Files
next.orly.dev/.claude/skills/elliptic-curves/references/algorithms.md
mleku 3c17e975df Add foundational resources for elliptic curve operations and distributed systems
Added detailed pseudocode for elliptic curve algorithms covering modular arithmetic, point operations, scalar multiplication, and coordinate conversions. Also introduced a comprehensive knowledge base for distributed systems, including CAP theorem, consistency models, consensus protocols (e.g., Paxos, Raft, PBFT, Nakamoto), and fault-tolerant design principles.
2025-12-02 19:14:39 +00:00

513 lines
11 KiB
Markdown

# Elliptic Curve Algorithms
Detailed pseudocode for core elliptic curve operations.
## Field Arithmetic
### Modular Addition
```
function mod_add(a, b, p):
result = a + b
if result >= p:
result = result - p
return result
```
### Modular Subtraction
```
function mod_sub(a, b, p):
if a >= b:
return a - b
else:
return p - b + a
```
### Modular Multiplication
For general case:
```
function mod_mul(a, b, p):
return (a * b) mod p
```
For secp256k1 optimized (Barrett reduction):
```
function mod_mul_secp256k1(a, b):
# Compute full 512-bit product
product = a * b
# Split into high and low 256-bit parts
low = product & ((1 << 256) - 1)
high = product >> 256
# Reduce: result ≡ low + high * (2³² + 977) (mod p)
result = low + high * (1 << 32) + high * 977
# May need additional reduction
while result >= p:
result = result - p
return result
```
### Modular Inverse
**Extended Euclidean Algorithm**:
```
function mod_inverse(a, p):
if a == 0:
error "No inverse exists for 0"
old_r, r = p, a
old_s, s = 0, 1
while r != 0:
quotient = old_r / r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
if old_r != 1:
error "No inverse exists"
if old_s < 0:
old_s = old_s + p
return old_s
```
**Fermat's Little Theorem** (for prime p):
```
function mod_inverse_fermat(a, p):
return mod_exp(a, p - 2, p)
```
### Modular Exponentiation (Square-and-Multiply)
```
function mod_exp(base, exp, p):
result = 1
base = base mod p
while exp > 0:
if exp & 1: # exp is odd
result = (result * base) mod p
exp = exp >> 1
base = (base * base) mod p
return result
```
### Modular Square Root (Tonelli-Shanks)
For secp256k1 where p ≡ 3 (mod 4):
```
function mod_sqrt(a, p):
# For p ≡ 3 (mod 4), sqrt(a) = a^((p+1)/4)
return mod_exp(a, (p + 1) / 4, p)
```
## Point Operations
### Point Validation
```
function is_on_curve(P, a, b, p):
if P is infinity:
return true
x, y = P
left = (y * y) mod p
right = (x * x * x + a * x + b) mod p
return left == right
```
### Point Addition (Affine Coordinates)
```
function point_add(P, Q, a, p):
if P is infinity:
return Q
if Q is infinity:
return P
x1, y1 = P
x2, y2 = Q
if x1 == x2:
if y1 == mod_neg(y2, p): # P = -Q
return infinity
else: # P == Q
return point_double(P, a, p)
# λ = (y2 - y1) / (x2 - x1)
numerator = mod_sub(y2, y1, p)
denominator = mod_sub(x2, x1, p)
λ = mod_mul(numerator, mod_inverse(denominator, p), p)
# x3 = λ² - x1 - x2
x3 = mod_sub(mod_sub(mod_mul(λ, λ, p), x1, p), x2, p)
# y3 = λ(x1 - x3) - y1
y3 = mod_sub(mod_mul(λ, mod_sub(x1, x3, p), p), y1, p)
return (x3, y3)
```
### Point Doubling (Affine Coordinates)
```
function point_double(P, a, p):
if P is infinity:
return infinity
x, y = P
if y == 0:
return infinity
# λ = (3x² + a) / (2y)
numerator = mod_add(mod_mul(3, mod_mul(x, x, p), p), a, p)
denominator = mod_mul(2, y, p)
λ = mod_mul(numerator, mod_inverse(denominator, p), p)
# x3 = λ² - 2x
x3 = mod_sub(mod_mul(λ, λ, p), mod_mul(2, x, p), p)
# y3 = λ(x - x3) - y
y3 = mod_sub(mod_mul(λ, mod_sub(x, x3, p), p), y, p)
return (x3, y3)
```
### Point Negation
```
function point_negate(P, p):
if P is infinity:
return infinity
x, y = P
return (x, p - y)
```
## Scalar Multiplication
### Double-and-Add (Left-to-Right)
```
function scalar_mult_double_add(k, P, a, p):
if k == 0 or P is infinity:
return infinity
if k < 0:
k = -k
P = point_negate(P, p)
R = infinity
bits = binary_representation(k) # MSB first
for bit in bits:
R = point_double(R, a, p)
if bit == 1:
R = point_add(R, P, a, p)
return R
```
### Montgomery Ladder (Constant-Time)
```
function scalar_mult_montgomery(k, P, a, p):
R0 = infinity
R1 = P
bits = binary_representation(k) # MSB first
for bit in bits:
if bit == 0:
R1 = point_add(R0, R1, a, p)
R0 = point_double(R0, a, p)
else:
R0 = point_add(R0, R1, a, p)
R1 = point_double(R1, a, p)
return R0
```
### w-NAF Scalar Multiplication
```
function compute_wNAF(k, w):
# Convert scalar to width-w Non-Adjacent Form
naf = []
while k > 0:
if k & 1: # k is odd
# Get w-bit window
digit = k mod (1 << w)
if digit >= (1 << (w-1)):
digit = digit - (1 << w)
naf.append(digit)
k = k - digit
else:
naf.append(0)
k = k >> 1
return naf
function scalar_mult_wNAF(k, P, w, a, p):
# Precompute odd multiples: [P, 3P, 5P, ..., (2^(w-1)-1)P]
precomp = [P]
P2 = point_double(P, a, p)
for i in range(1, 1 << (w-1)):
precomp.append(point_add(precomp[-1], P2, a, p))
# Convert k to w-NAF
naf = compute_wNAF(k, w)
# Compute scalar multiplication
R = infinity
for i in range(len(naf) - 1, -1, -1):
R = point_double(R, a, p)
digit = naf[i]
if digit > 0:
R = point_add(R, precomp[(digit - 1) / 2], a, p)
elif digit < 0:
R = point_add(R, point_negate(precomp[(-digit - 1) / 2], p), a, p)
return R
```
### Shamir's Trick (Multi-Scalar)
For computing k₁P + k₂Q efficiently:
```
function multi_scalar_mult(k1, P, k2, Q, a, p):
# Precompute P + Q
PQ = point_add(P, Q, a, p)
# Get binary representations (same length, padded)
bits1 = binary_representation(k1)
bits2 = binary_representation(k2)
max_len = max(len(bits1), len(bits2))
bits1 = pad_left(bits1, max_len)
bits2 = pad_left(bits2, max_len)
R = infinity
for i in range(max_len):
R = point_double(R, a, p)
b1, b2 = bits1[i], bits2[i]
if b1 == 1 and b2 == 1:
R = point_add(R, PQ, a, p)
elif b1 == 1:
R = point_add(R, P, a, p)
elif b2 == 1:
R = point_add(R, Q, a, p)
return R
```
## Jacobian Coordinates
More efficient for repeated operations.
### Conversion
```
# Affine to Jacobian
function affine_to_jacobian(P):
if P is infinity:
return (1, 1, 0) # Jacobian infinity
x, y = P
return (x, y, 1)
# Jacobian to Affine
function jacobian_to_affine(P, p):
X, Y, Z = P
if Z == 0:
return infinity
Z_inv = mod_inverse(Z, p)
Z_inv2 = mod_mul(Z_inv, Z_inv, p)
Z_inv3 = mod_mul(Z_inv2, Z_inv, p)
x = mod_mul(X, Z_inv2, p)
y = mod_mul(Y, Z_inv3, p)
return (x, y)
```
### Point Doubling (Jacobian)
For curve y² = x³ + 7 (a = 0):
```
function jacobian_double(P, p):
X, Y, Z = P
if Y == 0:
return (1, 1, 0) # infinity
# For a = 0: M = 3*X²
S = mod_mul(4, mod_mul(X, mod_mul(Y, Y, p), p), p)
M = mod_mul(3, mod_mul(X, X, p), p)
X3 = mod_sub(mod_mul(M, M, p), mod_mul(2, S, p), p)
Y3 = mod_sub(mod_mul(M, mod_sub(S, X3, p), p),
mod_mul(8, mod_mul(Y, Y, mod_mul(Y, Y, p), p), p), p)
Z3 = mod_mul(2, mod_mul(Y, Z, p), p)
return (X3, Y3, Z3)
```
### Point Addition (Jacobian + Affine)
Mixed addition is faster when one point is in affine:
```
function jacobian_add_affine(P, Q, p):
# P in Jacobian (X1, Y1, Z1), Q in affine (x2, y2)
X1, Y1, Z1 = P
x2, y2 = Q
if Z1 == 0:
return affine_to_jacobian(Q)
Z1Z1 = mod_mul(Z1, Z1, p)
U2 = mod_mul(x2, Z1Z1, p)
S2 = mod_mul(y2, mod_mul(Z1, Z1Z1, p), p)
H = mod_sub(U2, X1, p)
HH = mod_mul(H, H, p)
I = mod_mul(4, HH, p)
J = mod_mul(H, I, p)
r = mod_mul(2, mod_sub(S2, Y1, p), p)
V = mod_mul(X1, I, p)
X3 = mod_sub(mod_sub(mod_mul(r, r, p), J, p), mod_mul(2, V, p), p)
Y3 = mod_sub(mod_mul(r, mod_sub(V, X3, p), p), mod_mul(2, mod_mul(Y1, J, p), p), p)
Z3 = mod_mul(mod_sub(mod_mul(mod_add(Z1, H, p), mod_add(Z1, H, p), p),
mod_add(Z1Z1, HH, p), p), 1, p)
return (X3, Y3, Z3)
```
## GLV Endomorphism (secp256k1)
### Scalar Decomposition
```
# Constants for secp256k1
LAMBDA = 0x5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72
BETA = 0x7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE
# Decomposition coefficients
A1 = 0x3086D221A7D46BCDE86C90E49284EB15
B1 = 0x114CA50F7A8E2F3F657C1108D9D44CFD8
A2 = 0xE4437ED6010E88286F547FA90ABFE4C3
B2 = A1
function glv_decompose(k, n):
# Compute c1 = round(b2 * k / n)
# Compute c2 = round(-b1 * k / n)
c1 = (B2 * k + n // 2) // n
c2 = (-B1 * k + n // 2) // n
# k1 = k - c1*A1 - c2*A2
# k2 = -c1*B1 - c2*B2
k1 = k - c1 * A1 - c2 * A2
k2 = -c1 * B1 - c2 * B2
return (k1, k2)
function glv_scalar_mult(k, P, p, n):
k1, k2 = glv_decompose(k, n)
# Compute endomorphism: φ(P) = (β*x, y)
x, y = P
phi_P = (mod_mul(BETA, x, p), y)
# Use Shamir's trick: k1*P + k2*φ(P)
return multi_scalar_mult(k1, P, k2, phi_P, 0, p)
```
## Batch Inversion
Amortize expensive inversions over multiple points:
```
function batch_invert(values, p):
n = len(values)
if n == 0:
return []
# Compute cumulative products
products = [values[0]]
for i in range(1, n):
products.append(mod_mul(products[-1], values[i], p))
# Invert the final product
inv = mod_inverse(products[-1], p)
# Compute individual inverses
inverses = [0] * n
for i in range(n - 1, 0, -1):
inverses[i] = mod_mul(inv, products[i - 1], p)
inv = mod_mul(inv, values[i], p)
inverses[0] = inv
return inverses
```
## Key Generation
```
function generate_keypair(G, n, p):
# Generate random private key
d = random_integer(1, n - 1)
# Compute public key
Q = scalar_mult(d, G)
return (d, Q)
```
## Point Compression/Decompression
```
function compress_point(P, p):
if P is infinity:
return bytes([0x00])
x, y = P
prefix = 0x02 if (y % 2 == 0) else 0x03
return bytes([prefix]) + x.to_bytes(32, 'big')
function decompress_point(compressed, a, b, p):
prefix = compressed[0]
if prefix == 0x00:
return infinity
x = int.from_bytes(compressed[1:], 'big')
# Compute y² = x³ + ax + b
y_squared = mod_add(mod_add(mod_mul(x, mod_mul(x, x, p), p),
mod_mul(a, x, p), p), b, p)
# Compute y = sqrt(y²)
y = mod_sqrt(y_squared, p)
# Select correct y based on prefix
if (prefix == 0x02) != (y % 2 == 0):
y = p - y
return (x, y)
```