offset) & ((((uint32_t)1) << count) - 1));
else
@@ -28,25 +37,33 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_s
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
return secp256k1_scalar_get_bits(a, offset, count);
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; }
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
*r = (*a + *b) % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
return *r < *b;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
SECP256K1_SCALAR_VERIFY(r);
if (flag && bit < 32)
*r += ((uint32_t)1 << bit);
#ifdef VERIFY
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 32);
/* Verify that adding (1 << bit) will not overflow any in-range scalar *r by overflowing the underlying uint32_t. */
VERIFY_CHECK(((uint32_t)1 << bit) - 1 <= UINT32_MAX - EXHAUSTIVE_TEST_ORDER);
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
@@ -61,82 +78,124 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b
}
}
if (overflow) *overflow = over;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
SECP256K1_SCALAR_VERIFY(a);
memset(bin, 0, 32);
bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a;
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
if (*a == 0) {
*r = 0;
} else {
*r = EXHAUSTIVE_TEST_ORDER - *a;
}
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a == 1;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return *a > EXHAUSTIVE_TEST_ORDER / 2;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
SECP256K1_SCALAR_VERIFY(r);
if (flag) secp256k1_scalar_negate(r, r);
SECP256K1_SCALAR_VERIFY(r);
return flag ? -1 : 1;
}
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
*r = (*a * *b) % EXHAUSTIVE_TEST_ORDER;
}
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = *r & ((1 << n) - 1);
*r >>= n;
return ret;
*r = (*a * *b) % EXHAUSTIVE_TEST_ORDER;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
*r1 = *a;
*r2 = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return *a == *b;
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint32_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r, sizeof(*r));
mask0 = vflag + ~((uint32_t)0);
mask1 = ~mask0;
*r = (*r & mask0) | (*a & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
int i;
*r = 0;
SECP256K1_SCALAR_VERIFY(x);
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
*r = i;
SECP256K1_SCALAR_VERIFY(r);
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
* have a composite group order; fix it in exhaustive_tests.c). */
VERIFY_CHECK(*r != 0);
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_inverse(r, x);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
*r = (*a + ((-(uint32_t)(*a & 1)) & EXHAUSTIVE_TEST_ORDER)) >> 1;
SECP256K1_SCALAR_VERIFY(r);
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */

View File

@@ -247,8 +247,8 @@ static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge,
} else {
/* Otherwise, fall back to 32-byte big endian for X and Y. */
secp256k1_fe x, y;
secp256k1_fe_set_b32_mod(&x, pubkey->data);
secp256k1_fe_set_b32_mod(&y, pubkey->data + 32);
ARG_CHECK(secp256k1_fe_set_b32_limit(&x, pubkey->data));
ARG_CHECK(secp256k1_fe_set_b32_limit(&y, pubkey->data + 32));
secp256k1_ge_set_xy(ge, &x, &y);
}
ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
@@ -811,3 +811,7 @@ int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32,
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/main_impl.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
# include "modules/ellswift/main_impl.h"
#endif

View File

@@ -16,8 +16,6 @@
#include "util.h"
static uint64_t secp256k1_test_state[4];
static uint64_t secp256k1_test_rng_integer;
static int secp256k1_test_rng_integer_bits_left = 0;
SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16) {
static const unsigned char PREFIX[19] = "secp256k1 test init";
@@ -36,7 +34,6 @@ SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16
for (j = 0; j < 8; ++j) s = (s << 8) | out32[8*i + j];
secp256k1_test_state[i] = s;
}
secp256k1_test_rng_integer_bits_left = 0;
}
SECP256K1_INLINE static uint64_t rotl(const uint64_t x, int k) {
@@ -57,58 +54,30 @@ SECP256K1_INLINE static uint64_t secp256k1_testrand64(void) {
}
SECP256K1_INLINE static uint64_t secp256k1_testrand_bits(int bits) {
uint64_t ret;
if (secp256k1_test_rng_integer_bits_left < bits) {
secp256k1_test_rng_integer = secp256k1_testrand64();
secp256k1_test_rng_integer_bits_left = 64;
}
ret = secp256k1_test_rng_integer;
secp256k1_test_rng_integer >>= bits;
secp256k1_test_rng_integer_bits_left -= bits;
ret &= ((~((uint64_t)0)) >> (64 - bits));
return ret;
if (bits == 0) return 0;
return secp256k1_testrand64() >> (64 - bits);
}
SECP256K1_INLINE static uint32_t secp256k1_testrand32(void) {
return secp256k1_testrand_bits(32);
return secp256k1_testrand64() >> 32;
}
static uint32_t secp256k1_testrand_int(uint32_t range) {
/* We want a uniform integer between 0 and range-1, inclusive.
* B is the smallest number such that range <= 2**B.
* two mechanisms implemented here:
* - generate B bits numbers until one below range is found, and return it
* - find the largest multiple M of range that is <= 2**(B+A), generate B+A
* bits numbers until one below M is found, and return it modulo range
* The second mechanism consumes A more bits of entropy in every iteration,
* but may need fewer iterations due to M being closer to 2**(B+A) then
* range is to 2**B. The array below (indexed by B) contains a 0 when the
* first mechanism is to be used, and the number A otherwise.
*/
static const int addbits[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0};
uint32_t trange, mult;
int bits = 0;
if (range <= 1) {
return 0;
uint32_t mask = 0;
uint32_t range_copy;
/* Reduce range by 1, changing its meaning to "maximum value". */
VERIFY_CHECK(range != 0);
range -= 1;
/* Count the number of bits in range. */
range_copy = range;
while (range_copy) {
mask = (mask << 1) | 1U;
range_copy >>= 1;
}
trange = range - 1;
while (trange > 0) {
trange >>= 1;
bits++;
}
if (addbits[bits]) {
bits = bits + addbits[bits];
mult = ((~((uint32_t)0)) >> (32 - bits)) / range;
trange = range * mult;
} else {
trange = range;
mult = 1;
}
while(1) {
uint32_t x = secp256k1_testrand_bits(bits);
if (x < trange) {
return (mult == 1) ? x : (x % range);
}
/* Generation loop. */
while (1) {
uint32_t val = secp256k1_testrand64() & mask;
if (val <= range) return val;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -13,6 +13,9 @@
#define EXHAUSTIVE_TEST_ORDER 13
#endif
/* These values of B are all values in [1, 8] that result in a curve with even order. */
#define EXHAUSTIVE_TEST_CURVE_HAS_EVEN_ORDER (SECP256K1_B == 1 || SECP256K1_B == 6 || SECP256K1_B == 8)
#ifdef USE_EXTERNAL_DEFAULT_CALLBACKS
#pragma message("Ignoring USE_EXTERNAL_CALLBACKS in exhaustive_tests.")
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
@@ -25,61 +28,11 @@
#include "testrand_impl.h"
#include "ecmult_compute_table_impl.h"
#include "ecmult_gen_compute_table_impl.h"
#include "testutil.h"
#include "util.h"
static int count = 2;
/** stolen from tests.c */
static void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
}
CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
}
static void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
secp256k1_fe z2s;
secp256k1_fe u1, u2, s1, s2;
CHECK(a->infinity == b->infinity);
if (a->infinity) {
return;
}
/* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
secp256k1_fe_sqr(&z2s, &b->z);
secp256k1_fe_mul(&u1, &a->x, &z2s);
u2 = b->x; secp256k1_fe_normalize_weak(&u2);
secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
s2 = b->y; secp256k1_fe_normalize_weak(&s2);
CHECK(secp256k1_fe_equal_var(&u1, &u2));
CHECK(secp256k1_fe_equal_var(&s1, &s2));
}
static void random_fe(secp256k1_fe *x) {
unsigned char bin[32];
do {
secp256k1_testrand256(bin);
if (secp256k1_fe_set_b32_limit(x, bin)) {
return;
}
} while(1);
}
static void random_fe_non_zero(secp256k1_fe *nz) {
int tries = 10;
while (--tries >= 0) {
random_fe(nz);
secp256k1_fe_normalize(nz);
if (!secp256k1_fe_is_zero(nz)) {
break;
}
}
/* Infinitesimal probability of spurious failure here */
CHECK(tries >= 0);
}
/** END stolen from tests.c */
static uint32_t num_cores = 1;
static uint32_t this_core = 0;
@@ -114,7 +67,7 @@ static void test_exhaustive_endomorphism(const secp256k1_ge *group) {
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_ge res;
secp256k1_ge_mul_lambda(&res, &group[i]);
ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
CHECK(secp256k1_ge_eq_var(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res));
}
}
@@ -140,21 +93,21 @@ static void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_
secp256k1_gej tmp;
/* add_var */
secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i + j) % EXHAUSTIVE_TEST_ORDER]));
/* add_ge */
if (j > 0) {
secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i + j) % EXHAUSTIVE_TEST_ORDER]));
}
/* add_ge_var */
secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i + j) % EXHAUSTIVE_TEST_ORDER]));
/* add_zinv_var */
zless_gej.infinity = groupj[j].infinity;
zless_gej.x = groupj[j].x;
zless_gej.y = groupj[j].y;
secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i + j) % EXHAUSTIVE_TEST_ORDER]));
}
}
@@ -162,9 +115,9 @@ static void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_gej tmp;
secp256k1_gej_double(&tmp, &groupj[i]);
ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(2 * i) % EXHAUSTIVE_TEST_ORDER]));
secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(2 * i) % EXHAUSTIVE_TEST_ORDER]));
}
/* Check negation */
@@ -172,9 +125,9 @@ static void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_
secp256k1_ge tmp;
secp256k1_gej tmpj;
secp256k1_ge_neg(&tmp, &group[i]);
ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp);
CHECK(secp256k1_ge_eq_var(&tmp, &group[EXHAUSTIVE_TEST_ORDER - i]));
secp256k1_gej_neg(&tmpj, &groupj[i]);
ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj);
CHECK(secp256k1_gej_eq_ge_var(&tmpj, &group[EXHAUSTIVE_TEST_ORDER - i]));
}
}
@@ -191,8 +144,7 @@ static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_ge
secp256k1_scalar_set_int(&ng, j);
secp256k1_ecmult(&tmp, &groupj[r_log], &na, &ng);
ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER]));
}
}
}
@@ -210,20 +162,20 @@ static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_ge
/* Test secp256k1_ecmult_const. */
secp256k1_ecmult_const(&tmp, &group[i], &ng);
ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i * j) % EXHAUSTIVE_TEST_ORDER]));
if (i != 0 && j != 0) {
/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, and xd=NULL. */
ret = secp256k1_ecmult_const_xonly(&tmpf, &group[i].x, NULL, &ng, 0);
CHECK(ret);
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
CHECK(secp256k1_fe_equal(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, with random xd. */
random_fe_non_zero(&xd);
secp256k1_fe_mul(&xn, &xd, &group[i].x);
ret = secp256k1_ecmult_const_xonly(&tmpf, &xn, &xd, &ng, 0);
CHECK(ret);
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
CHECK(secp256k1_fe_equal(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
}
}
}
@@ -262,7 +214,7 @@ static void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const sec
data.pt[1] = group[y];
secp256k1_ecmult_multi_var(&ctx->error_callback, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp);
CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER]));
}
}
}
@@ -395,6 +347,10 @@ static void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_g
#include "modules/schnorrsig/tests_exhaustive_impl.h"
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
#include "modules/ellswift/tests_exhaustive_impl.h"
#endif
int main(int argc, char** argv) {
int i;
secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
@@ -468,8 +424,8 @@ int main(int argc, char** argv) {
CHECK(group[i].infinity == 0);
CHECK(generated.infinity == 0);
CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
CHECK(secp256k1_fe_equal(&generated.x, &group[i].x));
CHECK(secp256k1_fe_equal(&generated.y, &group[i].y));
}
}
@@ -490,6 +446,15 @@ int main(int argc, char** argv) {
#ifdef ENABLE_MODULE_SCHNORRSIG
test_exhaustive_schnorrsig(ctx);
#endif
#ifdef ENABLE_MODULE_ELLSWIFT
/* The ellswift algorithm does have additional edge cases when operating on
* curves of even order, which are not included in the code as secp256k1 is
* of odd order. Skip the ellswift tests if the used exhaustive tests curve
* is even-ordered accordingly. */
#if !EXHAUSTIVE_TEST_CURVE_HAS_EVEN_ORDER
test_exhaustive_ellswift(ctx, group);
#endif
#endif
secp256k1_context_destroy(ctx);
}

29
src/testutil.h Normal file
View File

@@ -0,0 +1,29 @@
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_TESTUTIL_H
#define SECP256K1_TESTUTIL_H
#include "field.h"
#include "testrand.h"
#include "util.h"
static void random_fe(secp256k1_fe *x) {
unsigned char bin[32];
do {
secp256k1_testrand256(bin);
if (secp256k1_fe_set_b32_limit(x, bin)) {
return;
}
} while(1);
}
static void random_fe_non_zero(secp256k1_fe *nz) {
do {
random_fe(nz);
} while (secp256k1_fe_is_zero(nz));
}
#endif /* SECP256K1_TESTUTIL_H */

View File

@@ -51,6 +51,19 @@ static void print_buf_plain(const unsigned char *buf, size_t len) {
# define SECP256K1_INLINE inline
# endif
/** Assert statically that expr is an integer constant expression, and run stmt.
*
* Useful for example to enforce that magnitude arguments are constant.
*/
#define ASSERT_INT_CONST_AND_DO(expr, stmt) do { \
switch(42) { \
case /* ERROR: integer argument is not constant */ expr: \
break; \
default: ; \
} \
stmt; \
} while(0)
typedef struct {
void (*fn)(const char *text, void* data);
const void* data;
@@ -119,16 +132,11 @@ static const secp256k1_callback default_error_callback = {
} while(0)
#endif
/* Like assert(), but when VERIFY is defined, and side-effect safe. */
#if defined(COVERAGE)
#define VERIFY_CHECK(check)
#define VERIFY_SETUP(stmt)
#elif defined(VERIFY)
/* Like assert(), but when VERIFY is defined. */
#if defined(VERIFY)
#define VERIFY_CHECK CHECK
#define VERIFY_SETUP(stmt) do { stmt; } while(0)
#else
#define VERIFY_CHECK(cond) do { (void)(cond); } while(0)
#define VERIFY_SETUP(stmt)
#define VERIFY_CHECK(cond)
#endif
static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) {
@@ -139,14 +147,6 @@ static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_
return ret;
}
static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void *ptr, size_t size) {
void *ret = realloc(ptr, size);
if (ret == NULL) {
secp256k1_callback_call(cb, "Out of memory");
}
return ret;
}
#if defined(__BIGGEST_ALIGNMENT__)
#define ALIGNMENT __BIGGEST_ALIGNMENT__
#else
@@ -353,4 +353,28 @@ SECP256K1_INLINE static void secp256k1_write_be32(unsigned char* p, uint32_t x)
p[0] = x >> 24;
}
/* Read a uint64_t in big endian */
SECP256K1_INLINE static uint64_t secp256k1_read_be64(const unsigned char* p) {
return (uint64_t)p[0] << 56 |
(uint64_t)p[1] << 48 |
(uint64_t)p[2] << 40 |
(uint64_t)p[3] << 32 |
(uint64_t)p[4] << 24 |
(uint64_t)p[5] << 16 |
(uint64_t)p[6] << 8 |
(uint64_t)p[7];
}
/* Write a uint64_t in big endian */
SECP256K1_INLINE static void secp256k1_write_be64(unsigned char* p, uint64_t x) {
p[7] = x;
p[6] = x >> 8;
p[5] = x >> 16;
p[4] = x >> 24;
p[3] = x >> 32;
p[2] = x >> 40;
p[1] = x >> 48;
p[0] = x >> 56;
}
#endif /* SECP256K1_UTIL_H */

64
tools/check-abi.sh Executable file
View File

@@ -0,0 +1,64 @@
#!/bin/sh
set -eu
default_base_version="$(git describe --match "v*.*.*" --abbrev=0)"
default_new_version="master"
display_help_and_exit() {
echo "Usage: $0 <base_ver> <new_ver>"
echo ""
echo "Description: This script uses the ABI Compliance Checker tool to determine if the ABI"
echo " of a new version of libsecp256k1 has changed in a backward-incompatible way."
echo ""
echo "Options:"
echo " base_ver Specify the base version (default: $default_base_version)"
echo " new_ver Specify the new version (default: $default_new_version)"
echo " -h, --help Display this help message"
exit 0
}
if [ "$#" -eq 0 ]; then
base_version="$default_base_version"
new_version="$default_new_version"
elif [ "$#" -eq 1 ] && { [ "$1" = "-h" ] || [ "$1" = "--help" ]; }; then
display_help_and_exit
elif [ "$#" -eq 2 ]; then
base_version="$1"
new_version="$2"
else
echo "Invalid usage. See help:"
echo ""
display_help_and_exit
fi
checkout_and_build() {
git worktree add -d "$1" "$2"
cd "$1"
mkdir build && cd build
cmake -S .. --preset dev-mode \
-DCMAKE_C_COMPILER=gcc -DCMAKE_BUILD_TYPE=None -DCMAKE_C_FLAGS="-g -Og -gdwarf-4" \
-DSECP256K1_BUILD_BENCHMARK=OFF \
-DSECP256K1_BUILD_TESTS=OFF \
-DSECP256K1_BUILD_EXHAUSTIVE_TESTS=OFF \
-DSECP256K1_BUILD_CTIME_TESTS=OFF \
-DSECP256K1_BUILD_EXAMPLES=OFF
cmake --build . -j "$(nproc)"
abi-dumper src/libsecp256k1.so -o ABI.dump -lver "$2"
}
echo "Comparing $base_version (base version) to $new_version (new version)"
echo
original_dir="$(pwd)"
base_source_dir=$(mktemp -d)
checkout_and_build "$base_source_dir" "$base_version"
new_source_dir=$(mktemp -d)
checkout_and_build "$new_source_dir" "$new_version"
cd "$original_dir"
abi-compliance-checker -lib libsecp256k1 -old "${base_source_dir}/build/ABI.dump" -new "${new_source_dir}/build/ABI.dump"
git worktree remove "$base_source_dir"
git worktree remove "$new_source_dir"