This commit introduces a new test file for context management, covering various scenarios for context creation, destruction, and capabilities. Additionally, it implements the generator multiplication context, enhancing the secp256k1 elliptic curve operations. The changes ensure comprehensive testing and improved functionality for context handling, contributing to the overall robustness of the implementation.
634 lines
14 KiB
Go
634 lines
14 KiB
Go
package p256k1
|
|
|
|
import "math/bits"
|
|
|
|
// uint128 represents a 128-bit unsigned integer for field arithmetic
|
|
type uint128 struct {
|
|
high, low uint64
|
|
}
|
|
|
|
// mulU64ToU128 multiplies two uint64 values and returns a uint128
|
|
func mulU64ToU128(a, b uint64) uint128 {
|
|
hi, lo := bits.Mul64(a, b)
|
|
return uint128{high: hi, low: lo}
|
|
}
|
|
|
|
// addMulU128 computes c + a*b and returns the result as uint128
|
|
func addMulU128(c uint128, a, b uint64) uint128 {
|
|
hi, lo := bits.Mul64(a, b)
|
|
|
|
// Add lo to c.low
|
|
newLo, carry := bits.Add64(c.low, lo, 0)
|
|
|
|
// Add hi and carry to c.high
|
|
newHi, _ := bits.Add64(c.high, hi, carry)
|
|
|
|
return uint128{high: newHi, low: newLo}
|
|
}
|
|
|
|
// addU128 adds a uint64 to a uint128
|
|
func addU128(c uint128, a uint64) uint128 {
|
|
newLo, carry := bits.Add64(c.low, a, 0)
|
|
newHi, _ := bits.Add64(c.high, 0, carry)
|
|
return uint128{high: newHi, low: newLo}
|
|
}
|
|
|
|
// lo returns the lower 64 bits
|
|
func (u uint128) lo() uint64 {
|
|
return u.low
|
|
}
|
|
|
|
// hi returns the upper 64 bits
|
|
func (u uint128) hi() uint64 {
|
|
return u.high
|
|
}
|
|
|
|
// rshift shifts the uint128 right by n bits
|
|
func (u uint128) rshift(n uint) uint128 {
|
|
if n >= 64 {
|
|
return uint128{high: 0, low: u.high >> (n - 64)}
|
|
}
|
|
return uint128{
|
|
high: u.high >> n,
|
|
low: (u.low >> n) | (u.high << (64 - n)),
|
|
}
|
|
}
|
|
|
|
// mul multiplies two field elements: r = a * b
|
|
// This implementation follows the C secp256k1_fe_mul_inner algorithm
|
|
func (r *FieldElement) mul(a, b *FieldElement) {
|
|
// Normalize inputs if magnitude is too high
|
|
var aNorm, bNorm FieldElement
|
|
aNorm = *a
|
|
bNorm = *b
|
|
|
|
if aNorm.magnitude > 8 {
|
|
aNorm.normalizeWeak()
|
|
}
|
|
if bNorm.magnitude > 8 {
|
|
bNorm.normalizeWeak()
|
|
}
|
|
|
|
// Extract limbs for easier access
|
|
a0, a1, a2, a3, a4 := aNorm.n[0], aNorm.n[1], aNorm.n[2], aNorm.n[3], aNorm.n[4]
|
|
b0, b1, b2, b3, b4 := bNorm.n[0], bNorm.n[1], bNorm.n[2], bNorm.n[3], bNorm.n[4]
|
|
|
|
const M = 0xFFFFFFFFFFFFF // 2^52 - 1
|
|
const R = fieldReductionConstantShifted // 0x1000003D10
|
|
|
|
// Following the C implementation algorithm exactly
|
|
// [... a b c] is shorthand for ... + a<<104 + b<<52 + c<<0 mod n
|
|
|
|
// Compute p3 = a0*b3 + a1*b2 + a2*b1 + a3*b0
|
|
var c, d uint128
|
|
d = mulU64ToU128(a0, b3)
|
|
d = addMulU128(d, a1, b2)
|
|
d = addMulU128(d, a2, b1)
|
|
d = addMulU128(d, a3, b0)
|
|
|
|
// Compute p8 = a4*b4
|
|
c = mulU64ToU128(a4, b4)
|
|
|
|
// d += R * c_lo; c >>= 64
|
|
d = addMulU128(d, R, c.lo())
|
|
c = c.rshift(64)
|
|
|
|
// Extract t3 and shift d
|
|
t3 := d.lo() & M
|
|
d = d.rshift(52)
|
|
|
|
// Compute p4 = a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0
|
|
d = addMulU128(d, a0, b4)
|
|
d = addMulU128(d, a1, b3)
|
|
d = addMulU128(d, a2, b2)
|
|
d = addMulU128(d, a3, b1)
|
|
d = addMulU128(d, a4, b0)
|
|
|
|
// d += (R << 12) * c_lo
|
|
d = addMulU128(d, R<<12, c.lo())
|
|
|
|
// Extract t4 and tx
|
|
t4 := d.lo() & M
|
|
d = d.rshift(52)
|
|
tx := t4 >> 48
|
|
t4 &= (M >> 4)
|
|
|
|
// Compute p0 = a0*b0
|
|
c = mulU64ToU128(a0, b0)
|
|
|
|
// Compute p5 = a1*b4 + a2*b3 + a3*b2 + a4*b1
|
|
d = addMulU128(d, a1, b4)
|
|
d = addMulU128(d, a2, b3)
|
|
d = addMulU128(d, a3, b2)
|
|
d = addMulU128(d, a4, b1)
|
|
|
|
// Extract u0
|
|
u0 := d.lo() & M
|
|
d = d.rshift(52)
|
|
u0 = (u0 << 4) | tx
|
|
|
|
// c += u0 * (R >> 4)
|
|
c = addMulU128(c, u0, R>>4)
|
|
|
|
// r[0]
|
|
r.n[0] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// Compute p1 = a0*b1 + a1*b0
|
|
c = addMulU128(c, a0, b1)
|
|
c = addMulU128(c, a1, b0)
|
|
|
|
// Compute p6 = a2*b4 + a3*b3 + a4*b2
|
|
d = addMulU128(d, a2, b4)
|
|
d = addMulU128(d, a3, b3)
|
|
d = addMulU128(d, a4, b2)
|
|
|
|
// c += R * (d & M); d >>= 52
|
|
c = addMulU128(c, R, d.lo()&M)
|
|
d = d.rshift(52)
|
|
|
|
// r[1]
|
|
r.n[1] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// Compute p2 = a0*b2 + a1*b1 + a2*b0
|
|
c = addMulU128(c, a0, b2)
|
|
c = addMulU128(c, a1, b1)
|
|
c = addMulU128(c, a2, b0)
|
|
|
|
// Compute p7 = a3*b4 + a4*b3
|
|
d = addMulU128(d, a3, b4)
|
|
d = addMulU128(d, a4, b3)
|
|
|
|
// c += R * d_lo; d >>= 64
|
|
c = addMulU128(c, R, d.lo())
|
|
d = d.rshift(64)
|
|
|
|
// r[2]
|
|
r.n[2] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// c += (R << 12) * d_lo + t3
|
|
c = addMulU128(c, R<<12, d.lo())
|
|
c = addU128(c, t3)
|
|
|
|
// r[3]
|
|
r.n[3] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// r[4]
|
|
r.n[4] = c.lo() + t4
|
|
|
|
// Set magnitude and normalization
|
|
r.magnitude = 1
|
|
r.normalized = false
|
|
}
|
|
|
|
// reduceFromWide reduces a 520-bit (10 limb) value modulo the field prime
|
|
func (r *FieldElement) reduceFromWide(t [10]uint64) {
|
|
// The field prime is p = 2^256 - 2^32 - 977 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
// We use the fact that 2^256 ≡ 2^32 + 977 (mod p)
|
|
|
|
// First, handle the upper limbs (t[5] through t[9])
|
|
// Each represents a multiple of 2^(52*i) where i >= 5
|
|
|
|
// Reduction constant for secp256k1: 2^32 + 977 = 0x1000003D1
|
|
const M = uint64(0x1000003D1)
|
|
|
|
// Start from the highest limb and work down
|
|
for i := 9; i >= 5; i-- {
|
|
if t[i] == 0 {
|
|
continue
|
|
}
|
|
|
|
// t[i] * 2^(52*i) ≡ t[i] * 2^(52*(i-5)) * 2^(52*5) ≡ t[i] * 2^(52*(i-5)) * 2^260
|
|
// Since 2^256 ≡ M (mod p), we have 2^260 ≡ 2^4 * M ≡ 16 * M (mod p)
|
|
|
|
// For i=5: 2^260 ≡ 16*M (mod p)
|
|
// For i=6: 2^312 ≡ 2^52 * 16*M ≡ 2^56 * M (mod p)
|
|
// etc.
|
|
|
|
shift := uint(52 * (i - 5) + 4) // Additional 4 bits for the 16 factor
|
|
|
|
// Multiply t[i] by the appropriate power of M
|
|
var carry uint64
|
|
if shift < 64 {
|
|
// Simple case: can multiply directly
|
|
factor := M << shift
|
|
hi, lo := bits.Mul64(t[i], factor)
|
|
|
|
// Add to appropriate position
|
|
pos := 0
|
|
t[pos], carry = bits.Add64(t[pos], lo, 0)
|
|
if pos+1 < 10 {
|
|
t[pos+1], carry = bits.Add64(t[pos+1], hi, carry)
|
|
}
|
|
|
|
// Propagate carry
|
|
for j := pos + 2; j < 10 && carry != 0; j++ {
|
|
t[j], carry = bits.Add64(t[j], 0, carry)
|
|
}
|
|
} else {
|
|
// Need to handle larger shifts by distributing across limbs
|
|
hi, lo := bits.Mul64(t[i], M)
|
|
limbShift := shift / 52
|
|
bitShift := shift % 52
|
|
|
|
if bitShift == 0 {
|
|
// Aligned to limb boundary
|
|
if limbShift < 10 {
|
|
t[limbShift], carry = bits.Add64(t[limbShift], lo, 0)
|
|
if limbShift+1 < 10 {
|
|
t[limbShift+1], carry = bits.Add64(t[limbShift+1], hi, carry)
|
|
}
|
|
}
|
|
} else {
|
|
// Need to split across limbs
|
|
loShifted := lo << bitShift
|
|
hiShifted := (lo >> (64 - bitShift)) | (hi << bitShift)
|
|
|
|
if limbShift < 10 {
|
|
t[limbShift], carry = bits.Add64(t[limbShift], loShifted, 0)
|
|
if limbShift+1 < 10 {
|
|
t[limbShift+1], carry = bits.Add64(t[limbShift+1], hiShifted, carry)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Propagate any remaining carry
|
|
for j := int(limbShift) + 2; j < 10 && carry != 0; j++ {
|
|
t[j], carry = bits.Add64(t[j], 0, carry)
|
|
}
|
|
}
|
|
|
|
t[i] = 0 // Clear the processed limb
|
|
}
|
|
|
|
// Now we have a value in t[0..4] that may still be >= p
|
|
// Convert to 5x52 format and normalize
|
|
r.n[0] = t[0] & limb0Max
|
|
r.n[1] = ((t[0] >> 52) | (t[1] << 12)) & limb0Max
|
|
r.n[2] = ((t[1] >> 40) | (t[2] << 24)) & limb0Max
|
|
r.n[3] = ((t[2] >> 28) | (t[3] << 36)) & limb0Max
|
|
r.n[4] = ((t[3] >> 16) | (t[4] << 48)) & limb4Max
|
|
|
|
r.magnitude = 1
|
|
r.normalized = false
|
|
|
|
// Final reduction if needed
|
|
if r.n[4] == limb4Max && r.n[3] == limb0Max && r.n[2] == limb0Max &&
|
|
r.n[1] == limb0Max && r.n[0] >= fieldModulusLimb0 {
|
|
r.reduce()
|
|
}
|
|
}
|
|
|
|
// sqr squares a field element: r = a^2
|
|
// This implementation follows the C secp256k1_fe_sqr_inner algorithm
|
|
func (r *FieldElement) sqr(a *FieldElement) {
|
|
// Normalize input if magnitude is too high
|
|
var aNorm FieldElement
|
|
aNorm = *a
|
|
|
|
if aNorm.magnitude > 8 {
|
|
aNorm.normalizeWeak()
|
|
}
|
|
|
|
// Extract limbs for easier access
|
|
a0, a1, a2, a3, a4 := aNorm.n[0], aNorm.n[1], aNorm.n[2], aNorm.n[3], aNorm.n[4]
|
|
|
|
const M = 0xFFFFFFFFFFFFF // 2^52 - 1
|
|
const R = fieldReductionConstantShifted // 0x1000003D10
|
|
|
|
// Following the C implementation algorithm exactly
|
|
|
|
// Compute p3 = 2*a0*a3 + 2*a1*a2
|
|
var c, d uint128
|
|
d = mulU64ToU128(a0*2, a3)
|
|
d = addMulU128(d, a1*2, a2)
|
|
|
|
// Compute p8 = a4*a4
|
|
c = mulU64ToU128(a4, a4)
|
|
|
|
// d += R * c_lo; c >>= 64
|
|
d = addMulU128(d, R, c.lo())
|
|
c = c.rshift(64)
|
|
|
|
// Extract t3 and shift d
|
|
t3 := d.lo() & M
|
|
d = d.rshift(52)
|
|
|
|
// Compute p4 = a0*a4*2 + a1*a3*2 + a2*a2
|
|
a4 *= 2
|
|
d = addMulU128(d, a0, a4)
|
|
d = addMulU128(d, a1*2, a3)
|
|
d = addMulU128(d, a2, a2)
|
|
|
|
// d += (R << 12) * c_lo
|
|
d = addMulU128(d, R<<12, c.lo())
|
|
|
|
// Extract t4 and tx
|
|
t4 := d.lo() & M
|
|
d = d.rshift(52)
|
|
tx := t4 >> 48
|
|
t4 &= (M >> 4)
|
|
|
|
// Compute p0 = a0*a0
|
|
c = mulU64ToU128(a0, a0)
|
|
|
|
// Compute p5 = a1*a4 + a2*a3*2
|
|
d = addMulU128(d, a1, a4)
|
|
d = addMulU128(d, a2*2, a3)
|
|
|
|
// Extract u0
|
|
u0 := d.lo() & M
|
|
d = d.rshift(52)
|
|
u0 = (u0 << 4) | tx
|
|
|
|
// c += u0 * (R >> 4)
|
|
c = addMulU128(c, u0, R>>4)
|
|
|
|
// r[0]
|
|
r.n[0] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// Compute p1 = a0*a1*2
|
|
a0 *= 2
|
|
c = addMulU128(c, a0, a1)
|
|
|
|
// Compute p6 = a2*a4 + a3*a3
|
|
d = addMulU128(d, a2, a4)
|
|
d = addMulU128(d, a3, a3)
|
|
|
|
// c += R * (d & M); d >>= 52
|
|
c = addMulU128(c, R, d.lo()&M)
|
|
d = d.rshift(52)
|
|
|
|
// r[1]
|
|
r.n[1] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// Compute p2 = a0*a2 + a1*a1
|
|
c = addMulU128(c, a0, a2)
|
|
c = addMulU128(c, a1, a1)
|
|
|
|
// Compute p7 = a3*a4
|
|
d = addMulU128(d, a3, a4)
|
|
|
|
// c += R * d_lo; d >>= 64
|
|
c = addMulU128(c, R, d.lo())
|
|
d = d.rshift(64)
|
|
|
|
// r[2]
|
|
r.n[2] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// c += (R << 12) * d_lo + t3
|
|
c = addMulU128(c, R<<12, d.lo())
|
|
c = addU128(c, t3)
|
|
|
|
// r[3]
|
|
r.n[3] = c.lo() & M
|
|
c = c.rshift(52)
|
|
|
|
// r[4]
|
|
r.n[4] = c.lo() + t4
|
|
|
|
// Set magnitude and normalization
|
|
r.magnitude = 1
|
|
r.normalized = false
|
|
}
|
|
|
|
// inv computes the modular inverse of a field element using Fermat's little theorem
|
|
// This implements a^(p-2) mod p where p is the secp256k1 field prime
|
|
// This follows secp256k1_fe_inv_var which normalizes the input first
|
|
func (r *FieldElement) inv(a *FieldElement) {
|
|
// Normalize input first (as per secp256k1_fe_inv_var)
|
|
var aNorm FieldElement
|
|
aNorm = *a
|
|
aNorm.normalize()
|
|
|
|
// For field F_p, a^(-1) = a^(p-2) mod p
|
|
// The secp256k1 field prime is p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
// So p-2 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2D
|
|
|
|
// Use a simple but correct implementation: binary exponentiation
|
|
// Convert p-2 to bytes for bit-by-bit exponentiation
|
|
pMinus2 := []byte{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2D,
|
|
}
|
|
|
|
// Initialize result to 1
|
|
r.setInt(1)
|
|
|
|
// Binary exponentiation
|
|
var base FieldElement
|
|
base = aNorm
|
|
|
|
for i := len(pMinus2) - 1; i >= 0; i-- {
|
|
b := pMinus2[i]
|
|
for j := 0; j < 8; j++ {
|
|
if (b >> j) & 1 == 1 {
|
|
r.mul(r, &base)
|
|
}
|
|
base.sqr(&base)
|
|
}
|
|
}
|
|
|
|
r.magnitude = 1
|
|
r.normalized = true
|
|
}
|
|
|
|
// sqrt computes the square root of a field element if it exists
|
|
// This follows the C secp256k1_fe_sqrt implementation exactly
|
|
func (r *FieldElement) sqrt(a *FieldElement) bool {
|
|
// Given that p is congruent to 3 mod 4, we can compute the square root of
|
|
// a mod p as the (p+1)/4'th power of a.
|
|
//
|
|
// As (p+1)/4 is an even number, it will have the same result for a and for
|
|
// (-a). Only one of these two numbers actually has a square root however,
|
|
// so we test at the end by squaring and comparing to the input.
|
|
|
|
var aNorm FieldElement
|
|
aNorm = *a
|
|
|
|
// Normalize input if magnitude is too high
|
|
if aNorm.magnitude > 8 {
|
|
aNorm.normalizeWeak()
|
|
} else {
|
|
aNorm.normalize()
|
|
}
|
|
|
|
// The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
|
|
// { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
|
// 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
|
|
|
|
var x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1 FieldElement
|
|
|
|
// x2 = a^3
|
|
x2.sqr(&aNorm)
|
|
x2.mul(&x2, &aNorm)
|
|
|
|
// x3 = a^7
|
|
x3.sqr(&x2)
|
|
x3.mul(&x3, &aNorm)
|
|
|
|
// x6 = a^63
|
|
x6 = x3
|
|
for j := 0; j < 3; j++ {
|
|
x6.sqr(&x6)
|
|
}
|
|
x6.mul(&x6, &x3)
|
|
|
|
// x9 = a^511
|
|
x9 = x6
|
|
for j := 0; j < 3; j++ {
|
|
x9.sqr(&x9)
|
|
}
|
|
x9.mul(&x9, &x3)
|
|
|
|
// x11 = a^2047
|
|
x11 = x9
|
|
for j := 0; j < 2; j++ {
|
|
x11.sqr(&x11)
|
|
}
|
|
x11.mul(&x11, &x2)
|
|
|
|
// x22 = a^4194303
|
|
x22 = x11
|
|
for j := 0; j < 11; j++ {
|
|
x22.sqr(&x22)
|
|
}
|
|
x22.mul(&x22, &x11)
|
|
|
|
// x44 = a^17592186044415
|
|
x44 = x22
|
|
for j := 0; j < 22; j++ {
|
|
x44.sqr(&x44)
|
|
}
|
|
x44.mul(&x44, &x22)
|
|
|
|
// x88 = a^72057594037927935
|
|
x88 = x44
|
|
for j := 0; j < 44; j++ {
|
|
x88.sqr(&x88)
|
|
}
|
|
x88.mul(&x88, &x44)
|
|
|
|
// x176 = a^1180591620717411303423
|
|
x176 = x88
|
|
for j := 0; j < 88; j++ {
|
|
x176.sqr(&x176)
|
|
}
|
|
x176.mul(&x176, &x88)
|
|
|
|
// x220 = a^172543658669764094685868767685
|
|
x220 = x176
|
|
for j := 0; j < 44; j++ {
|
|
x220.sqr(&x220)
|
|
}
|
|
x220.mul(&x220, &x44)
|
|
|
|
// x223 = a^13479973333575319897333507543509815336818572211270286240551805124607
|
|
x223 = x220
|
|
for j := 0; j < 3; j++ {
|
|
x223.sqr(&x223)
|
|
}
|
|
x223.mul(&x223, &x3)
|
|
|
|
// The final result is then assembled using a sliding window over the blocks.
|
|
t1 = x223
|
|
for j := 0; j < 23; j++ {
|
|
t1.sqr(&t1)
|
|
}
|
|
t1.mul(&t1, &x22)
|
|
for j := 0; j < 6; j++ {
|
|
t1.sqr(&t1)
|
|
}
|
|
t1.mul(&t1, &x2)
|
|
t1.sqr(&t1)
|
|
r.sqr(&t1)
|
|
|
|
// Check that a square root was actually calculated
|
|
var check FieldElement
|
|
check.sqr(r)
|
|
check.normalize()
|
|
aNorm.normalize()
|
|
|
|
ret := check.equal(&aNorm)
|
|
|
|
// If sqrt(a) doesn't exist, compute sqrt(-a) instead (as per field.h comment)
|
|
if !ret {
|
|
var negA FieldElement
|
|
negA.negate(&aNorm, 1)
|
|
negA.normalize()
|
|
|
|
t1 = x223
|
|
for j := 0; j < 23; j++ {
|
|
t1.sqr(&t1)
|
|
}
|
|
t1.mul(&t1, &x22)
|
|
for j := 0; j < 6; j++ {
|
|
t1.sqr(&t1)
|
|
}
|
|
t1.mul(&t1, &x2)
|
|
t1.sqr(&t1)
|
|
r.sqr(&t1)
|
|
|
|
check.sqr(r)
|
|
check.normalize()
|
|
|
|
// Return whether sqrt(-a) exists
|
|
return check.equal(&negA)
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// isSquare checks if a field element is a quadratic residue
|
|
func (a *FieldElement) isSquare() bool {
|
|
// Use Legendre symbol: a^((p-1)/2) mod p
|
|
// If result is 1, then a is a quadratic residue
|
|
|
|
var result FieldElement
|
|
result = *a
|
|
|
|
// Compute a^((p-1)/2) - simplified implementation
|
|
for i := 0; i < 127; i++ { // Approximate (p-1)/2 bit length
|
|
result.sqr(&result)
|
|
}
|
|
|
|
result.normalize()
|
|
return result.equal(&FieldElementOne)
|
|
}
|
|
|
|
// half computes r = a/2 mod p
|
|
func (r *FieldElement) half(a *FieldElement) {
|
|
// This follows the C secp256k1_fe_impl_half implementation exactly
|
|
*r = *a
|
|
|
|
t0, t1, t2, t3, t4 := r.n[0], r.n[1], r.n[2], r.n[3], r.n[4]
|
|
one := uint64(1)
|
|
// In C: mask = -(t0 & one) >> 12
|
|
// In Go, we need to convert to signed, negate, then convert back
|
|
mask := uint64(-int64(t0 & one)) >> 12
|
|
|
|
// Conditionally add field modulus if odd
|
|
t0 += 0xFFFFEFFFFFC2F & mask
|
|
t1 += mask
|
|
t2 += mask
|
|
t3 += mask
|
|
t4 += mask >> 4
|
|
|
|
// Right shift with carry propagation
|
|
r.n[0] = (t0 >> 1) + ((t1 & one) << 51)
|
|
r.n[1] = (t1 >> 1) + ((t2 & one) << 51)
|
|
r.n[2] = (t2 >> 1) + ((t3 & one) << 51)
|
|
r.n[3] = (t3 >> 1) + ((t4 & one) << 51)
|
|
r.n[4] = t4 >> 1
|
|
|
|
// Update magnitude as per C implementation
|
|
r.magnitude = (r.magnitude >> 1) + 1
|
|
r.normalized = false
|
|
}
|