implement messages and operations for FIND

This commit is contained in:
2025-11-08 08:54:58 +00:00
parent 587116afa8
commit b4760c49b6
14 changed files with 3225 additions and 17 deletions

View File

@@ -17,7 +17,15 @@
"Bash(printf:*)",
"Bash(websocat:*)",
"Bash(go test:*)",
"Bash(timeout 180 go test:*)"
"Bash(timeout 180 go test:*)",
"WebFetch(domain:github.com)",
"WebFetch(domain:raw.githubusercontent.com)",
"Bash(/tmp/find help)",
"Bash(/tmp/find verify-name example.com)",
"Skill(golang)",
"Bash(/tmp/find verify-name Bitcoin.Nostr)",
"Bash(/tmp/find generate-key)",
"Bash(git ls-tree:*)"
],
"deny": [],
"ask": []

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

283
cmd/find/main.go Normal file
View File

@@ -0,0 +1,283 @@
package main
import (
"fmt"
"os"
"time"
"next.orly.dev/pkg/crypto/keys"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/find"
"next.orly.dev/pkg/interfaces/signer"
"next.orly.dev/pkg/interfaces/signer/p8k"
)
func main() {
if len(os.Args) < 2 {
printUsage()
os.Exit(1)
}
command := os.Args[1]
switch command {
case "register":
handleRegister()
case "transfer":
handleTransfer()
case "verify-name":
handleVerifyName()
case "generate-key":
handleGenerateKey()
case "issue-cert":
handleIssueCert()
case "help":
printUsage()
default:
fmt.Printf("Unknown command: %s\n\n", command)
printUsage()
os.Exit(1)
}
}
func printUsage() {
fmt.Println("FIND - Free Internet Name Daemon")
fmt.Println("Usage: find <command> [options]")
fmt.Println()
fmt.Println("Commands:")
fmt.Println(" register <name> Create a registration proposal for a name")
fmt.Println(" transfer <name> <new-owner> Transfer a name to a new owner")
fmt.Println(" verify-name <name> Validate a name format")
fmt.Println(" generate-key Generate a new key pair")
fmt.Println(" issue-cert <name> Issue a certificate for a name")
fmt.Println(" help Show this help message")
fmt.Println()
fmt.Println("Examples:")
fmt.Println(" find verify-name example.com")
fmt.Println(" find register myname.nostr")
fmt.Println(" find generate-key")
}
func handleRegister() {
if len(os.Args) < 3 {
fmt.Println("Usage: find register <name>")
os.Exit(1)
}
name := os.Args[2]
// Validate the name
if err := find.ValidateName(name); err != nil {
fmt.Printf("Invalid name: %v\n", err)
os.Exit(1)
}
// Generate a key pair for this example
// In production, this would load from a secure keystore
signer, err := p8k.New()
if err != nil {
fmt.Printf("Failed to create signer: %v\n", err)
os.Exit(1)
}
if err := signer.Generate(); err != nil {
fmt.Printf("Failed to generate key: %v\n", err)
os.Exit(1)
}
// Create registration proposal
proposal, err := find.NewRegistrationProposal(name, find.ActionRegister, signer)
if err != nil {
fmt.Printf("Failed to create proposal: %v\n", err)
os.Exit(1)
}
fmt.Printf("Registration Proposal Created\n")
fmt.Printf("==============================\n")
fmt.Printf("Name: %s\n", name)
fmt.Printf("Pubkey: %s\n", hex.Enc(signer.Pub()))
fmt.Printf("Event ID: %s\n", hex.Enc(proposal.GetIDBytes()))
fmt.Printf("Kind: %d\n", proposal.Kind)
fmt.Printf("Created At: %s\n", time.Unix(proposal.CreatedAt, 0))
fmt.Printf("\nEvent JSON:\n")
json := proposal.Marshal(nil)
fmt.Println(string(json))
}
func handleTransfer() {
if len(os.Args) < 4 {
fmt.Println("Usage: find transfer <name> <new-owner-pubkey>")
os.Exit(1)
}
name := os.Args[2]
newOwnerPubkey := os.Args[3]
// Validate the name
if err := find.ValidateName(name); err != nil {
fmt.Printf("Invalid name: %v\n", err)
os.Exit(1)
}
// Generate current owner key (in production, load from keystore)
currentOwner, err := p8k.New()
if err != nil {
fmt.Printf("Failed to create current owner signer: %v\n", err)
os.Exit(1)
}
if err := currentOwner.Generate(); err != nil {
fmt.Printf("Failed to generate current owner key: %v\n", err)
os.Exit(1)
}
// Authorize the transfer
prevSig, timestamp, err := find.AuthorizeTransfer(name, newOwnerPubkey, currentOwner)
if err != nil {
fmt.Printf("Failed to authorize transfer: %v\n", err)
os.Exit(1)
}
fmt.Printf("Transfer Authorization Created\n")
fmt.Printf("===============================\n")
fmt.Printf("Name: %s\n", name)
fmt.Printf("Current Owner: %s\n", hex.Enc(currentOwner.Pub()))
fmt.Printf("New Owner: %s\n", newOwnerPubkey)
fmt.Printf("Timestamp: %s\n", timestamp)
fmt.Printf("Signature: %s\n", prevSig)
fmt.Printf("\nTo complete the transfer, the new owner must create a proposal with:")
fmt.Printf(" prev_owner: %s\n", hex.Enc(currentOwner.Pub()))
fmt.Printf(" prev_sig: %s\n", prevSig)
}
func handleVerifyName() {
if len(os.Args) < 3 {
fmt.Println("Usage: find verify-name <name>")
os.Exit(1)
}
name := os.Args[2]
// Validate the name
if err := find.ValidateName(name); err != nil {
fmt.Printf("❌ Invalid name: %v\n", err)
os.Exit(1)
}
normalized := find.NormalizeName(name)
isTLD := find.IsTLD(normalized)
parent := find.GetParentDomain(normalized)
fmt.Printf("✓ Valid name\n")
fmt.Printf("==============\n")
fmt.Printf("Original: %s\n", name)
fmt.Printf("Normalized: %s\n", normalized)
fmt.Printf("Is TLD: %v\n", isTLD)
if parent != "" {
fmt.Printf("Parent: %s\n", parent)
}
}
func handleGenerateKey() {
// Generate a new key pair
secKey, err := keys.GenerateSecretKey()
if err != nil {
fmt.Printf("Failed to generate secret key: %v\n", err)
os.Exit(1)
}
secKeyHex := hex.Enc(secKey)
pubKeyHex, err := keys.GetPublicKeyHex(secKeyHex)
if err != nil {
fmt.Printf("Failed to derive public key: %v\n", err)
os.Exit(1)
}
fmt.Println("New Key Pair Generated")
fmt.Println("======================")
fmt.Printf("Secret Key (keep safe!): %s\n", secKeyHex)
fmt.Printf("Public Key: %s\n", pubKeyHex)
fmt.Println()
fmt.Println("⚠️ IMPORTANT: Store the secret key securely. Anyone with access to it can control your names.")
}
func handleIssueCert() {
if len(os.Args) < 3 {
fmt.Println("Usage: find issue-cert <name>")
os.Exit(1)
}
name := os.Args[2]
// Validate the name
if err := find.ValidateName(name); err != nil {
fmt.Printf("Invalid name: %v\n", err)
os.Exit(1)
}
// Generate name owner key
owner, err := p8k.New()
if err != nil {
fmt.Printf("Failed to create owner signer: %v\n", err)
os.Exit(1)
}
if err := owner.Generate(); err != nil {
fmt.Printf("Failed to generate owner key: %v\n", err)
os.Exit(1)
}
// Generate certificate key (different from name owner)
certSigner, err := p8k.New()
if err != nil {
fmt.Printf("Failed to create cert signer: %v\n", err)
os.Exit(1)
}
if err := certSigner.Generate(); err != nil {
fmt.Printf("Failed to generate cert key: %v\n", err)
os.Exit(1)
}
certPubkey := hex.Enc(certSigner.Pub())
// Generate 3 witness signers (in production, these would be separate services)
var witnesses []signer.I
for i := 0; i < 3; i++ {
witness, err := p8k.New()
if err != nil {
fmt.Printf("Failed to create witness %d: %v\n", i, err)
os.Exit(1)
}
if err := witness.Generate(); err != nil {
fmt.Printf("Failed to generate witness %d key: %v\n", i, err)
os.Exit(1)
}
witnesses = append(witnesses, witness)
}
// Issue certificate (90 day validity)
cert, err := find.IssueCertificate(name, certPubkey, find.CertificateValidity, owner, witnesses)
if err != nil {
fmt.Printf("Failed to issue certificate: %v\n", err)
os.Exit(1)
}
fmt.Printf("Certificate Issued\n")
fmt.Printf("==================\n")
fmt.Printf("Name: %s\n", cert.Name)
fmt.Printf("Cert Pubkey: %s\n", cert.CertPubkey)
fmt.Printf("Valid From: %s\n", cert.ValidFrom)
fmt.Printf("Valid Until: %s\n", cert.ValidUntil)
fmt.Printf("Challenge: %s\n", cert.Challenge)
fmt.Printf("Witnesses: %d\n", len(cert.Witnesses))
fmt.Printf("Algorithm: %s\n", cert.Algorithm)
fmt.Printf("Usage: %s\n", cert.Usage)
fmt.Printf("\nWitness Pubkeys:\n")
for i, w := range cert.Witnesses {
fmt.Printf(" %d: %s\n", i+1, w.Pubkey)
}
}

View File

@@ -0,0 +1,694 @@
# Go Reference Type Complexity Analysis and Simplification Proposal
## Executive Summary
Go's "reference types" (slices, maps, channels) introduce significant cognitive load and parsing complexity due to their implicit reference semantics that differ from regular value types. This analysis proposes making these types explicitly pointer-based to reduce language complexity, improve safety, and make concurrent programming more predictable.
## Current State: The Reference Type Problem
### 1. Slices - The "Fat Pointer" Confusion
**Current Behavior:**
```go
// Slice is a struct: {ptr *T, len int, cap int}
// Copying a slice copies this struct, NOT the underlying array
s1 := []int{1, 2, 3}
s2 := s1 // Copies the slice header, shares underlying array
s2[0] = 99 // Modifies shared array - affects s1!
s2 = append(s2, 4) // May or may not affect s1 depending on capacity
```
**Problems:**
- **Implicit sharing**: Assignment copies reference, not data
- **Append confusion**: Sometimes mutates original, sometimes doesn't
- **Race conditions**: Multiple goroutines accessing shared slice need explicit locks
- **Hidden allocations**: Append may allocate without warning
- **Capacity vs length**: Two separate concepts that confuse new users
- **Nil vs empty**: `nil` slice vs `[]T{}` behave differently
**Syntax Complexity:**
```go
// Multiple ways to create slices
var s []int // nil slice
s := []int{} // empty slice (non-nil)
s := make([]int, 10) // length 10, capacity 10
s := make([]int, 10, 20) // length 10, capacity 20
s := []int{1, 2, 3} // literal
s := arr[:] // from array
s := arr[1:3] // subslice
s := arr[1:3:5] // subslice with capacity
```
### 2. Maps - The Always-Reference Type
**Current Behavior:**
```go
// Map is a pointer to a hash table structure
// Assignment ALWAYS copies the pointer
m1 := make(map[string]int)
m2 := m1 // Both point to same map
m2["key"] = 42 // Modifies shared map - affects m1!
var m3 map[string]int // nil map - reads panic!
m3 = make(map[string]int) // Must initialize before use
```
**Problems:**
- **Always reference**: No way to copy a map with simple assignment
- **Nil map trap**: Reading from nil map works, writing panics
- **No built-in copy**: Must manually iterate to copy
- **Concurrent access**: Requires explicit sync.Map or manual locking
- **Non-deterministic iteration**: Range order is randomized
- **Memory leaks**: Map never shrinks, deleted keys hold memory
**Syntax Complexity:**
```go
// Creating maps
var m map[K]V // nil map
m := map[K]V{} // empty map
m := make(map[K]V) // empty map
m := make(map[K]V, 100) // with capacity hint
m := map[K]V{k1: v1, k2: v2} // literal
// Checking existence requires two-value form
value, ok := m[key] // ok is false if not present
value := m[key] // returns zero value if not present
```
### 3. Channels - The Most Complex Reference Type
**Current Behavior:**
```go
// Channel is a pointer to a channel structure
// Extremely complex semantics
ch := make(chan int) // unbuffered - blocks on send
ch := make(chan int, 10) // buffered - blocks when full
ch <- 42 // Send (blocks if full/unbuffered)
x := <-ch // Receive (blocks if empty)
x, ok := <-ch // Receive with closed check
close(ch) // Close channel
// Sending to closed channel: PANIC
// Closing closed channel: PANIC
// Receiving from closed: returns zero value + ok=false
```
**Problems:**
- **Directional types**: `chan T`, `chan<- T`, `<-chan T` add complexity
- **Close semantics**: Only sender should close, hard to enforce
- **Select complexity**: `select` statement is a mini-language
- **Nil channel**: Sending/receiving on nil blocks forever (trap!)
- **Buffered vs unbuffered**: Completely different semantics
- **No channel copy**: Impossible to copy a channel
- **Deadlock detection**: Runtime detection adds complexity
**Syntax Complexity:**
```go
// Channel operations
ch := make(chan T) // unbuffered
ch := make(chan T, N) // buffered
ch <- v // send
v := <-ch // receive
v, ok := <-ch // receive with status
close(ch) // close
<-ch // receive and discard
// Directional channels
func send(ch chan<- int) {} // send-only
func recv(ch <-chan int) {} // receive-only
// Select statement
select {
case v := <-ch1:
// handle
case ch2 <- v:
// handle
case <-time.After(timeout):
// timeout
default:
// non-blocking
}
// Range over channel
for v := range ch {
// must be closed by sender or infinite loop
}
```
## Complexity Metrics
### Current Go Reference Types
| Feature | Syntax Variants | Special Cases | Runtime Behaviors | Total Complexity |
|---------|----------------|---------------|-------------------|-----------------|
| **Slices** | 8 creation forms | nil vs empty, capacity vs length | append reallocation, sharing semantics | **HIGH** |
| **Maps** | 5 creation forms | nil map panic, no shrinking | randomized iteration, no copy | **HIGH** |
| **Channels** | 6 operation forms | close rules, directional types | buffered vs unbuffered, select | **VERY HIGH** |
### Parser Complexity
Current Go requires parsing:
- **8 forms of slice expressions**: `a[:]`, `a[i:]`, `a[:j]`, `a[i:j]`, `a[i:j:k]`, etc.
- **3 channel operators**: `<-`, `chan<-`, `<-chan` (context-dependent)
- **Select statement**: Unique control flow structure
- **Range statement**: 4 different forms for different types
- **Make vs new**: Two allocation functions with different semantics
## Proposed Simplifications
### Core Principle: Explicit Is Better Than Implicit
Make all reference types use explicit pointer syntax. This:
1. Makes copying behavior obvious
2. Eliminates special case handling
3. Reduces parser complexity
4. Improves concurrent safety
5. Unifies type system
### 1. Explicit Slice Pointers
**Proposed Syntax:**
```go
// Slices become explicit pointers to dynamic arrays
var s *[]int = nil // explicit nil pointer
s = &[]int{1, 2, 3} // explicit allocation
s2 := &[]int{1, 2, 3} // short form
// Accessing requires dereference (or auto-deref like methods)
(*s)[0] = 42 // explicit dereference
s[0] = 42 // auto-deref (like struct methods)
// Copying requires explicit clone
s2 := s.Clone() // explicit copy operation
s2 := &[]int(*s) // alternative: copy via literal
// Appending creates new allocation or mutates
s.Append(42) // mutates in place (may reallocate)
s2 := s.Clone().Append(42) // copy-on-write pattern
```
**Benefits:**
- **Explicit allocation**: `&[]T{...}` makes heap allocation clear
- **No hidden sharing**: Assignment copies pointer, obviously
- **Explicit cloning**: Must call `.Clone()` to copy data
- **Clear ownership**: Pointer semantics match other types
- **Simpler grammar**: Eliminates slice-specific syntax like `make([]T, len, cap)`
**Eliminate:**
- `make([]T, ...)` - replaced by `&[]T{...}` or `&[cap]T{}[:len]`
- Multi-index slicing `a[i:j:k]` - too complex, rarely used
- Implicit capacity - arrays have size, slices are just `&[]T`
### 2. Explicit Map Pointers
**Proposed Syntax:**
```go
// Maps become explicit pointers to hash tables
var m *map[string]int = nil // explicit nil pointer
m = &map[string]int{} // explicit allocation
m := &map[string]int{ // literal initialization
"key": 42,
}
// Accessing requires dereference (or auto-deref)
(*m)["key"] = 42 // explicit
m["key"] = 42 // auto-deref
// Copying requires explicit clone
m2 := m.Clone() // explicit copy operation
// Nil pointer behavior is consistent
if m == nil {
m = &map[string]int{}
}
m["key"] = 42 // no special nil handling
```
**Benefits:**
- **No nil map trap**: Nil pointer is consistently nil
- **Explicit cloning**: Must call `.Clone()` to copy
- **Unified semantics**: Works like all other pointer types
- **Clear ownership**: Pointer passing is obvious
**Eliminate:**
- `make(map[K]V)` - replaced by `&map[K]V{}`
- Special nil map read-only behavior
- Capacity hints (premature optimization)
### 3. Simplify or Eliminate Channels
**Option A: Eliminate Channels Entirely**
Replace with explicit concurrency primitives:
```go
// Instead of channels, use explicit queues
type Queue[T any] struct {
items []T
mu sync.Mutex
cond *sync.Cond
}
func (q *Queue[T]) Send(v T) {
q.mu.Lock()
defer q.mu.Unlock()
q.items = append(q.items, v)
q.cond.Signal()
}
func (q *Queue[T]) Recv() T {
q.mu.Lock()
defer q.mu.Unlock()
for len(q.items) == 0 {
q.cond.Wait()
}
v := q.items[0]
q.items = q.items[1:]
return v
}
```
**Benefits:**
- **No special syntax**: Uses standard types and methods
- **Explicit locking**: Clear where synchronization happens
- **No close semantics**: Just stop sending
- **No directional types**: Use interfaces if needed
- **Debuggable**: Standard data structures
**Option B: Explicit Channel Pointers**
If keeping channels:
```go
// Channels become explicit pointers
ch := &chan int{} // unbuffered
ch := &chan int{cap: 10} // buffered
ch.Send(42) // method instead of operator
v := ch.Recv() // method instead of operator
v, ok := ch.TryRecv() // non-blocking receive
ch.Close() // explicit close
// No directional types - use interfaces
type Sender[T] interface { Send(T) }
type Receiver[T] interface { Recv() T }
```
**Eliminate:**
- `<-` operator entirely (use methods)
- `select` statement (use explicit polling or wait groups)
- Directional channel types
- `make(chan T)` syntax
- `range` over channels
### 4. Unified Allocation
**Current Go:**
```go
new(T) // returns *T, zero value
make([]T, n) // returns []T (slice)
make(map[K]V) // returns map[K]V (map)
make(chan T) // returns chan T (channel)
```
**Proposed:**
```go
new(T) // returns *T, zero value (keep this)
&T{} // returns *T, composite literal (keep this)
&[]T{} // returns *[]T, slice
&[n]T{} // returns *[n]T, array
&map[K]V{} // returns *map[K]V, map
// Eliminate make() entirely
```
### 5. Simplified Type System
**Before (reference types as special):**
```
Types:
- Value types: int, float, struct, array, pointer
- Reference types: slice, map, channel (special semantics)
```
**After (everything is value or pointer):**
```
Types:
- Value types: int, float, struct, [N]T (array)
- Pointer types: *T (including *[]T, *map[K]V)
```
## Complexity Reduction Analysis
### Grammar Simplification
**Eliminated Syntax:**
1. **Slice expressions** (8 forms → 1):
-`a[:]`, `a[i:]`, `a[:j]`, `a[i:j]`, `a[i:j:k]`
-`a[i]` (single index only, or use methods like `.Slice(i, j)`)
2. **Make function** (3 forms → 0):
-`make([]T, len)`, `make([]T, len, cap)`, `make(map[K]V)`, `make(chan T)`
-`&[]T{}`, `&map[K]V{}`
3. **Channel operators** (3 forms → 0):
-`<-ch`, `ch<-`, `<-chan`, `chan<-`
-`.Send()`, `.Recv()` methods
4. **Select statement** (1 form → 0):
-`select { case ... }`
- ✅ Regular if/switch with polling or wait groups
5. **Range variants** (4 forms → 2):
-`for v := range ch` (channel)
-`for i, v := range slice` (special case)
-`for i := 0; i < len(slice); i++` (explicit)
### Semantic Simplification
**Eliminated Special Cases:**
1. **Nil map read-only behavior** → Standard nil pointer
2. **Append reallocation magic** → Explicit `.Append()` or `.Grow()`
3. **Channel close-twice panic** → No special close semantics
4. **Slice capacity vs length** → Explicit growth methods
5. **Non-deterministic map iteration** → Option to make deterministic
### Runtime Simplification
**Eliminated Runtime Features:**
1. **Deadlock detection** → User responsibility with explicit locks
2. **Channel close tracking** → No close needed
3. **Select fairness** → No select statement
4. **Goroutine channel blocking** → Explicit condition variables
## Concurrency Safety Improvements
### Before: Implicit Sharing Causes Races
```go
// Easy to create race conditions
s := []int{1, 2, 3}
m := map[string]int{"key": 42}
go func() {
s[0] = 99 // RACE: implicit sharing
m["key"] = 100 // RACE: implicit sharing
}()
s[1] = 88 // RACE: concurrent access
m["key"] = 200 // RACE: concurrent access
```
### After: Explicit Pointers Make Sharing Obvious
```go
// Clear that pointers are shared
s := &[]int{1, 2, 3}
m := &map[string]int{"key": 42}
go func() {
s[0] = 99 // RACE: obvious pointer sharing
m["key"] = 100 // RACE: obvious pointer sharing
}()
// Must explicitly protect
var mu sync.Mutex
mu.Lock()
s[1] = 88
mu.Unlock()
// Or use pass-by-value (copy)
s2 := &[]int(*s) // explicit copy
go func(local *[]int) {
local[0] = 99 // NO RACE: different slice
}(s2)
```
### Pattern: Immutable by Default
```go
// Current Go: easy to accidentally mutate
func process(s []int) {
s[0] = 99 // Mutates caller's slice!
}
// Proposed: explicit mutation
func process(s *[]int) {
(*s)[0] = 99 // Clear mutation
}
// Or use value semantics
func process(s []int) {
s[0] = 99 // Only mutates local copy
return s
}
```
## Migration Path
### Phase 1: Add Explicit Syntax (Backward Compatible)
```go
// Allow both forms initially
s1 := []int{1, 2, 3} // old style
s2 := &[]int{1, 2, 3} // new style (same runtime behavior)
// Add methods to support new style
s2.Append(4)
s3 := s2.Clone()
```
### Phase 2: Deprecate Implicit Forms
```go
// Warn on old syntax
s := make([]int, 10) // WARNING: Use &[]int{} or &[10]int{}
ch := make(chan int) // WARNING: Use &chan int{} or Queue[int]
ch <- 42 // WARNING: Use ch.Send(42)
```
### Phase 3: Remove Implicit Forms
```go
// Only explicit forms allowed
s := &[]int{1, 2, 3} // OK
m := &map[K]V{} // OK
ch := &chan int{} // OK (or removed entirely)
make([]int, 10) // ERROR: Use &[]int{} or explicit loop
ch <- 42 // ERROR: Use ch.Send(42)
```
## Comparison: Before and After
### Slice Example
**Before:**
```go
func AppendUnique(s []int, v int) []int {
for _, existing := range s {
if existing == v {
return s
}
}
return append(s, v) // May or may not mutate caller's slice!
}
s := []int{1, 2, 3}
s = AppendUnique(s, 4) // Must reassign to avoid bugs
```
**After:**
```go
func AppendUnique(s *[]int, v int) {
for _, existing := range *s {
if existing == v {
return
}
}
s.Append(v) // Always mutates, clear semantics
}
s := &[]int{1, 2, 3}
AppendUnique(s, 4) // No reassignment needed
```
### Map Example
**Before:**
```go
func Merge(dst, src map[string]int) {
for k, v := range src {
dst[k] = v // Mutates dst (caller's map)
}
}
m1 := map[string]int{"a": 1}
m2 := map[string]int{"b": 2}
Merge(m1, m2) // m1 is mutated
```
**After:**
```go
func Merge(dst, src *map[string]int) {
for k, v := range *src {
(*dst)[k] = v // Clear mutation
}
}
m1 := &map[string]int{"a": 1}
m2 := &map[string]int{"b": 2}
Merge(m1, m2) // Clear that m1 is mutated
```
### Channel Example (Option B: Keep Channels)
**Before:**
```go
func Worker(jobs <-chan Job, results chan<- Result) {
for job := range jobs {
results <- process(job)
}
}
jobs := make(chan Job, 10)
results := make(chan Result, 10)
go Worker(jobs, results)
```
**After:**
```go
func Worker(jobs Receiver[Job], results Sender[Result]) {
for {
job, ok := jobs.TryRecv()
if !ok {
break
}
results.Send(process(job))
}
}
jobs := &Queue[Job]{cap: 10}
results := &Queue[Result]{cap: 10}
go Worker(jobs, results)
```
## Implementation Impact
### Compiler Changes
**Simplified:**
- ✅ Remove slice expression parsing (8 forms → 1)
- ✅ Remove `make()` built-in
- ✅ Remove `<-` operator
- ✅ Remove `select` statement
- ✅ Remove directional channel types
- ✅ Unify reference types with pointer types
**Modified:**
- 🔄 Auto-dereference for `*[]T`, `*map[K]V` (like struct methods)
- 🔄 Add built-in `.Clone()`, `.Append()`, `.Grow()` methods
- 🔄 Array → Slice conversion: `&[N]T{} → *[]T`
### Runtime Changes
**Simplified:**
- ✅ Remove deadlock detection (no channels)
- ✅ Remove select fairness logic
- ✅ Remove channel close tracking
- ✅ Simpler type reflection (fewer special cases)
**Preserved:**
- ✅ Garbage collection (now simpler with fewer types)
- ✅ Goroutine scheduler (unchanged)
- ✅ Slice/map internal structure (same layout)
### Standard Library Changes
**Packages to Update:**
- `sync` - Keep Mutex, RWMutex, WaitGroup; enhance Cond
- `container` - Add generic Queue, Stack types
- `slices` - Methods become methods on `*[]T`
- `maps` - Methods become methods on `*map[K]V`
**Packages to Remove/Simplify:**
- `sync.Map` - No longer needed (use `*map[K]V` with mutex)
- Channel-based packages - Rewrite with explicit queues
## Conclusion
### Complexity Reduction Summary
| Metric | Before | After | Reduction |
|--------|--------|-------|-----------|
| **Reference type forms** | 3 (slice, map, chan) | 0 (all pointers) | **100%** |
| **Allocation functions** | 2 (new, make) | 1 (new/&) | **50%** |
| **Slice syntax variants** | 8 | 1 | **87.5%** |
| **Channel operators** | 3 | 0 | **100%** |
| **Special statements** | 2 (select, range-chan) | 0 | **100%** |
| **Type system special cases** | 6+ | 0 | **100%** |
### Benefits
1. **Simpler Language Definition**
- Fewer special types and operators
- Unified pointer semantics
- Easier to specify and implement
2. **Easier to Learn**
- No hidden reference behavior
- Explicit allocation and copying
- Consistent with other pointer types
3. **Safer Concurrent Code**
- Obvious when data is shared
- Explicit synchronization required
- No hidden race conditions
4. **Better Tooling**
- Simpler parser (fewer special cases)
- Better static analysis (explicit sharing)
- Easier code generation
5. **Maintained Performance**
- Same runtime representation
- Same memory layout
- Same GC behavior
- Potential optimizations preserved
### Trade-offs
**Lost:**
- Channel select (must use explicit polling)
- Syntactic sugar for send/receive (`<-`)
- Make function convenience
- Slice expression shortcuts
**Gained:**
- Explicit, obvious semantics
- Unified type system
- Simpler language specification
- Better concurrent safety
- Easier to parse and analyze
### Recommendation
Adopt explicit pointer syntax for all reference types. This change:
- Reduces language complexity by ~40% (by eliminating special cases)
- Improves safety and predictability
- Maintains performance characteristics
- Simplifies compiler and tooling implementation
- Makes Go easier to learn and use correctly
The migration path is clear and could be done gradually with deprecation warnings before breaking changes.

388
pkg/find/builder.go Normal file
View File

@@ -0,0 +1,388 @@
package find
import (
"fmt"
"strconv"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/tag"
"next.orly.dev/pkg/encoders/timestamp"
"next.orly.dev/pkg/interfaces/signer"
)
// NewRegistrationProposal creates a new registration proposal event (kind 30100)
func NewRegistrationProposal(name, action string, signer signer.I) (*event.E, error) {
// Validate and normalize name
name = NormalizeName(name)
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Validate action
if action != ActionRegister && action != ActionTransfer {
return nil, fmt.Errorf("invalid action: must be %s or %s", ActionRegister, ActionTransfer)
}
// Create event
ev := event.New()
ev.Kind = KindRegistrationProposal
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", name))
tags.Append(tag.NewFromAny("action", action))
// Add expiration tag (5 minutes from now)
expiration := time.Now().Add(ProposalExpiry).Unix()
tags.Append(tag.NewFromAny("expiration", strconv.FormatInt(expiration, 10)))
ev.Tags = tags
ev.Content = []byte{}
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign event: %w", err)
}
return ev, nil
}
// NewRegistrationProposalWithTransfer creates a transfer proposal with previous owner signature
func NewRegistrationProposalWithTransfer(name, prevOwner, prevSig string, signer signer.I) (*event.E, error) {
// Create base proposal
ev, err := NewRegistrationProposal(name, ActionTransfer, signer)
if err != nil {
return nil, err
}
// Add transfer-specific tags
ev.Tags.Append(tag.NewFromAny("prev_owner", prevOwner))
ev.Tags.Append(tag.NewFromAny("prev_sig", prevSig))
// Re-sign after adding tags
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign transfer event: %w", err)
}
return ev, nil
}
// NewAttestation creates a new attestation event (kind 20100)
func NewAttestation(proposalID, decision string, weight int, reason, serviceURL string, signer signer.I) (*event.E, error) {
// Validate decision
if decision != DecisionApprove && decision != DecisionReject && decision != DecisionAbstain {
return nil, fmt.Errorf("invalid decision: must be approve, reject, or abstain")
}
// Create event
ev := event.New()
ev.Kind = KindAttestation
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("e", proposalID))
tags.Append(tag.NewFromAny("decision", decision))
if weight > 0 {
tags.Append(tag.NewFromAny("weight", strconv.Itoa(weight)))
}
if reason != "" {
tags.Append(tag.NewFromAny("reason", reason))
}
if serviceURL != "" {
tags.Append(tag.NewFromAny("service", serviceURL))
}
// Add expiration tag (3 minutes from now)
expiration := time.Now().Add(AttestationExpiry).Unix()
tags.Append(tag.NewFromAny("expiration", strconv.FormatInt(expiration, 10)))
ev.Tags = tags
ev.Content = []byte{}
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign attestation: %w", err)
}
return ev, nil
}
// NewTrustGraph creates a new trust graph event (kind 30101)
func NewTrustGraph(entries []TrustEntry, signer signer.I) (*event.E, error) {
// Validate trust entries
for i, entry := range entries {
if err := ValidateTrustScore(entry.TrustScore); err != nil {
return nil, fmt.Errorf("invalid trust score at index %d: %w", i, err)
}
}
// Create event
ev := event.New()
ev.Kind = KindTrustGraph
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", "trust-graph"))
// Add trust entries as p tags
for _, entry := range entries {
tags.Append(tag.NewFromAny("p", entry.Pubkey, entry.ServiceURL,
strconv.FormatFloat(entry.TrustScore, 'f', 2, 64)))
}
// Add expiration tag (30 days from now)
expiration := time.Now().Add(TrustGraphExpiry).Unix()
tags.Append(tag.NewFromAny("expiration", strconv.FormatInt(expiration, 10)))
ev.Tags = tags
ev.Content = []byte{}
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign trust graph: %w", err)
}
return ev, nil
}
// NewNameState creates a new name state event (kind 30102)
func NewNameState(name, owner string, registeredAt time.Time, proposalID string,
attestations int, confidence float64, signer signer.I) (*event.E, error) {
// Validate name
name = NormalizeName(name)
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Create event
ev := event.New()
ev.Kind = KindNameState
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", name))
tags.Append(tag.NewFromAny("owner", owner))
tags.Append(tag.NewFromAny("registered_at", strconv.FormatInt(registeredAt.Unix(), 10)))
tags.Append(tag.NewFromAny("proposal", proposalID))
tags.Append(tag.NewFromAny("attestations", strconv.Itoa(attestations)))
tags.Append(tag.NewFromAny("confidence", strconv.FormatFloat(confidence, 'f', 2, 64)))
// Add expiration tag (1 year from registration)
expiration := registeredAt.Add(NameRegistrationPeriod).Unix()
tags.Append(tag.NewFromAny("expiration", strconv.FormatInt(expiration, 10)))
ev.Tags = tags
ev.Content = []byte{}
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign name state: %w", err)
}
return ev, nil
}
// NewNameRecord creates a new name record event (kind 30103)
func NewNameRecord(name, recordType, value string, ttl int, signer signer.I) (*event.E, error) {
// Validate name
name = NormalizeName(name)
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Validate record value
if err := ValidateRecordValue(recordType, value); err != nil {
return nil, err
}
// Create event
ev := event.New()
ev.Kind = KindNameRecords
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", fmt.Sprintf("%s:%s", name, recordType)))
tags.Append(tag.NewFromAny("name", name))
tags.Append(tag.NewFromAny("type", recordType))
tags.Append(tag.NewFromAny("value", value))
if ttl > 0 {
tags.Append(tag.NewFromAny("ttl", strconv.Itoa(ttl)))
}
ev.Tags = tags
ev.Content = []byte{}
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign name record: %w", err)
}
return ev, nil
}
// NewNameRecordWithPriority creates a name record with priority (for MX, SRV)
func NewNameRecordWithPriority(name, recordType, value string, ttl, priority int, signer signer.I) (*event.E, error) {
// Validate priority
if err := ValidatePriority(priority); err != nil {
return nil, err
}
// Create base record
ev, err := NewNameRecord(name, recordType, value, ttl, signer)
if err != nil {
return nil, err
}
// Add priority tag
ev.Tags.Append(tag.NewFromAny("priority", strconv.Itoa(priority)))
// Re-sign
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign record with priority: %w", err)
}
return ev, nil
}
// NewSRVRecord creates an SRV record with all required fields
func NewSRVRecord(name, value string, ttl, priority, weight, port int, signer signer.I) (*event.E, error) {
// Validate SRV-specific fields
if err := ValidatePriority(priority); err != nil {
return nil, err
}
if err := ValidateWeight(weight); err != nil {
return nil, err
}
if err := ValidatePort(port); err != nil {
return nil, err
}
// Create base record
ev, err := NewNameRecord(name, RecordTypeSRV, value, ttl, signer)
if err != nil {
return nil, err
}
// Add SRV-specific tags
ev.Tags.Append(tag.NewFromAny("priority", strconv.Itoa(priority)))
ev.Tags.Append(tag.NewFromAny("weight", strconv.Itoa(weight)))
ev.Tags.Append(tag.NewFromAny("port", strconv.Itoa(port)))
// Re-sign
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign SRV record: %w", err)
}
return ev, nil
}
// NewCertificate creates a new certificate event (kind 30104)
func NewCertificate(name, certPubkey string, validFrom, validUntil time.Time,
challenge, challengeProof string, witnesses []WitnessSignature,
algorithm, usage string, signer signer.I) (*event.E, error) {
// Validate name
name = NormalizeName(name)
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Create event
ev := event.New()
ev.Kind = KindCertificate
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", name))
tags.Append(tag.NewFromAny("name", name))
tags.Append(tag.NewFromAny("cert_pubkey", certPubkey))
tags.Append(tag.NewFromAny("valid_from", strconv.FormatInt(validFrom.Unix(), 10)))
tags.Append(tag.NewFromAny("valid_until", strconv.FormatInt(validUntil.Unix(), 10)))
tags.Append(tag.NewFromAny("challenge", challenge))
tags.Append(tag.NewFromAny("challenge_proof", challengeProof))
// Add witness signatures
for _, w := range witnesses {
tags.Append(tag.NewFromAny("witness", w.Pubkey, w.Signature))
}
ev.Tags = tags
// Add metadata to content
content := fmt.Sprintf(`{"algorithm":"%s","usage":"%s"}`, algorithm, usage)
ev.Content = []byte(content)
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign certificate: %w", err)
}
return ev, nil
}
// NewWitnessService creates a new witness service info event (kind 30105)
func NewWitnessService(endpoint string, challenges []string, maxValidity, fee int,
reputationID, description, contact string, signer signer.I) (*event.E, error) {
// Create event
ev := event.New()
ev.Kind = KindWitnessService
ev.CreatedAt = timestamp.Now().V
ev.Pubkey = signer.Pub()
// Build tags
tags := tag.NewS()
tags.Append(tag.NewFromAny("d", "witness-service"))
tags.Append(tag.NewFromAny("endpoint", endpoint))
for _, ch := range challenges {
tags.Append(tag.NewFromAny("challenges", ch))
}
if maxValidity > 0 {
tags.Append(tag.NewFromAny("max_validity", strconv.Itoa(maxValidity)))
}
if fee > 0 {
tags.Append(tag.NewFromAny("fee", strconv.Itoa(fee)))
}
if reputationID != "" {
tags.Append(tag.NewFromAny("reputation", reputationID))
}
// Add expiration tag (180 days from now)
expiration := time.Now().Add(WitnessServiceExpiry).Unix()
tags.Append(tag.NewFromAny("expiration", strconv.FormatInt(expiration, 10)))
ev.Tags = tags
// Add metadata to content
content := fmt.Sprintf(`{"description":"%s","contact":"%s"}`, description, contact)
ev.Content = []byte(content)
// Sign the event
if err := ev.Sign(signer); err != nil {
return nil, fmt.Errorf("failed to sign witness service: %w", err)
}
return ev, nil
}

325
pkg/find/certificate.go Normal file
View File

@@ -0,0 +1,325 @@
package find
import (
"crypto/rand"
"fmt"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/interfaces/signer"
)
// GenerateChallenge generates a random 32-byte challenge token
func GenerateChallenge() (string, error) {
challenge := make([]byte, 32)
if _, err := rand.Read(challenge); err != nil {
return "", fmt.Errorf("failed to generate random challenge: %w", err)
}
return hex.Enc(challenge), nil
}
// CreateChallengeTXTRecord creates a TXT record event for challenge-response verification
func CreateChallengeTXTRecord(name, challenge string, ttl int, signer signer.I) (*event.E, error) {
// Normalize name
name = NormalizeName(name)
// Validate name
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Create TXT record value
txtValue := fmt.Sprintf("_nostr-challenge=%s", challenge)
// Create the TXT record event
record, err := NewNameRecord(name, RecordTypeTXT, txtValue, ttl, signer)
if err != nil {
return nil, fmt.Errorf("failed to create challenge TXT record: %w", err)
}
return record, nil
}
// ExtractChallengeFromTXTRecord extracts the challenge token from a TXT record value
func ExtractChallengeFromTXTRecord(txtValue string) (string, error) {
const prefix = "_nostr-challenge="
if len(txtValue) < len(prefix) {
return "", fmt.Errorf("TXT record too short")
}
if txtValue[:len(prefix)] != prefix {
return "", fmt.Errorf("not a challenge TXT record")
}
challenge := txtValue[len(prefix):]
if len(challenge) != 64 { // 32 bytes in hex = 64 characters
return "", fmt.Errorf("invalid challenge length: %d", len(challenge))
}
return challenge, nil
}
// CreateChallengeProof creates a challenge proof signature
func CreateChallengeProof(challenge, name, certPubkey string, validUntil time.Time, signer signer.I) (string, error) {
// Normalize name
name = NormalizeName(name)
// Sign the challenge proof
proof, err := SignChallengeProof(challenge, name, certPubkey, validUntil, signer)
if err != nil {
return "", fmt.Errorf("failed to create challenge proof: %w", err)
}
return proof, nil
}
// RequestWitnessSignature creates a witness signature for a certificate
// This would typically be called by a witness service
func RequestWitnessSignature(cert *Certificate, witnessSigner signer.I) (WitnessSignature, error) {
// Sign the witness message
sig, err := SignWitnessMessage(cert.CertPubkey, cert.Name,
cert.ValidFrom, cert.ValidUntil, cert.Challenge, witnessSigner)
if err != nil {
return WitnessSignature{}, fmt.Errorf("failed to create witness signature: %w", err)
}
// Get witness pubkey
witnessPubkey := hex.Enc(witnessSigner.Pub())
return WitnessSignature{
Pubkey: witnessPubkey,
Signature: sig,
}, nil
}
// PrepareCertificateRequest prepares all the data needed for a certificate request
type CertificateRequest struct {
Name string
CertPubkey string
ValidFrom time.Time
ValidUntil time.Time
Challenge string
ChallengeProof string
}
// CreateCertificateRequest creates a certificate request with challenge-response
func CreateCertificateRequest(name, certPubkey string, validityDuration time.Duration,
challenge string, ownerSigner signer.I) (*CertificateRequest, error) {
// Normalize name
name = NormalizeName(name)
// Validate name
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Set validity period
validFrom := time.Now()
validUntil := validFrom.Add(validityDuration)
// Create challenge proof
proof, err := CreateChallengeProof(challenge, name, certPubkey, validUntil, ownerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create challenge proof: %w", err)
}
return &CertificateRequest{
Name: name,
CertPubkey: certPubkey,
ValidFrom: validFrom,
ValidUntil: validUntil,
Challenge: challenge,
ChallengeProof: proof,
}, nil
}
// CreateCertificateWithWitnesses creates a complete certificate event with witness signatures
func CreateCertificateWithWitnesses(req *CertificateRequest, witnesses []WitnessSignature,
algorithm, usage string, ownerSigner signer.I) (*event.E, error) {
// Create the certificate event
certEvent, err := NewCertificate(
req.Name,
req.CertPubkey,
req.ValidFrom,
req.ValidUntil,
req.Challenge,
req.ChallengeProof,
witnesses,
algorithm,
usage,
ownerSigner,
)
if err != nil {
return nil, fmt.Errorf("failed to create certificate: %w", err)
}
return certEvent, nil
}
// VerifyChallengeTXTRecord verifies that a TXT record contains the expected challenge
func VerifyChallengeTXTRecord(record *NameRecord, expectedChallenge string, nameOwner string) error {
// Check record type
if record.Type != RecordTypeTXT {
return fmt.Errorf("not a TXT record: %s", record.Type)
}
// Check record owner matches name owner
recordOwner := hex.Enc(record.Event.Pubkey)
if recordOwner != nameOwner {
return fmt.Errorf("record owner %s != name owner %s", recordOwner, nameOwner)
}
// Extract challenge from TXT record
challenge, err := ExtractChallengeFromTXTRecord(record.Value)
if err != nil {
return fmt.Errorf("failed to extract challenge: %w", err)
}
// Verify challenge matches
if challenge != expectedChallenge {
return fmt.Errorf("challenge mismatch: got %s, expected %s", challenge, expectedChallenge)
}
return nil
}
// IssueCertificate is a helper that goes through the full certificate issuance process
// This would typically be used by a name owner to request a certificate
func IssueCertificate(name, certPubkey string, validityDuration time.Duration,
ownerSigner signer.I, witnessSigners []signer.I) (*Certificate, error) {
// Generate challenge
challenge, err := GenerateChallenge()
if err != nil {
return nil, fmt.Errorf("failed to generate challenge: %w", err)
}
// Create certificate request
req, err := CreateCertificateRequest(name, certPubkey, validityDuration, challenge, ownerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create certificate request: %w", err)
}
// Collect witness signatures
var witnesses []WitnessSignature
for i, ws := range witnessSigners {
// Create temporary certificate for witness to sign
tempCert := &Certificate{
Name: req.Name,
CertPubkey: req.CertPubkey,
ValidFrom: req.ValidFrom,
ValidUntil: req.ValidUntil,
Challenge: req.Challenge,
}
witness, err := RequestWitnessSignature(tempCert, ws)
if err != nil {
return nil, fmt.Errorf("failed to get witness %d signature: %w", i, err)
}
witnesses = append(witnesses, witness)
}
// Create certificate event
certEvent, err := CreateCertificateWithWitnesses(req, witnesses, "secp256k1-schnorr", "tls-replacement", ownerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create certificate event: %w", err)
}
// Parse back to Certificate struct
cert, err := ParseCertificate(certEvent)
if err != nil {
return nil, fmt.Errorf("failed to parse certificate: %w", err)
}
return cert, nil
}
// RenewCertificate creates a renewed certificate with a new validity period
func RenewCertificate(oldCert *Certificate, newValidityDuration time.Duration,
ownerSigner signer.I, witnessSigners []signer.I) (*Certificate, error) {
// Generate new challenge
challenge, err := GenerateChallenge()
if err != nil {
return nil, fmt.Errorf("failed to generate challenge: %w", err)
}
// Set new validity period (with 7-day overlap)
validFrom := oldCert.ValidUntil.Add(-7 * 24 * time.Hour)
validUntil := validFrom.Add(newValidityDuration)
// Create challenge proof
proof, err := CreateChallengeProof(challenge, oldCert.Name, oldCert.CertPubkey, validUntil, ownerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create challenge proof: %w", err)
}
// Create request
req := &CertificateRequest{
Name: oldCert.Name,
CertPubkey: oldCert.CertPubkey,
ValidFrom: validFrom,
ValidUntil: validUntil,
Challenge: challenge,
ChallengeProof: proof,
}
// Collect witness signatures
var witnesses []WitnessSignature
for i, ws := range witnessSigners {
tempCert := &Certificate{
Name: req.Name,
CertPubkey: req.CertPubkey,
ValidFrom: req.ValidFrom,
ValidUntil: req.ValidUntil,
Challenge: req.Challenge,
}
witness, err := RequestWitnessSignature(tempCert, ws)
if err != nil {
return nil, fmt.Errorf("failed to get witness %d signature: %w", i, err)
}
witnesses = append(witnesses, witness)
}
// Create certificate event
certEvent, err := CreateCertificateWithWitnesses(req, witnesses, oldCert.Algorithm, oldCert.Usage, ownerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create certificate event: %w", err)
}
// Parse back to Certificate struct
cert, err := ParseCertificate(certEvent)
if err != nil {
return nil, fmt.Errorf("failed to parse certificate: %w", err)
}
return cert, nil
}
// CheckCertificateExpiry returns the time until expiration, or error if expired
func CheckCertificateExpiry(cert *Certificate) (time.Duration, error) {
now := time.Now()
if now.After(cert.ValidUntil) {
return 0, fmt.Errorf("certificate expired %v ago", now.Sub(cert.ValidUntil))
}
return cert.ValidUntil.Sub(now), nil
}
// ShouldRenewCertificate checks if a certificate should be renewed (< 30 days until expiry)
func ShouldRenewCertificate(cert *Certificate) bool {
timeUntilExpiry, err := CheckCertificateExpiry(cert)
if err != nil {
return true // Expired, definitely should renew
}
return timeUntilExpiry < 30*24*time.Hour
}

455
pkg/find/parser.go Normal file
View File

@@ -0,0 +1,455 @@
package find
import (
"encoding/json"
"fmt"
"strconv"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/tag"
)
// getTagValue retrieves the value of the first tag with the given key
func getTagValue(ev *event.E, key string) string {
t := ev.Tags.GetFirst([]byte(key))
if t == nil {
return ""
}
return string(t.Value())
}
// getAllTags retrieves all tags with the given key
func getAllTags(ev *event.E, key string) []*tag.T {
return ev.Tags.GetAll([]byte(key))
}
// ParseRegistrationProposal parses a kind 30100 event into a RegistrationProposal
func ParseRegistrationProposal(ev *event.E) (*RegistrationProposal, error) {
if uint16(ev.Kind) != KindRegistrationProposal {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindRegistrationProposal, ev.Kind)
}
name := getTagValue(ev, "d")
if name == "" {
return nil, fmt.Errorf("missing 'd' tag (name)")
}
action := getTagValue(ev, "action")
if action == "" {
return nil, fmt.Errorf("missing 'action' tag")
}
expirationStr := getTagValue(ev, "expiration")
var expiration time.Time
if expirationStr != "" {
expirationUnix, err := strconv.ParseInt(expirationStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid expiration timestamp: %w", err)
}
expiration = time.Unix(expirationUnix, 0)
}
proposal := &RegistrationProposal{
Event: ev,
Name: name,
Action: action,
PrevOwner: getTagValue(ev, "prev_owner"),
PrevSig: getTagValue(ev, "prev_sig"),
Expiration: expiration,
}
return proposal, nil
}
// ParseAttestation parses a kind 20100 event into an Attestation
func ParseAttestation(ev *event.E) (*Attestation, error) {
if uint16(ev.Kind) != KindAttestation {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindAttestation, ev.Kind)
}
proposalID := getTagValue(ev, "e")
if proposalID == "" {
return nil, fmt.Errorf("missing 'e' tag (proposal ID)")
}
decision := getTagValue(ev, "decision")
if decision == "" {
return nil, fmt.Errorf("missing 'decision' tag")
}
weightStr := getTagValue(ev, "weight")
weight := 100 // default weight
if weightStr != "" {
w, err := strconv.Atoi(weightStr)
if err != nil {
return nil, fmt.Errorf("invalid weight value: %w", err)
}
weight = w
}
expirationStr := getTagValue(ev, "expiration")
var expiration time.Time
if expirationStr != "" {
expirationUnix, err := strconv.ParseInt(expirationStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid expiration timestamp: %w", err)
}
expiration = time.Unix(expirationUnix, 0)
}
attestation := &Attestation{
Event: ev,
ProposalID: proposalID,
Decision: decision,
Weight: weight,
Reason: getTagValue(ev, "reason"),
ServiceURL: getTagValue(ev, "service"),
Expiration: expiration,
}
return attestation, nil
}
// ParseTrustGraph parses a kind 30101 event into a TrustGraph
func ParseTrustGraph(ev *event.E) (*TrustGraph, error) {
if uint16(ev.Kind) != KindTrustGraph {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindTrustGraph, ev.Kind)
}
expirationStr := getTagValue(ev, "expiration")
var expiration time.Time
if expirationStr != "" {
expirationUnix, err := strconv.ParseInt(expirationStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid expiration timestamp: %w", err)
}
expiration = time.Unix(expirationUnix, 0)
}
// Parse p tags (trust entries)
var entries []TrustEntry
pTags := getAllTags(ev, "p")
for _, t := range pTags {
if len(t.T) < 2 {
continue // Skip malformed tags
}
pubkey := string(t.T[1])
serviceURL := ""
trustScore := 0.5 // default
if len(t.T) > 2 {
serviceURL = string(t.T[2])
}
if len(t.T) > 3 {
score, err := strconv.ParseFloat(string(t.T[3]), 64)
if err == nil {
trustScore = score
}
}
entries = append(entries, TrustEntry{
Pubkey: pubkey,
ServiceURL: serviceURL,
TrustScore: trustScore,
})
}
return &TrustGraph{
Event: ev,
Entries: entries,
Expiration: expiration,
}, nil
}
// ParseNameState parses a kind 30102 event into a NameState
func ParseNameState(ev *event.E) (*NameState, error) {
if uint16(ev.Kind) != KindNameState {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindNameState, ev.Kind)
}
name := getTagValue(ev, "d")
if name == "" {
return nil, fmt.Errorf("missing 'd' tag (name)")
}
owner := getTagValue(ev, "owner")
if owner == "" {
return nil, fmt.Errorf("missing 'owner' tag")
}
registeredAtStr := getTagValue(ev, "registered_at")
if registeredAtStr == "" {
return nil, fmt.Errorf("missing 'registered_at' tag")
}
registeredAtUnix, err := strconv.ParseInt(registeredAtStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid registered_at timestamp: %w", err)
}
registeredAt := time.Unix(registeredAtUnix, 0)
attestationsStr := getTagValue(ev, "attestations")
attestations := 0
if attestationsStr != "" {
a, err := strconv.Atoi(attestationsStr)
if err == nil {
attestations = a
}
}
confidenceStr := getTagValue(ev, "confidence")
confidence := 0.0
if confidenceStr != "" {
c, err := strconv.ParseFloat(confidenceStr, 64)
if err == nil {
confidence = c
}
}
expirationStr := getTagValue(ev, "expiration")
var expiration time.Time
if expirationStr != "" {
expirationUnix, err := strconv.ParseInt(expirationStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid expiration timestamp: %w", err)
}
expiration = time.Unix(expirationUnix, 0)
}
return &NameState{
Event: ev,
Name: name,
Owner: owner,
RegisteredAt: registeredAt,
ProposalID: getTagValue(ev, "proposal"),
Attestations: attestations,
Confidence: confidence,
Expiration: expiration,
}, nil
}
// ParseNameRecord parses a kind 30103 event into a NameRecord
func ParseNameRecord(ev *event.E) (*NameRecord, error) {
if uint16(ev.Kind) != KindNameRecords {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindNameRecords, ev.Kind)
}
name := getTagValue(ev, "name")
if name == "" {
return nil, fmt.Errorf("missing 'name' tag")
}
recordType := getTagValue(ev, "type")
if recordType == "" {
return nil, fmt.Errorf("missing 'type' tag")
}
value := getTagValue(ev, "value")
if value == "" {
return nil, fmt.Errorf("missing 'value' tag")
}
ttlStr := getTagValue(ev, "ttl")
ttl := 3600 // default TTL
if ttlStr != "" {
t, err := strconv.Atoi(ttlStr)
if err == nil {
ttl = t
}
}
priorityStr := getTagValue(ev, "priority")
priority := 0
if priorityStr != "" {
p, err := strconv.Atoi(priorityStr)
if err == nil {
priority = p
}
}
weightStr := getTagValue(ev, "weight")
weight := 0
if weightStr != "" {
w, err := strconv.Atoi(weightStr)
if err == nil {
weight = w
}
}
portStr := getTagValue(ev, "port")
port := 0
if portStr != "" {
p, err := strconv.Atoi(portStr)
if err == nil {
port = p
}
}
return &NameRecord{
Event: ev,
Name: name,
Type: recordType,
Value: value,
TTL: ttl,
Priority: priority,
Weight: weight,
Port: port,
}, nil
}
// ParseCertificate parses a kind 30104 event into a Certificate
func ParseCertificate(ev *event.E) (*Certificate, error) {
if uint16(ev.Kind) != KindCertificate {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindCertificate, ev.Kind)
}
name := getTagValue(ev, "name")
if name == "" {
return nil, fmt.Errorf("missing 'name' tag")
}
certPubkey := getTagValue(ev, "cert_pubkey")
if certPubkey == "" {
return nil, fmt.Errorf("missing 'cert_pubkey' tag")
}
validFromStr := getTagValue(ev, "valid_from")
if validFromStr == "" {
return nil, fmt.Errorf("missing 'valid_from' tag")
}
validFromUnix, err := strconv.ParseInt(validFromStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid valid_from timestamp: %w", err)
}
validFrom := time.Unix(validFromUnix, 0)
validUntilStr := getTagValue(ev, "valid_until")
if validUntilStr == "" {
return nil, fmt.Errorf("missing 'valid_until' tag")
}
validUntilUnix, err := strconv.ParseInt(validUntilStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid valid_until timestamp: %w", err)
}
validUntil := time.Unix(validUntilUnix, 0)
// Parse witness tags
var witnesses []WitnessSignature
witnessTags := getAllTags(ev, "witness")
for _, t := range witnessTags {
if len(t.T) < 3 {
continue // Skip malformed tags
}
witnesses = append(witnesses, WitnessSignature{
Pubkey: string(t.T[1]),
Signature: string(t.T[2]),
})
}
// Parse content JSON
algorithm := "secp256k1-schnorr"
usage := "tls-replacement"
if len(ev.Content) > 0 {
var metadata map[string]interface{}
if err := json.Unmarshal(ev.Content, &metadata); err == nil {
if alg, ok := metadata["algorithm"].(string); ok {
algorithm = alg
}
if u, ok := metadata["usage"].(string); ok {
usage = u
}
}
}
return &Certificate{
Event: ev,
Name: name,
CertPubkey: certPubkey,
ValidFrom: validFrom,
ValidUntil: validUntil,
Challenge: getTagValue(ev, "challenge"),
ChallengeProof: getTagValue(ev, "challenge_proof"),
Witnesses: witnesses,
Algorithm: algorithm,
Usage: usage,
}, nil
}
// ParseWitnessService parses a kind 30105 event into a WitnessService
func ParseWitnessService(ev *event.E) (*WitnessService, error) {
if uint16(ev.Kind) != KindWitnessService {
return nil, fmt.Errorf("invalid event kind: expected %d, got %d", KindWitnessService, ev.Kind)
}
endpoint := getTagValue(ev, "endpoint")
if endpoint == "" {
return nil, fmt.Errorf("missing 'endpoint' tag")
}
// Parse challenge tags
var challenges []string
challengeTags := getAllTags(ev, "challenges")
for _, t := range challengeTags {
if len(t.T) >= 2 {
challenges = append(challenges, string(t.T[1]))
}
}
maxValidityStr := getTagValue(ev, "max_validity")
maxValidity := 0
if maxValidityStr != "" {
mv, err := strconv.Atoi(maxValidityStr)
if err == nil {
maxValidity = mv
}
}
feeStr := getTagValue(ev, "fee")
fee := 0
if feeStr != "" {
f, err := strconv.Atoi(feeStr)
if err == nil {
fee = f
}
}
expirationStr := getTagValue(ev, "expiration")
var expiration time.Time
if expirationStr != "" {
expirationUnix, err := strconv.ParseInt(expirationStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid expiration timestamp: %w", err)
}
expiration = time.Unix(expirationUnix, 0)
}
// Parse content JSON
description := ""
contact := ""
if len(ev.Content) > 0 {
var metadata map[string]interface{}
if err := json.Unmarshal(ev.Content, &metadata); err == nil {
if desc, ok := metadata["description"].(string); ok {
description = desc
}
if cont, ok := metadata["contact"].(string); ok {
contact = cont
}
}
}
return &WitnessService{
Event: ev,
Endpoint: endpoint,
Challenges: challenges,
MaxValidity: maxValidity,
Fee: fee,
ReputationID: getTagValue(ev, "reputation"),
Description: description,
Contact: contact,
Expiration: expiration,
}, nil
}

167
pkg/find/sign.go Normal file
View File

@@ -0,0 +1,167 @@
package find
import (
"crypto/sha256"
"fmt"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/interfaces/signer"
)
// SignTransferAuth creates a signature for transfer authorization
// Message format: transfer:<name>:<new_owner_pubkey>:<timestamp>
func SignTransferAuth(name, newOwner string, timestamp time.Time, s signer.I) (string, error) {
// Normalize name
name = NormalizeName(name)
// Construct message
message := fmt.Sprintf("transfer:%s:%s:%d", name, newOwner, timestamp.Unix())
// Hash the message
hash := sha256.Sum256([]byte(message))
// Sign the hash
sig, err := s.Sign(hash[:])
if err != nil {
return "", fmt.Errorf("failed to sign transfer authorization: %w", err)
}
// Return hex-encoded signature
return hex.Enc(sig), nil
}
// SignChallengeProof creates a signature for certificate challenge proof
// Message format: challenge||name||cert_pubkey||valid_until
func SignChallengeProof(challenge, name, certPubkey string, validUntil time.Time, s signer.I) (string, error) {
// Normalize name
name = NormalizeName(name)
// Construct message
message := fmt.Sprintf("%s||%s||%s||%d", challenge, name, certPubkey, validUntil.Unix())
// Hash the message
hash := sha256.Sum256([]byte(message))
// Sign the hash
sig, err := s.Sign(hash[:])
if err != nil {
return "", fmt.Errorf("failed to sign challenge proof: %w", err)
}
// Return hex-encoded signature
return hex.Enc(sig), nil
}
// SignWitnessMessage creates a witness signature for a certificate
// Message format: cert_pubkey||name||valid_from||valid_until||challenge
func SignWitnessMessage(certPubkey, name string, validFrom, validUntil time.Time, challenge string, s signer.I) (string, error) {
// Normalize name
name = NormalizeName(name)
// Construct message
message := fmt.Sprintf("%s||%s||%d||%d||%s",
certPubkey, name, validFrom.Unix(), validUntil.Unix(), challenge)
// Hash the message
hash := sha256.Sum256([]byte(message))
// Sign the hash
sig, err := s.Sign(hash[:])
if err != nil {
return "", fmt.Errorf("failed to sign witness message: %w", err)
}
// Return hex-encoded signature
return hex.Enc(sig), nil
}
// CreateTransferAuthMessage constructs the transfer authorization message
// This is used for verification
func CreateTransferAuthMessage(name, newOwner string, timestamp time.Time) []byte {
name = NormalizeName(name)
message := fmt.Sprintf("transfer:%s:%s:%d", name, newOwner, timestamp.Unix())
hash := sha256.Sum256([]byte(message))
return hash[:]
}
// CreateChallengeProofMessage constructs the challenge proof message
// This is used for verification
func CreateChallengeProofMessage(challenge, name, certPubkey string, validUntil time.Time) []byte {
name = NormalizeName(name)
message := fmt.Sprintf("%s||%s||%s||%d", challenge, name, certPubkey, validUntil.Unix())
hash := sha256.Sum256([]byte(message))
return hash[:]
}
// CreateWitnessMessage constructs the witness message
// This is used for verification
func CreateWitnessMessage(certPubkey, name string, validFrom, validUntil time.Time, challenge string) []byte {
name = NormalizeName(name)
message := fmt.Sprintf("%s||%s||%d||%d||%s",
certPubkey, name, validFrom.Unix(), validUntil.Unix(), challenge)
hash := sha256.Sum256([]byte(message))
return hash[:]
}
// ParseTimestampFromProposal extracts the timestamp from a transfer authorization message
// Used for verification when the timestamp is embedded in the signature
func ParseTimestampFromProposal(proposalTime time.Time) time.Time {
// Round to nearest second for consistency
return proposalTime.Truncate(time.Second)
}
// FormatTransferAuthString formats the transfer auth message for display/debugging
func FormatTransferAuthString(name, newOwner string, timestamp time.Time) string {
name = NormalizeName(name)
return fmt.Sprintf("transfer:%s:%s:%d", name, newOwner, timestamp.Unix())
}
// FormatChallengeProofString formats the challenge proof message for display/debugging
func FormatChallengeProofString(challenge, name, certPubkey string, validUntil time.Time) string {
name = NormalizeName(name)
return fmt.Sprintf("%s||%s||%s||%d", challenge, name, certPubkey, validUntil.Unix())
}
// FormatWitnessString formats the witness message for display/debugging
func FormatWitnessString(certPubkey, name string, validFrom, validUntil time.Time, challenge string) string {
name = NormalizeName(name)
return fmt.Sprintf("%s||%s||%d||%d||%s",
certPubkey, name, validFrom.Unix(), validUntil.Unix(), challenge)
}
// SignProposal signs a registration proposal event
func SignProposal(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignAttestation signs an attestation event
func SignAttestation(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignTrustGraph signs a trust graph event
func SignTrustGraph(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignNameState signs a name state event
func SignNameState(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignNameRecord signs a name record event
func SignNameRecord(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignCertificate signs a certificate event
func SignCertificate(ev *event.E, s signer.I) error {
return ev.Sign(s)
}
// SignWitnessService signs a witness service event
func SignWitnessService(ev *event.E, s signer.I) error {
return ev.Sign(s)
}

168
pkg/find/transfer.go Normal file
View File

@@ -0,0 +1,168 @@
package find
import (
"fmt"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/interfaces/signer"
)
// CreateTransferProposal creates a complete transfer proposal with authorization from previous owner
func CreateTransferProposal(name string, prevOwnerSigner, newOwnerSigner signer.I) (*event.E, error) {
// Normalize name
name = NormalizeName(name)
// Validate name
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Get public keys
prevOwnerPubkey := hex.Enc(prevOwnerSigner.Pub())
newOwnerPubkey := hex.Enc(newOwnerSigner.Pub())
// Create timestamp for the transfer
timestamp := time.Now()
// Sign the transfer authorization with previous owner's key
prevSig, err := SignTransferAuth(name, newOwnerPubkey, timestamp, prevOwnerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create transfer authorization: %w", err)
}
// Create the transfer proposal event signed by new owner
proposal, err := NewRegistrationProposalWithTransfer(name, prevOwnerPubkey, prevSig, newOwnerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create transfer proposal: %w", err)
}
return proposal, nil
}
// ValidateTransferProposal validates a transfer proposal against the current owner
func ValidateTransferProposal(proposal *RegistrationProposal, currentOwner string) error {
// Check that this is a transfer action
if proposal.Action != ActionTransfer {
return fmt.Errorf("not a transfer action: %s", proposal.Action)
}
// Check that prev_owner is set
if proposal.PrevOwner == "" {
return fmt.Errorf("missing prev_owner in transfer proposal")
}
// Check that prev_sig is set
if proposal.PrevSig == "" {
return fmt.Errorf("missing prev_sig in transfer proposal")
}
// Verify that prev_owner matches current owner
if proposal.PrevOwner != currentOwner {
return fmt.Errorf("prev_owner %s does not match current owner %s",
proposal.PrevOwner, currentOwner)
}
// Get new owner from proposal event
newOwnerPubkey := hex.Enc(proposal.Event.Pubkey)
// Verify the transfer authorization signature
// Use proposal creation time as timestamp
timestamp := time.Unix(proposal.Event.CreatedAt, 0)
ok, err := VerifyTransferAuth(proposal.Name, newOwnerPubkey, proposal.PrevOwner,
timestamp, proposal.PrevSig)
if err != nil {
return fmt.Errorf("transfer authorization verification failed: %w", err)
}
if !ok {
return fmt.Errorf("invalid transfer authorization signature")
}
return nil
}
// PrepareTransferAuth prepares the transfer authorization data that needs to be signed
// This is a helper for wallets/clients that want to show what they're signing
func PrepareTransferAuth(name, newOwner string, timestamp time.Time) TransferAuthorization {
return TransferAuthorization{
Name: NormalizeName(name),
NewOwner: newOwner,
Timestamp: timestamp,
}
}
// AuthorizeTransfer creates a transfer authorization signature
// This is meant to be used by the current owner to authorize a transfer to a new owner
func AuthorizeTransfer(name, newOwnerPubkey string, ownerSigner signer.I) (prevSig string, timestamp time.Time, err error) {
// Normalize name
name = NormalizeName(name)
// Validate name
if err := ValidateName(name); err != nil {
return "", time.Time{}, fmt.Errorf("invalid name: %w", err)
}
// Create timestamp
timestamp = time.Now()
// Sign the authorization
prevSig, err = SignTransferAuth(name, newOwnerPubkey, timestamp, ownerSigner)
if err != nil {
return "", time.Time{}, fmt.Errorf("failed to sign transfer auth: %w", err)
}
return prevSig, timestamp, nil
}
// CreateTransferProposalWithAuth creates a transfer proposal using a pre-existing authorization
// This is useful when the previous owner has already provided their signature
func CreateTransferProposalWithAuth(name, prevOwnerPubkey, prevSig string, newOwnerSigner signer.I) (*event.E, error) {
// Normalize name
name = NormalizeName(name)
// Validate name
if err := ValidateName(name); err != nil {
return nil, fmt.Errorf("invalid name: %w", err)
}
// Create the transfer proposal event
proposal, err := NewRegistrationProposalWithTransfer(name, prevOwnerPubkey, prevSig, newOwnerSigner)
if err != nil {
return nil, fmt.Errorf("failed to create transfer proposal: %w", err)
}
return proposal, nil
}
// VerifyTransferProposalSignature verifies both the event signature and transfer authorization
func VerifyTransferProposalSignature(proposal *RegistrationProposal) error {
// Verify the event signature itself
if err := VerifyEvent(proposal.Event); err != nil {
return fmt.Errorf("invalid event signature: %w", err)
}
// If this is a transfer, verify the transfer authorization
if proposal.Action == ActionTransfer {
// Get new owner from proposal event
newOwnerPubkey := hex.Enc(proposal.Event.Pubkey)
// Use proposal creation time as timestamp
timestamp := time.Unix(proposal.Event.CreatedAt, 0)
// Verify transfer auth
ok, err := VerifyTransferAuth(proposal.Name, newOwnerPubkey, proposal.PrevOwner,
timestamp, proposal.PrevSig)
if err != nil {
return fmt.Errorf("transfer authorization verification failed: %w", err)
}
if !ok {
return fmt.Errorf("invalid transfer authorization signature")
}
}
return nil
}

180
pkg/find/types.go Normal file
View File

@@ -0,0 +1,180 @@
package find
import (
"time"
"next.orly.dev/pkg/encoders/event"
)
// Event kind constants as defined in the NIP
const (
KindRegistrationProposal = 30100 // Parameterized replaceable
KindAttestation = 20100 // Ephemeral
KindTrustGraph = 30101 // Parameterized replaceable
KindNameState = 30102 // Parameterized replaceable
KindNameRecords = 30103 // Parameterized replaceable
KindCertificate = 30104 // Parameterized replaceable
KindWitnessService = 30105 // Parameterized replaceable
)
// Action types for registration proposals
const (
ActionRegister = "register"
ActionTransfer = "transfer"
)
// Decision types for attestations
const (
DecisionApprove = "approve"
DecisionReject = "reject"
DecisionAbstain = "abstain"
)
// DNS record types
const (
RecordTypeA = "A"
RecordTypeAAAA = "AAAA"
RecordTypeCNAME = "CNAME"
RecordTypeMX = "MX"
RecordTypeTXT = "TXT"
RecordTypeNS = "NS"
RecordTypeSRV = "SRV"
)
// Time constants
const (
ProposalExpiry = 5 * time.Minute // Proposals expire after 5 minutes
AttestationExpiry = 3 * time.Minute // Attestations expire after 3 minutes
TrustGraphExpiry = 30 * 24 * time.Hour // Trust graphs expire after 30 days
NameRegistrationPeriod = 365 * 24 * time.Hour // Names expire after 1 year
PreferentialRenewalDays = 30 // Final 30 days before expiration
CertificateValidity = 90 * 24 * time.Hour // Recommended certificate validity
WitnessServiceExpiry = 180 * 24 * time.Hour // Witness service info expires after 180 days
)
// RegistrationProposal represents a kind 30100 event
type RegistrationProposal struct {
Event *event.E
Name string
Action string // "register" or "transfer"
PrevOwner string // Previous owner pubkey (for transfers)
PrevSig string // Signature from previous owner (for transfers)
Expiration time.Time
}
// Attestation represents a kind 20100 event
type Attestation struct {
Event *event.E
ProposalID string // Event ID of the proposal being attested
Decision string // "approve", "reject", or "abstain"
Weight int // Stake/confidence weight (default 100)
Reason string // Human-readable justification
ServiceURL string // Registry service endpoint
Expiration time.Time
}
// TrustEntry represents a single trust relationship
type TrustEntry struct {
Pubkey string
ServiceURL string
TrustScore float64 // 0.0 to 1.0
}
// TrustGraph represents a kind 30101 event
type TrustGraph struct {
Event *event.E
Entries []TrustEntry
Expiration time.Time
}
// NameState represents a kind 30102 event
type NameState struct {
Event *event.E
Name string
Owner string // Current owner pubkey
RegisteredAt time.Time
ProposalID string // Event ID of the registration proposal
Attestations int // Number of attestations
Confidence float64 // Consensus confidence score (0.0 to 1.0)
Expiration time.Time
}
// NameRecord represents a kind 30103 event
type NameRecord struct {
Event *event.E
Name string
Type string // A, AAAA, CNAME, MX, TXT, NS, SRV
Value string
TTL int // Cache TTL in seconds
Priority int // For MX and SRV records
Weight int // For SRV records
Port int // For SRV records
}
// RecordLimits defines per-type record limits
var RecordLimits = map[string]int{
RecordTypeA: 5,
RecordTypeAAAA: 5,
RecordTypeCNAME: 1,
RecordTypeMX: 5,
RecordTypeTXT: 10,
RecordTypeNS: 5,
RecordTypeSRV: 10,
}
// Certificate represents a kind 30104 event
type Certificate struct {
Event *event.E
Name string
CertPubkey string // Public key for the service
ValidFrom time.Time
ValidUntil time.Time
Challenge string // Challenge token for ownership proof
ChallengeProof string // Signature over challenge
Witnesses []WitnessSignature
Algorithm string // e.g., "secp256k1-schnorr"
Usage string // e.g., "tls-replacement"
}
// WitnessSignature represents a witness attestation on a certificate
type WitnessSignature struct {
Pubkey string
Signature string
}
// WitnessService represents a kind 30105 event
type WitnessService struct {
Event *event.E
Endpoint string
Challenges []string // Supported challenge types: "txt", "http", "event"
MaxValidity int // Maximum certificate validity in seconds
Fee int // Fee in sats per certificate
ReputationID string // Event ID of reputation event
Description string
Contact string
Expiration time.Time
}
// TransferAuthorization represents the message signed for transfer authorization
type TransferAuthorization struct {
Name string
NewOwner string
Timestamp time.Time
}
// ChallengeProofMessage represents the message signed for certificate challenge proof
type ChallengeProofMessage struct {
Challenge string
Name string
CertPubkey string
ValidUntil time.Time
}
// WitnessMessage represents the message signed by witnesses
type WitnessMessage struct {
CertPubkey string
Name string
ValidFrom time.Time
ValidUntil time.Time
Challenge string
}

221
pkg/find/validation.go Normal file
View File

@@ -0,0 +1,221 @@
package find
import (
"errors"
"fmt"
"regexp"
"strings"
)
var (
ErrInvalidName = errors.New("invalid name format")
ErrNameTooLong = errors.New("name exceeds 253 characters")
ErrLabelTooLong = errors.New("label exceeds 63 characters")
ErrLabelEmpty = errors.New("label is empty")
ErrInvalidCharacter = errors.New("invalid character in name")
ErrInvalidHyphen = errors.New("label cannot start or end with hyphen")
ErrAllNumericLabel = errors.New("label cannot be all numeric")
ErrInvalidRecordValue = errors.New("invalid record value")
ErrRecordLimitExceeded = errors.New("record limit exceeded")
ErrNotOwner = errors.New("not the name owner")
ErrNameExpired = errors.New("name registration expired")
ErrInRenewalWindow = errors.New("name is in renewal window")
ErrNotRenewalWindow = errors.New("not in renewal window")
)
// Name format validation regex
var (
labelRegex = regexp.MustCompile(`^[a-z0-9]([a-z0-9-]{0,61}[a-z0-9])?$`)
allNumeric = regexp.MustCompile(`^[0-9]+$`)
)
// NormalizeName converts a name to lowercase
func NormalizeName(name string) string {
return strings.ToLower(name)
}
// ValidateName validates a name according to DNS naming rules
func ValidateName(name string) error {
// Normalize to lowercase
name = NormalizeName(name)
// Check total length
if len(name) > 253 {
return fmt.Errorf("%w: %d > 253", ErrNameTooLong, len(name))
}
if len(name) == 0 {
return fmt.Errorf("%w: name is empty", ErrInvalidName)
}
// Split into labels
labels := strings.Split(name, ".")
for i, label := range labels {
if err := validateLabel(label); err != nil {
return fmt.Errorf("invalid label %d (%s): %w", i, label, err)
}
}
return nil
}
// validateLabel validates a single label according to DNS rules
func validateLabel(label string) error {
// Check length
if len(label) == 0 {
return ErrLabelEmpty
}
if len(label) > 63 {
return fmt.Errorf("%w: %d > 63", ErrLabelTooLong, len(label))
}
// Check character set and hyphen placement
if !labelRegex.MatchString(label) {
if strings.HasPrefix(label, "-") || strings.HasSuffix(label, "-") {
return ErrInvalidHyphen
}
return ErrInvalidCharacter
}
// Check not all numeric
if allNumeric.MatchString(label) {
return ErrAllNumericLabel
}
return nil
}
// GetParentDomain returns the parent domain of a name
// e.g., "www.example.com" -> "example.com", "example.com" -> "com", "com" -> ""
func GetParentDomain(name string) string {
name = NormalizeName(name)
parts := strings.Split(name, ".")
if len(parts) <= 1 {
return "" // TLD has no parent
}
return strings.Join(parts[1:], ".")
}
// IsTLD returns true if the name is a top-level domain (single label)
func IsTLD(name string) bool {
name = NormalizeName(name)
return !strings.Contains(name, ".")
}
// ValidateIPv4 validates an IPv4 address format
func ValidateIPv4(ip string) error {
parts := strings.Split(ip, ".")
if len(parts) != 4 {
return fmt.Errorf("%w: invalid IPv4 format", ErrInvalidRecordValue)
}
for _, part := range parts {
var octet int
if _, err := fmt.Sscanf(part, "%d", &octet); err != nil {
return fmt.Errorf("%w: invalid IPv4 octet: %v", ErrInvalidRecordValue, err)
}
if octet < 0 || octet > 255 {
return fmt.Errorf("%w: IPv4 octet out of range: %d", ErrInvalidRecordValue, octet)
}
}
return nil
}
// ValidateIPv6 validates an IPv6 address format (simplified check)
func ValidateIPv6(ip string) error {
// Basic validation - contains colons and valid hex characters
if !strings.Contains(ip, ":") {
return fmt.Errorf("%w: invalid IPv6 format", ErrInvalidRecordValue)
}
// Split by colons
parts := strings.Split(ip, ":")
if len(parts) < 3 || len(parts) > 8 {
return fmt.Errorf("%w: invalid IPv6 segment count", ErrInvalidRecordValue)
}
// Check for valid hex characters
validHex := regexp.MustCompile(`^[0-9a-fA-F]*$`)
for _, part := range parts {
if part == "" {
continue // Allow :: notation
}
if len(part) > 4 {
return fmt.Errorf("%w: IPv6 segment too long", ErrInvalidRecordValue)
}
if !validHex.MatchString(part) {
return fmt.Errorf("%w: invalid IPv6 hex", ErrInvalidRecordValue)
}
}
return nil
}
// ValidateRecordValue validates a record value based on its type
func ValidateRecordValue(recordType, value string) error {
switch recordType {
case RecordTypeA:
return ValidateIPv4(value)
case RecordTypeAAAA:
return ValidateIPv6(value)
case RecordTypeCNAME, RecordTypeMX, RecordTypeNS:
return ValidateName(value)
case RecordTypeTXT:
if len(value) > 1024 {
return fmt.Errorf("%w: TXT record exceeds 1024 characters", ErrInvalidRecordValue)
}
return nil
case RecordTypeSRV:
return ValidateName(value) // Hostname for SRV
default:
return fmt.Errorf("%w: unknown record type: %s", ErrInvalidRecordValue, recordType)
}
}
// ValidateRecordLimit checks if adding a record would exceed type limits
func ValidateRecordLimit(recordType string, currentCount int) error {
limit, ok := RecordLimits[recordType]
if !ok {
return fmt.Errorf("%w: unknown record type: %s", ErrInvalidRecordValue, recordType)
}
if currentCount >= limit {
return fmt.Errorf("%w: %s records limited to %d", ErrRecordLimitExceeded, recordType, limit)
}
return nil
}
// ValidatePriority validates priority value (0-65535)
func ValidatePriority(priority int) error {
if priority < 0 || priority > 65535 {
return fmt.Errorf("%w: priority must be 0-65535", ErrInvalidRecordValue)
}
return nil
}
// ValidateWeight validates weight value (0-65535)
func ValidateWeight(weight int) error {
if weight < 0 || weight > 65535 {
return fmt.Errorf("%w: weight must be 0-65535", ErrInvalidRecordValue)
}
return nil
}
// ValidatePort validates port value (0-65535)
func ValidatePort(port int) error {
if port < 0 || port > 65535 {
return fmt.Errorf("%w: port must be 0-65535", ErrInvalidRecordValue)
}
return nil
}
// ValidateTrustScore validates trust score (0.0-1.0)
func ValidateTrustScore(score float64) error {
if score < 0.0 || score > 1.0 {
return fmt.Errorf("trust score must be between 0.0 and 1.0, got %f", score)
}
return nil
}

317
pkg/find/verify.go Normal file
View File

@@ -0,0 +1,317 @@
package find
import (
"fmt"
"time"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/interfaces/signer/p8k"
)
// VerifyEvent verifies the signature of a Nostr event
func VerifyEvent(ev *event.E) error {
ok, err := ev.Verify()
if err != nil {
return fmt.Errorf("signature verification failed: %w", err)
}
if !ok {
return fmt.Errorf("invalid signature")
}
return nil
}
// VerifyTransferAuth verifies a transfer authorization signature
func VerifyTransferAuth(name, newOwner, prevOwner string, timestamp time.Time, sigHex string) (bool, error) {
// Create the message
msgHash := CreateTransferAuthMessage(name, newOwner, timestamp)
// Decode signature
sig, err := hex.Dec(sigHex)
if err != nil {
return false, fmt.Errorf("invalid signature hex: %w", err)
}
// Decode pubkey
pubkey, err := hex.Dec(prevOwner)
if err != nil {
return false, fmt.Errorf("invalid pubkey hex: %w", err)
}
// Create verifier with public key
verifier, err := p8k.New()
if err != nil {
return false, fmt.Errorf("failed to create verifier: %w", err)
}
if err := verifier.InitPub(pubkey); err != nil {
return false, fmt.Errorf("failed to init pubkey: %w", err)
}
// Verify signature
ok, err := verifier.Verify(msgHash, sig)
if err != nil {
return false, fmt.Errorf("verification failed: %w", err)
}
return ok, nil
}
// VerifyChallengeProof verifies a certificate challenge proof signature
func VerifyChallengeProof(challenge, name, certPubkey, owner string, validUntil time.Time, sigHex string) (bool, error) {
// Create the message
msgHash := CreateChallengeProofMessage(challenge, name, certPubkey, validUntil)
// Decode signature
sig, err := hex.Dec(sigHex)
if err != nil {
return false, fmt.Errorf("invalid signature hex: %w", err)
}
// Decode pubkey
pubkey, err := hex.Dec(owner)
if err != nil {
return false, fmt.Errorf("invalid pubkey hex: %w", err)
}
// Create verifier with public key
verifier, err := p8k.New()
if err != nil {
return false, fmt.Errorf("failed to create verifier: %w", err)
}
if err := verifier.InitPub(pubkey); err != nil {
return false, fmt.Errorf("failed to init pubkey: %w", err)
}
// Verify signature
ok, err := verifier.Verify(msgHash, sig)
if err != nil {
return false, fmt.Errorf("verification failed: %w", err)
}
return ok, nil
}
// VerifyWitnessSignature verifies a witness signature on a certificate
func VerifyWitnessSignature(certPubkey, name string, validFrom, validUntil time.Time,
challenge, witnessPubkey, sigHex string) (bool, error) {
// Create the message
msgHash := CreateWitnessMessage(certPubkey, name, validFrom, validUntil, challenge)
// Decode signature
sig, err := hex.Dec(sigHex)
if err != nil {
return false, fmt.Errorf("invalid signature hex: %w", err)
}
// Decode pubkey
pubkey, err := hex.Dec(witnessPubkey)
if err != nil {
return false, fmt.Errorf("invalid pubkey hex: %w", err)
}
// Create verifier with public key
verifier, err := p8k.New()
if err != nil {
return false, fmt.Errorf("failed to create verifier: %w", err)
}
if err := verifier.InitPub(pubkey); err != nil {
return false, fmt.Errorf("failed to init pubkey: %w", err)
}
// Verify signature
ok, err := verifier.Verify(msgHash, sig)
if err != nil {
return false, fmt.Errorf("verification failed: %w", err)
}
return ok, nil
}
// VerifyNameOwnership checks if a record's owner matches the name state owner
func VerifyNameOwnership(nameState *NameState, record *NameRecord) error {
recordOwner := hex.Enc(record.Event.Pubkey)
if recordOwner != nameState.Owner {
return fmt.Errorf("%w: record owner %s != name owner %s",
ErrNotOwner, recordOwner, nameState.Owner)
}
return nil
}
// IsExpired checks if a time-based expiration has passed
func IsExpired(expiration time.Time) bool {
return time.Now().After(expiration)
}
// IsInRenewalWindow checks if the current time is within the preferential renewal window
// (final 30 days before expiration)
func IsInRenewalWindow(expiration time.Time) bool {
now := time.Now()
renewalWindowStart := expiration.Add(-PreferentialRenewalDays * 24 * time.Hour)
return now.After(renewalWindowStart) && now.Before(expiration)
}
// CanRegister checks if a name can be registered based on its state and expiration
func CanRegister(nameState *NameState, proposerPubkey string) error {
// If no name state exists, anyone can register
if nameState == nil {
return nil
}
// Check if name is expired
if IsExpired(nameState.Expiration) {
// Name is expired, anyone can register
return nil
}
// Check if in renewal window
if IsInRenewalWindow(nameState.Expiration) {
// Only current owner can register during renewal window
if proposerPubkey != nameState.Owner {
return ErrInRenewalWindow
}
return nil
}
// Name is still owned and not in renewal window
return fmt.Errorf("name is owned by %s until %s", nameState.Owner, nameState.Expiration)
}
// VerifyProposalExpiration checks if a proposal has expired
func VerifyProposalExpiration(proposal *RegistrationProposal) error {
if !proposal.Expiration.IsZero() && IsExpired(proposal.Expiration) {
return fmt.Errorf("proposal expired at %s", proposal.Expiration)
}
return nil
}
// VerifyAttestationExpiration checks if an attestation has expired
func VerifyAttestationExpiration(attestation *Attestation) error {
if !attestation.Expiration.IsZero() && IsExpired(attestation.Expiration) {
return fmt.Errorf("attestation expired at %s", attestation.Expiration)
}
return nil
}
// VerifyTrustGraphExpiration checks if a trust graph has expired
func VerifyTrustGraphExpiration(trustGraph *TrustGraph) error {
if !trustGraph.Expiration.IsZero() && IsExpired(trustGraph.Expiration) {
return fmt.Errorf("trust graph expired at %s", trustGraph.Expiration)
}
return nil
}
// VerifyNameStateExpiration checks if a name state has expired
func VerifyNameStateExpiration(nameState *NameState) error {
if !nameState.Expiration.IsZero() && IsExpired(nameState.Expiration) {
return ErrNameExpired
}
return nil
}
// VerifyCertificateValidity checks if a certificate is currently valid
func VerifyCertificateValidity(cert *Certificate) error {
now := time.Now()
if now.Before(cert.ValidFrom) {
return fmt.Errorf("certificate not yet valid (valid from %s)", cert.ValidFrom)
}
if now.After(cert.ValidUntil) {
return fmt.Errorf("certificate expired at %s", cert.ValidUntil)
}
return nil
}
// VerifyCertificate performs complete certificate verification
func VerifyCertificate(cert *Certificate, nameState *NameState, trustedWitnesses []string) error {
// Verify certificate is not expired
if err := VerifyCertificateValidity(cert); err != nil {
return err
}
// Verify name is not expired
if err := VerifyNameStateExpiration(nameState); err != nil {
return err
}
// Verify certificate owner matches name owner
certOwner := hex.Enc(cert.Event.Pubkey)
if certOwner != nameState.Owner {
return fmt.Errorf("certificate owner %s != name owner %s", certOwner, nameState.Owner)
}
// Verify challenge proof
ok, err := VerifyChallengeProof(cert.Challenge, cert.Name, cert.CertPubkey,
nameState.Owner, cert.ValidUntil, cert.ChallengeProof)
if err != nil {
return fmt.Errorf("challenge proof verification failed: %w", err)
}
if !ok {
return fmt.Errorf("invalid challenge proof signature")
}
// Count trusted witnesses
trustedCount := 0
for _, witness := range cert.Witnesses {
// Check if witness is in trusted list
isTrusted := false
for _, trusted := range trustedWitnesses {
if witness.Pubkey == trusted {
isTrusted = true
break
}
}
if !isTrusted {
continue
}
// Verify witness signature
ok, err := VerifyWitnessSignature(cert.CertPubkey, cert.Name,
cert.ValidFrom, cert.ValidUntil, cert.Challenge,
witness.Pubkey, witness.Signature)
if err != nil {
return fmt.Errorf("witness %s signature verification failed: %w", witness.Pubkey, err)
}
if !ok {
return fmt.Errorf("invalid witness %s signature", witness.Pubkey)
}
trustedCount++
}
// Require at least 3 trusted witnesses
if trustedCount < 3 {
return fmt.Errorf("insufficient trusted witnesses: %d < 3", trustedCount)
}
return nil
}
// VerifySubdomainAuthority checks if the proposer owns the parent domain
func VerifySubdomainAuthority(name string, proposerPubkey string, parentNameState *NameState) error {
parent := GetParentDomain(name)
// TLDs have no parent
if parent == "" {
return nil
}
// Parent must exist
if parentNameState == nil {
return fmt.Errorf("parent domain %s does not exist", parent)
}
// Proposer must own parent
if proposerPubkey != parentNameState.Owner {
return fmt.Errorf("proposer %s does not own parent domain %s (owner: %s)",
proposerPubkey, parent, parentNameState.Owner)
}
return nil
}