Added detailed pseudocode for elliptic curve algorithms covering modular arithmetic, point operations, scalar multiplication, and coordinate conversions. Also introduced a comprehensive knowledge base for distributed systems, including CAP theorem, consistency models, consensus protocols (e.g., Paxos, Raft, PBFT, Nakamoto), and fault-tolerant design principles.
11 KiB
11 KiB
Elliptic Curve Algorithms
Detailed pseudocode for core elliptic curve operations.
Field Arithmetic
Modular Addition
function mod_add(a, b, p):
result = a + b
if result >= p:
result = result - p
return result
Modular Subtraction
function mod_sub(a, b, p):
if a >= b:
return a - b
else:
return p - b + a
Modular Multiplication
For general case:
function mod_mul(a, b, p):
return (a * b) mod p
For secp256k1 optimized (Barrett reduction):
function mod_mul_secp256k1(a, b):
# Compute full 512-bit product
product = a * b
# Split into high and low 256-bit parts
low = product & ((1 << 256) - 1)
high = product >> 256
# Reduce: result ≡ low + high * (2³² + 977) (mod p)
result = low + high * (1 << 32) + high * 977
# May need additional reduction
while result >= p:
result = result - p
return result
Modular Inverse
Extended Euclidean Algorithm:
function mod_inverse(a, p):
if a == 0:
error "No inverse exists for 0"
old_r, r = p, a
old_s, s = 0, 1
while r != 0:
quotient = old_r / r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
if old_r != 1:
error "No inverse exists"
if old_s < 0:
old_s = old_s + p
return old_s
Fermat's Little Theorem (for prime p):
function mod_inverse_fermat(a, p):
return mod_exp(a, p - 2, p)
Modular Exponentiation (Square-and-Multiply)
function mod_exp(base, exp, p):
result = 1
base = base mod p
while exp > 0:
if exp & 1: # exp is odd
result = (result * base) mod p
exp = exp >> 1
base = (base * base) mod p
return result
Modular Square Root (Tonelli-Shanks)
For secp256k1 where p ≡ 3 (mod 4):
function mod_sqrt(a, p):
# For p ≡ 3 (mod 4), sqrt(a) = a^((p+1)/4)
return mod_exp(a, (p + 1) / 4, p)
Point Operations
Point Validation
function is_on_curve(P, a, b, p):
if P is infinity:
return true
x, y = P
left = (y * y) mod p
right = (x * x * x + a * x + b) mod p
return left == right
Point Addition (Affine Coordinates)
function point_add(P, Q, a, p):
if P is infinity:
return Q
if Q is infinity:
return P
x1, y1 = P
x2, y2 = Q
if x1 == x2:
if y1 == mod_neg(y2, p): # P = -Q
return infinity
else: # P == Q
return point_double(P, a, p)
# λ = (y2 - y1) / (x2 - x1)
numerator = mod_sub(y2, y1, p)
denominator = mod_sub(x2, x1, p)
λ = mod_mul(numerator, mod_inverse(denominator, p), p)
# x3 = λ² - x1 - x2
x3 = mod_sub(mod_sub(mod_mul(λ, λ, p), x1, p), x2, p)
# y3 = λ(x1 - x3) - y1
y3 = mod_sub(mod_mul(λ, mod_sub(x1, x3, p), p), y1, p)
return (x3, y3)
Point Doubling (Affine Coordinates)
function point_double(P, a, p):
if P is infinity:
return infinity
x, y = P
if y == 0:
return infinity
# λ = (3x² + a) / (2y)
numerator = mod_add(mod_mul(3, mod_mul(x, x, p), p), a, p)
denominator = mod_mul(2, y, p)
λ = mod_mul(numerator, mod_inverse(denominator, p), p)
# x3 = λ² - 2x
x3 = mod_sub(mod_mul(λ, λ, p), mod_mul(2, x, p), p)
# y3 = λ(x - x3) - y
y3 = mod_sub(mod_mul(λ, mod_sub(x, x3, p), p), y, p)
return (x3, y3)
Point Negation
function point_negate(P, p):
if P is infinity:
return infinity
x, y = P
return (x, p - y)
Scalar Multiplication
Double-and-Add (Left-to-Right)
function scalar_mult_double_add(k, P, a, p):
if k == 0 or P is infinity:
return infinity
if k < 0:
k = -k
P = point_negate(P, p)
R = infinity
bits = binary_representation(k) # MSB first
for bit in bits:
R = point_double(R, a, p)
if bit == 1:
R = point_add(R, P, a, p)
return R
Montgomery Ladder (Constant-Time)
function scalar_mult_montgomery(k, P, a, p):
R0 = infinity
R1 = P
bits = binary_representation(k) # MSB first
for bit in bits:
if bit == 0:
R1 = point_add(R0, R1, a, p)
R0 = point_double(R0, a, p)
else:
R0 = point_add(R0, R1, a, p)
R1 = point_double(R1, a, p)
return R0
w-NAF Scalar Multiplication
function compute_wNAF(k, w):
# Convert scalar to width-w Non-Adjacent Form
naf = []
while k > 0:
if k & 1: # k is odd
# Get w-bit window
digit = k mod (1 << w)
if digit >= (1 << (w-1)):
digit = digit - (1 << w)
naf.append(digit)
k = k - digit
else:
naf.append(0)
k = k >> 1
return naf
function scalar_mult_wNAF(k, P, w, a, p):
# Precompute odd multiples: [P, 3P, 5P, ..., (2^(w-1)-1)P]
precomp = [P]
P2 = point_double(P, a, p)
for i in range(1, 1 << (w-1)):
precomp.append(point_add(precomp[-1], P2, a, p))
# Convert k to w-NAF
naf = compute_wNAF(k, w)
# Compute scalar multiplication
R = infinity
for i in range(len(naf) - 1, -1, -1):
R = point_double(R, a, p)
digit = naf[i]
if digit > 0:
R = point_add(R, precomp[(digit - 1) / 2], a, p)
elif digit < 0:
R = point_add(R, point_negate(precomp[(-digit - 1) / 2], p), a, p)
return R
Shamir's Trick (Multi-Scalar)
For computing k₁P + k₂Q efficiently:
function multi_scalar_mult(k1, P, k2, Q, a, p):
# Precompute P + Q
PQ = point_add(P, Q, a, p)
# Get binary representations (same length, padded)
bits1 = binary_representation(k1)
bits2 = binary_representation(k2)
max_len = max(len(bits1), len(bits2))
bits1 = pad_left(bits1, max_len)
bits2 = pad_left(bits2, max_len)
R = infinity
for i in range(max_len):
R = point_double(R, a, p)
b1, b2 = bits1[i], bits2[i]
if b1 == 1 and b2 == 1:
R = point_add(R, PQ, a, p)
elif b1 == 1:
R = point_add(R, P, a, p)
elif b2 == 1:
R = point_add(R, Q, a, p)
return R
Jacobian Coordinates
More efficient for repeated operations.
Conversion
# Affine to Jacobian
function affine_to_jacobian(P):
if P is infinity:
return (1, 1, 0) # Jacobian infinity
x, y = P
return (x, y, 1)
# Jacobian to Affine
function jacobian_to_affine(P, p):
X, Y, Z = P
if Z == 0:
return infinity
Z_inv = mod_inverse(Z, p)
Z_inv2 = mod_mul(Z_inv, Z_inv, p)
Z_inv3 = mod_mul(Z_inv2, Z_inv, p)
x = mod_mul(X, Z_inv2, p)
y = mod_mul(Y, Z_inv3, p)
return (x, y)
Point Doubling (Jacobian)
For curve y² = x³ + 7 (a = 0):
function jacobian_double(P, p):
X, Y, Z = P
if Y == 0:
return (1, 1, 0) # infinity
# For a = 0: M = 3*X²
S = mod_mul(4, mod_mul(X, mod_mul(Y, Y, p), p), p)
M = mod_mul(3, mod_mul(X, X, p), p)
X3 = mod_sub(mod_mul(M, M, p), mod_mul(2, S, p), p)
Y3 = mod_sub(mod_mul(M, mod_sub(S, X3, p), p),
mod_mul(8, mod_mul(Y, Y, mod_mul(Y, Y, p), p), p), p)
Z3 = mod_mul(2, mod_mul(Y, Z, p), p)
return (X3, Y3, Z3)
Point Addition (Jacobian + Affine)
Mixed addition is faster when one point is in affine:
function jacobian_add_affine(P, Q, p):
# P in Jacobian (X1, Y1, Z1), Q in affine (x2, y2)
X1, Y1, Z1 = P
x2, y2 = Q
if Z1 == 0:
return affine_to_jacobian(Q)
Z1Z1 = mod_mul(Z1, Z1, p)
U2 = mod_mul(x2, Z1Z1, p)
S2 = mod_mul(y2, mod_mul(Z1, Z1Z1, p), p)
H = mod_sub(U2, X1, p)
HH = mod_mul(H, H, p)
I = mod_mul(4, HH, p)
J = mod_mul(H, I, p)
r = mod_mul(2, mod_sub(S2, Y1, p), p)
V = mod_mul(X1, I, p)
X3 = mod_sub(mod_sub(mod_mul(r, r, p), J, p), mod_mul(2, V, p), p)
Y3 = mod_sub(mod_mul(r, mod_sub(V, X3, p), p), mod_mul(2, mod_mul(Y1, J, p), p), p)
Z3 = mod_mul(mod_sub(mod_mul(mod_add(Z1, H, p), mod_add(Z1, H, p), p),
mod_add(Z1Z1, HH, p), p), 1, p)
return (X3, Y3, Z3)
GLV Endomorphism (secp256k1)
Scalar Decomposition
# Constants for secp256k1
LAMBDA = 0x5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72
BETA = 0x7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE
# Decomposition coefficients
A1 = 0x3086D221A7D46BCDE86C90E49284EB15
B1 = 0x114CA50F7A8E2F3F657C1108D9D44CFD8
A2 = 0xE4437ED6010E88286F547FA90ABFE4C3
B2 = A1
function glv_decompose(k, n):
# Compute c1 = round(b2 * k / n)
# Compute c2 = round(-b1 * k / n)
c1 = (B2 * k + n // 2) // n
c2 = (-B1 * k + n // 2) // n
# k1 = k - c1*A1 - c2*A2
# k2 = -c1*B1 - c2*B2
k1 = k - c1 * A1 - c2 * A2
k2 = -c1 * B1 - c2 * B2
return (k1, k2)
function glv_scalar_mult(k, P, p, n):
k1, k2 = glv_decompose(k, n)
# Compute endomorphism: φ(P) = (β*x, y)
x, y = P
phi_P = (mod_mul(BETA, x, p), y)
# Use Shamir's trick: k1*P + k2*φ(P)
return multi_scalar_mult(k1, P, k2, phi_P, 0, p)
Batch Inversion
Amortize expensive inversions over multiple points:
function batch_invert(values, p):
n = len(values)
if n == 0:
return []
# Compute cumulative products
products = [values[0]]
for i in range(1, n):
products.append(mod_mul(products[-1], values[i], p))
# Invert the final product
inv = mod_inverse(products[-1], p)
# Compute individual inverses
inverses = [0] * n
for i in range(n - 1, 0, -1):
inverses[i] = mod_mul(inv, products[i - 1], p)
inv = mod_mul(inv, values[i], p)
inverses[0] = inv
return inverses
Key Generation
function generate_keypair(G, n, p):
# Generate random private key
d = random_integer(1, n - 1)
# Compute public key
Q = scalar_mult(d, G)
return (d, Q)
Point Compression/Decompression
function compress_point(P, p):
if P is infinity:
return bytes([0x00])
x, y = P
prefix = 0x02 if (y % 2 == 0) else 0x03
return bytes([prefix]) + x.to_bytes(32, 'big')
function decompress_point(compressed, a, b, p):
prefix = compressed[0]
if prefix == 0x00:
return infinity
x = int.from_bytes(compressed[1:], 'big')
# Compute y² = x³ + ax + b
y_squared = mod_add(mod_add(mod_mul(x, mod_mul(x, x, p), p),
mod_mul(a, x, p), p), b, p)
# Compute y = sqrt(y²)
y = mod_sqrt(y_squared, p)
# Select correct y based on prefix
if (prefix == 0x02) != (y % 2 == 0):
y = p - y
return (x, y)