Files
next.orly.dev/.claude/skills/go-memory-optimization/SKILL.md
mleku 24383ef1f4
Some checks failed
Go / build-and-release (push) Has been cancelled
Decompose handle-event.go into DDD domain services (v0.36.15)
Major refactoring of event handling into clean, testable domain services:

- Add pkg/event/validation: JSON hex validation, signature verification,
  timestamp bounds, NIP-70 protected tag validation
- Add pkg/event/authorization: Policy and ACL authorization decisions,
  auth challenge handling, access level determination
- Add pkg/event/routing: Event router registry with ephemeral and delete
  handlers, kind-based dispatch
- Add pkg/event/processing: Event persistence, delivery to subscribers,
  and post-save hooks (ACL reconfig, sync, relay groups)
- Reduce handle-event.go from 783 to 296 lines (62% reduction)
- Add comprehensive unit tests for all new domain services
- Refactor database tests to use shared TestMain setup
- Fix blossom URL test expectations (missing "/" separator)
- Add go-memory-optimization skill and analysis documentation
- Update DDD_ANALYSIS.md to reflect completed decomposition

Files modified:
- app/handle-event.go: Slim orchestrator using domain services
- app/server.go: Service initialization and interface wrappers
- app/handle-event-types.go: Shared types (OkHelper, result types)
- pkg/event/validation/*: New validation service package
- pkg/event/authorization/*: New authorization service package
- pkg/event/routing/*: New routing service package
- pkg/event/processing/*: New processing service package
- pkg/database/*_test.go: Refactored to shared TestMain
- pkg/blossom/http_test.go: Fixed URL format expectations

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-25 05:30:07 +01:00

479 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
name: go-memory-optimization
description: This skill should be used when optimizing Go code for memory efficiency, reducing GC pressure, implementing object pooling, analyzing escape behavior, choosing between fixed-size arrays and slices, designing worker pools, or profiling memory allocations. Provides comprehensive knowledge of Go's memory model, stack vs heap allocation, sync.Pool patterns, goroutine reuse, and GC tuning.
---
# Go Memory Optimization
## Overview
This skill provides guidance on optimizing Go programs for memory efficiency and reduced garbage collection overhead. Topics include stack allocation semantics, fixed-size types, escape analysis, object pooling, goroutine management, and GC tuning.
## Core Principles
### The Allocation Hierarchy
Prefer allocations in this order (fastest to slowest):
1. **Stack allocation** - Zero GC cost, automatic cleanup on function return
2. **Pooled objects** - Amortized allocation cost via sync.Pool
3. **Pre-allocated buffers** - Single allocation, reused across operations
4. **Heap allocation** - GC-managed, use when lifetime exceeds function scope
### When Optimization Matters
Focus memory optimization efforts on:
- Hot paths executed thousands/millions of times per second
- Large objects (>32KB) that stress the GC
- Long-running services where GC pauses affect latency
- Memory-constrained environments
Avoid premature optimization. Profile first with `go tool pprof` to identify actual bottlenecks.
## Fixed-Size Types vs Slices
### Stack Allocation with Arrays
Arrays with known compile-time size can be stack-allocated, avoiding heap entirely:
```go
// HEAP: slice header + backing array escape to heap
func processSlice() []byte {
data := make([]byte, 32)
// ... use data
return data // escapes
}
// STACK: fixed array stays on stack if doesn't escape
func processArray() {
var data [32]byte // stack-allocated
// ... use data
} // automatically cleaned up
```
### Fixed-Size Binary Types Pattern
Define types with explicit sizes for protocol fields, cryptographic values, and identifiers:
```go
// Binary types enforce length and enable stack allocation
type EventID [32]byte // SHA256 hash
type Pubkey [32]byte // Schnorr public key
type Signature [64]byte // Schnorr signature
// Methods operate on value receivers when size permits
func (id EventID) Hex() string {
return hex.EncodeToString(id[:])
}
func (id EventID) IsZero() bool {
return id == EventID{} // efficient zero-value comparison
}
```
### Size Thresholds
| Size | Recommendation |
|------|----------------|
| ≤64 bytes | Pass by value, stack-friendly |
| 65-128 bytes | Consider context; value for read-only, pointer for mutation |
| >128 bytes | Pass by pointer to avoid copy overhead |
### Array to Slice Conversion
Convert fixed arrays to slices only at API boundaries:
```go
type Hash [32]byte
func (h Hash) Bytes() []byte {
return h[:] // creates slice header, array stays on stack if h does
}
// Prefer methods that accept arrays directly
func VerifySignature(pubkey Pubkey, msg []byte, sig Signature) bool {
// pubkey and sig are stack-allocated in caller
}
```
## Escape Analysis
### Understanding Escape
Variables "escape" to the heap when the compiler cannot prove their lifetime is bounded by the stack frame. Check escape behavior with:
```bash
go build -gcflags="-m -m" ./...
```
### Common Escape Causes
```go
// 1. Returning pointers to local variables
func escapes() *int {
x := 42
return &x // x escapes
}
// 2. Storing in interface{}
func escapes(x int) interface{} {
return x // x escapes (boxed)
}
// 3. Closures capturing by reference
func escapes() func() int {
x := 42
return func() int { return x } // x escapes
}
// 4. Slice/map with unknown capacity
func escapes(n int) []byte {
return make([]byte, n) // escapes (size unknown at compile time)
}
// 5. Sending pointers to channels
func escapes(ch chan *int) {
x := 42
ch <- &x // x escapes
}
```
### Preventing Escape
```go
// 1. Accept pointers, don't return them
func noEscape(result *[32]byte) {
// caller owns memory, function fills it
copy(result[:], computeHash())
}
// 2. Use fixed-size arrays
func noEscape() {
var buf [1024]byte // known size, stack-allocated
process(buf[:])
}
// 3. Preallocate with known capacity
func noEscape() {
buf := make([]byte, 0, 1024) // may stay on stack
// ... append up to 1024 bytes
}
// 4. Avoid interface{} on hot paths
func noEscape(x int) int {
return x * 2 // no boxing
}
```
## sync.Pool Usage
### Basic Pattern
```go
var bufferPool = sync.Pool{
New: func() interface{} {
return make([]byte, 0, 4096)
},
}
func processRequest(data []byte) {
buf := bufferPool.Get().([]byte)
buf = buf[:0] // reset length, keep capacity
defer bufferPool.Put(buf)
// use buf...
}
```
### Typed Pool Wrapper
```go
type BufferPool struct {
pool sync.Pool
size int
}
func NewBufferPool(size int) *BufferPool {
return &BufferPool{
pool: sync.Pool{
New: func() interface{} {
b := make([]byte, size)
return &b
},
},
size: size,
}
}
func (p *BufferPool) Get() *[]byte {
return p.pool.Get().(*[]byte)
}
func (p *BufferPool) Put(b *[]byte) {
if b == nil || cap(*b) < p.size {
return // don't pool undersized buffers
}
*b = (*b)[:p.size] // reset to full size
p.pool.Put(b)
}
```
### Pool Anti-Patterns
```go
// BAD: Pool of pointers to small values (overhead exceeds benefit)
var intPool = sync.Pool{New: func() interface{} { return new(int) }}
// BAD: Not resetting state before Put
bufPool.Put(buf) // may contain sensitive data
// BAD: Pooling objects with goroutine-local state
var connPool = sync.Pool{...} // connections are stateful
// BAD: Assuming pooled objects persist (GC clears pools)
obj := pool.Get()
// ... long delay
pool.Put(obj) // obj may have been GC'd during delay
```
### When to Use sync.Pool
| Use Case | Pool? | Reason |
|----------|-------|--------|
| Buffers in HTTP handlers | Yes | High allocation rate, short lifetime |
| Encoder/decoder state | Yes | Expensive to initialize |
| Small values (<64 bytes) | No | Pointer overhead exceeds benefit |
| Long-lived objects | No | Pools are for short-lived reuse |
| Objects with cleanup needs | No | Pool provides no finalization |
## Goroutine Pooling
### Worker Pool Pattern
```go
type WorkerPool struct {
jobs chan func()
workers int
wg sync.WaitGroup
}
func NewWorkerPool(workers, queueSize int) *WorkerPool {
p := &WorkerPool{
jobs: make(chan func(), queueSize),
workers: workers,
}
p.wg.Add(workers)
for i := 0; i < workers; i++ {
go p.worker()
}
return p
}
func (p *WorkerPool) worker() {
defer p.wg.Done()
for job := range p.jobs {
job()
}
}
func (p *WorkerPool) Submit(job func()) {
p.jobs <- job
}
func (p *WorkerPool) Shutdown() {
close(p.jobs)
p.wg.Wait()
}
```
### Bounded Concurrency with Semaphore
```go
type Semaphore struct {
sem chan struct{}
}
func NewSemaphore(n int) *Semaphore {
return &Semaphore{sem: make(chan struct{}, n)}
}
func (s *Semaphore) Acquire() { s.sem <- struct{}{} }
func (s *Semaphore) Release() { <-s.sem }
// Usage
sem := NewSemaphore(runtime.GOMAXPROCS(0))
for _, item := range items {
sem.Acquire()
go func(it Item) {
defer sem.Release()
process(it)
}(item)
}
```
### Goroutine Reuse Benefits
| Metric | Spawn per request | Worker pool |
|--------|-------------------|-------------|
| Goroutine creation | O(n) | O(workers) |
| Stack allocation | 2KB × n | 2KB × workers |
| Scheduler overhead | Higher | Lower |
| GC pressure | Higher | Lower |
## Reducing GC Pressure
### Allocation Reduction Strategies
```go
// 1. Reuse buffers across iterations
buf := make([]byte, 0, 4096)
for _, item := range items {
buf = buf[:0] // reset without reallocation
buf = processItem(buf, item)
}
// 2. Preallocate slices with known length
result := make([]Item, 0, len(input)) // avoid append reallocations
for _, in := range input {
result = append(result, transform(in))
}
// 3. Struct embedding instead of pointer fields
type Event struct {
ID [32]byte // embedded, not *[32]byte
Pubkey [32]byte // single allocation for entire struct
Signature [64]byte
Content string // only string data on heap
}
// 4. String interning for repeated values
var kindStrings = map[int]string{
0: "set_metadata",
1: "text_note",
// ...
}
```
### GC Tuning
```go
import "runtime/debug"
func init() {
// GOGC: target heap growth percentage (default 100)
// Lower = more frequent GC, less memory
// Higher = less frequent GC, more memory
debug.SetGCPercent(50) // GC when heap grows 50%
// GOMEMLIMIT: soft memory limit (Go 1.19+)
// GC becomes more aggressive as limit approaches
debug.SetMemoryLimit(512 << 20) // 512MB limit
}
```
Environment variables:
```bash
GOGC=50 # More aggressive GC
GOMEMLIMIT=512MiB # Soft memory limit
GODEBUG=gctrace=1 # GC trace output
```
### Arena Allocation (Go 1.20+, experimental)
```go
//go:build goexperiment.arenas
import "arena"
func processLargeDataset(data []byte) Result {
a := arena.NewArena()
defer a.Free() // bulk free all allocations
// All allocations from arena are freed together
items := arena.MakeSlice[Item](a, 0, 1000)
// ... process
// Copy result out before Free
return copyResult(result)
}
```
## Memory Profiling
### Heap Profile
```go
import "runtime/pprof"
func captureHeapProfile() {
f, _ := os.Create("heap.prof")
defer f.Close()
runtime.GC() // get accurate picture
pprof.WriteHeapProfile(f)
}
```
```bash
go tool pprof -http=:8080 heap.prof
go tool pprof -alloc_space heap.prof # total allocations
go tool pprof -inuse_space heap.prof # current usage
```
### Allocation Benchmarks
```go
func BenchmarkAllocation(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
result := processData(input)
_ = result
}
}
```
Output interpretation:
```
BenchmarkAllocation-8 1000000 1234 ns/op 256 B/op 3 allocs/op
↑ ↑
bytes/op allocations/op
```
### Live Memory Monitoring
```go
func printMemStats() {
var m runtime.MemStats
runtime.ReadMemStats(&m)
fmt.Printf("Alloc: %d MB\n", m.Alloc/1024/1024)
fmt.Printf("TotalAlloc: %d MB\n", m.TotalAlloc/1024/1024)
fmt.Printf("Sys: %d MB\n", m.Sys/1024/1024)
fmt.Printf("NumGC: %d\n", m.NumGC)
fmt.Printf("GCPause: %v\n", time.Duration(m.PauseNs[(m.NumGC+255)%256]))
}
```
## Common Patterns Reference
For detailed code examples and patterns, see `references/patterns.md`:
- Buffer pool implementations
- Zero-allocation JSON encoding
- Memory-efficient string building
- Slice capacity management
- Struct layout optimization
## Checklist for Memory-Critical Code
1. [ ] Profile before optimizing (`go tool pprof`)
2. [ ] Check escape analysis output (`-gcflags="-m"`)
3. [ ] Use fixed-size arrays for known-size data
4. [ ] Implement sync.Pool for frequently allocated objects
5. [ ] Preallocate slices with known capacity
6. [ ] Reuse buffers instead of allocating new ones
7. [ ] Consider struct field ordering for alignment
8. [ ] Benchmark with `-benchmem` flag
9. [ ] Set appropriate GOGC/GOMEMLIMIT for production
10. [ ] Monitor GC behavior with GODEBUG=gctrace=1