Merge bitcoin-core/secp256k1#1518: Add secp256k1_pubkey_sort

7d2591ce12 Add secp256k1_pubkey_sort (Jonas Nick)

Pull request description:

  This PR adds a  `secp256k1_pubkey_sort` function the the public API which was originally part of the musig PR (#1479). However, I opened a separate PR because it adds internal functions that are also used by the WIP silent payments module.

ACKs for top commit:
  sipa:
    ACK 7d2591ce12
  josibake:
    ACK 7d2591ce12
  real-or-random:
    ACK 7d2591ce12

Tree-SHA512: d0e4464dc9cd4bdb35cc5d9bb4c37a7b71233328319165d49bc940d8d3394a2d74a43d2f73ee7bfe8f3f90a466ee8afcdca75cfbbf3969e218d76b89f4af55fb
This commit is contained in:
Pieter Wuille
2024-05-06 11:13:23 -04:00
7 changed files with 437 additions and 0 deletions

View File

@@ -7,6 +7,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased]
#### Added
- New function `secp256k1_ec_pubkey_sort` that sorts public keys using lexicographic (of compressed serialization) order.
#### Changed
- The implementation of the point multiplication algorithm used for signing and public key generation was changed, resulting in improved performance for those operations.
- The related configure option `--ecmult-gen-precision` was replaced with `--ecmult-gen-kb` (`ECMULT_GEN_KB` for CMake).

View File

@@ -64,6 +64,8 @@ noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
noinst_HEADERS += src/hsort.h
noinst_HEADERS += src/hsort_impl.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h

View File

@@ -474,6 +474,20 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(
const secp256k1_pubkey *pubkey2
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Sort public keys using lexicographic (of compressed serialization) order
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
*
* Args: ctx: pointer to a context object
* In: pubkeys: array of pointers to pubkeys to sort
* n_pubkeys: number of elements in the pubkeys array
*/
SECP256K1_API int secp256k1_ec_pubkey_sort(
const secp256k1_context *ctx,
const secp256k1_pubkey **pubkeys,
size_t n_pubkeys
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.

33
src/hsort.h Normal file
View File

@@ -0,0 +1,33 @@
/***********************************************************************
* Copyright (c) 2021 Russell O'Connor, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HSORT_H
#define SECP256K1_HSORT_H
#include <stddef.h>
#include <string.h>
/* In-place, iterative heapsort with an interface matching glibc's qsort_r. This
* is preferred over standard library implementations because they generally
* make no guarantee about being fast for malicious inputs.
* Remember that heapsort is unstable.
*
* In/Out: ptr: pointer to the array to sort. The contents of the array are
* sorted in ascending order according to the comparison function.
* In: count: number of elements in the array.
* size: size in bytes of each element.
* cmp: pointer to a comparison function that is called with two
* arguments that point to the objects being compared. The cmp_data
* argument of secp256k1_hsort is passed as third argument. The
* function must return an integer less than, equal to, or greater
* than zero if the first argument is considered to be respectively
* less than, equal to, or greater than the second.
* cmp_data: pointer passed as third argument to cmp.
*/
static void secp256k1_hsort(void *ptr, size_t count, size_t size,
int (*cmp)(const void *, const void *, void *),
void *cmp_data);
#endif

125
src/hsort_impl.h Normal file
View File

@@ -0,0 +1,125 @@
/***********************************************************************
* Copyright (c) 2021 Russell O'Connor, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_HSORT_IMPL_H
#define SECP256K1_HSORT_IMPL_H
#include "hsort.h"
/* An array is a heap when, for all non-zero indexes i, the element at index i
* compares as less than or equal to the element at index parent(i) = (i-1)/2.
*/
static SECP256K1_INLINE size_t secp256k1_heap_child1(size_t i) {
VERIFY_CHECK(i <= (SIZE_MAX - 1)/2);
return 2*i + 1;
}
static SECP256K1_INLINE size_t secp256k1_heap_child2(size_t i) {
VERIFY_CHECK(i <= SIZE_MAX/2 - 1);
return secp256k1_heap_child1(i)+1;
}
static SECP256K1_INLINE void secp256k1_heap_swap64(unsigned char *a, unsigned char *b, size_t len) {
unsigned char tmp[64];
VERIFY_CHECK(len <= 64);
memcpy(tmp, a, len);
memmove(a, b, len);
memcpy(b, tmp, len);
}
static SECP256K1_INLINE void secp256k1_heap_swap(unsigned char *arr, size_t i, size_t j, size_t stride) {
unsigned char *a = arr + i*stride;
unsigned char *b = arr + j*stride;
size_t len = stride;
while (64 < len) {
secp256k1_heap_swap64(a + (len - 64), b + (len - 64), 64);
len -= 64;
}
secp256k1_heap_swap64(a, b, len);
}
/* This function accepts an array arr containing heap_size elements, each of
* size stride. The elements in the array at indices >i satisfy the max-heap
* property, i.e., for any element at index j (where j > i), all of its children
* are smaller than the element itself. The purpose of the function is to update
* the array so that all elements at indices >=i satisfy the max-heap
* property. */
static SECP256K1_INLINE void secp256k1_heap_down(unsigned char *arr, size_t i, size_t heap_size, size_t stride,
int (*cmp)(const void *, const void *, void *), void *cmp_data) {
while (i < heap_size/2) {
VERIFY_CHECK(i <= SIZE_MAX/2 - 1);
/* Proof:
* i < heap_size/2
* i + 1 <= heap_size/2
* 2*i + 2 <= heap_size <= SIZE_MAX
* 2*i <= SIZE_MAX - 2
*/
VERIFY_CHECK(secp256k1_heap_child1(i) < heap_size);
/* Proof:
* i < heap_size/2
* i + 1 <= heap_size/2
* 2*i + 2 <= heap_size
* 2*i + 1 < heap_size
* child1(i) < heap_size
*/
/* Let [x] be notation for the contents at arr[x*stride].
*
* If [child1(i)] > [i] and [child2(i)] > [i],
* swap [i] with the larger child to ensure the new parent is larger
* than both children. When [child1(i)] == [child2(i)], swap [i] with
* [child2(i)].
* Else if [child1(i)] > [i], swap [i] with [child1(i)].
* Else if [child2(i)] > [i], swap [i] with [child2(i)].
*/
if (secp256k1_heap_child2(i) < heap_size
&& 0 <= cmp(arr + secp256k1_heap_child2(i)*stride, arr + secp256k1_heap_child1(i)*stride, cmp_data)) {
if (0 < cmp(arr + secp256k1_heap_child2(i)*stride, arr + i*stride, cmp_data)) {
secp256k1_heap_swap(arr, i, secp256k1_heap_child2(i), stride);
i = secp256k1_heap_child2(i);
} else {
/* At this point we have [child2(i)] >= [child1(i)] and we have
* [child2(i)] <= [i], and thus [child1(i)] <= [i] which means
* that the next comparison can be skipped. */
return;
}
} else if (0 < cmp(arr + secp256k1_heap_child1(i)*stride, arr + i*stride, cmp_data)) {
secp256k1_heap_swap(arr, i, secp256k1_heap_child1(i), stride);
i = secp256k1_heap_child1(i);
} else {
return;
}
}
/* heap_size/2 <= i
* heap_size/2 < i + 1
* heap_size < 2*i + 2
* heap_size <= 2*i + 1
* heap_size <= child1(i)
* Thus child1(i) and child2(i) are now out of bounds and we are at a leaf.
*/
}
/* In-place heap sort. */
static void secp256k1_hsort(void *ptr, size_t count, size_t size,
int (*cmp)(const void *, const void *, void *),
void *cmp_data) {
size_t i;
for (i = count/2; 0 < i; --i) {
secp256k1_heap_down(ptr, i-1, count, size, cmp, cmp_data);
}
for (i = count; 1 < i; --i) {
/* Extract the largest value from the heap */
secp256k1_heap_swap(ptr, 0, i-1, size);
/* Repair the heap condition */
secp256k1_heap_down(ptr, 0, i-1, size, cmp, cmp_data);
}
}
#endif

View File

@@ -36,6 +36,7 @@
#include "int128_impl.h"
#include "scratch_impl.h"
#include "selftest.h"
#include "hsort_impl.h"
#ifdef SECP256K1_NO_BUILD
# error "secp256k1.h processed without SECP256K1_BUILD defined while building secp256k1.c"
@@ -325,6 +326,34 @@ int secp256k1_ec_pubkey_cmp(const secp256k1_context* ctx, const secp256k1_pubkey
return secp256k1_memcmp_var(out[0], out[1], sizeof(out[0]));
}
static int secp256k1_ec_pubkey_sort_cmp(const void* pk1, const void* pk2, void *ctx) {
return secp256k1_ec_pubkey_cmp((secp256k1_context *)ctx,
*(secp256k1_pubkey **)pk1,
*(secp256k1_pubkey **)pk2);
}
int secp256k1_ec_pubkey_sort(const secp256k1_context* ctx, const secp256k1_pubkey **pubkeys, size_t n_pubkeys) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkeys != NULL);
/* Suppress wrong warning (fixed in MSVC 19.33) */
#if defined(_MSC_VER) && (_MSC_VER < 1933)
#pragma warning(push)
#pragma warning(disable: 4090)
#endif
/* Casting away const is fine because neither secp256k1_hsort nor
* secp256k1_ec_pubkey_sort_cmp modify the data pointed to by the cmp_data
* argument. */
secp256k1_hsort(pubkeys, n_pubkeys, sizeof(*pubkeys), secp256k1_ec_pubkey_sort_cmp, (void *)ctx);
#if defined(_MSC_VER) && (_MSC_VER < 1933)
#pragma warning(pop)
#endif
return 1;
}
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
(void)ctx;
if (sizeof(secp256k1_scalar) == 32) {

View File

@@ -3676,6 +3676,78 @@ static void run_inverse_tests(void)
}
}
/***** HSORT TESTS *****/
static void test_heap_swap(void) {
unsigned char a[600];
unsigned char e[sizeof(a)];
memset(a, 21, 200);
memset(a + 200, 99, 200);
memset(a + 400, 42, 200);
memset(e, 42, 200);
memset(e + 200, 99, 200);
memset(e + 400, 21, 200);
secp256k1_heap_swap(a, 0, 2, 200);
CHECK(secp256k1_memcmp_var(a, e, sizeof(a)) == 0);
}
static void test_hsort_is_sorted(unsigned char *elements, size_t n, size_t len) {
size_t i;
for (i = 1; i < n; i++) {
CHECK(secp256k1_memcmp_var(&elements[(i-1) * len], &elements[i * len], len) <= 0);
}
}
struct test_hsort_cmp_data {
size_t counter;
size_t element_len;
};
static int test_hsort_cmp(const void *ele1, const void *ele2, void *data) {
struct test_hsort_cmp_data *d = (struct test_hsort_cmp_data *) data;
d->counter += 1;
return secp256k1_memcmp_var((unsigned char *)ele1, (unsigned char *)ele2, d->element_len);
}
#define NUM 65
#define MAX_ELEMENT_LEN 65
static void test_hsort(size_t element_len) {
unsigned char elements[NUM * MAX_ELEMENT_LEN] = { 0 };
struct test_hsort_cmp_data data;
int i;
VERIFY_CHECK(element_len <= MAX_ELEMENT_LEN);
data.counter = 0;
data.element_len = element_len;
secp256k1_hsort(elements, 0, element_len, test_hsort_cmp, &data);
CHECK(data.counter == 0);
secp256k1_hsort(elements, 1, element_len, test_hsort_cmp, &data);
CHECK(data.counter == 0);
secp256k1_hsort(elements, NUM, element_len, test_hsort_cmp, &data);
CHECK(data.counter >= NUM - 1);
test_hsort_is_sorted(elements, NUM, element_len);
/* Test hsort with array of random length n */
for (i = 0; i < COUNT; i++) {
int n = secp256k1_testrand_int(NUM);
secp256k1_testrand_bytes_test(elements, n*element_len);
secp256k1_hsort(elements, n, element_len, test_hsort_cmp, &data);
test_hsort_is_sorted(elements, n, element_len);
}
}
#undef NUM
#undef MAX_ELEMENT_LEN
static void run_hsort_tests(void) {
test_heap_swap();
test_hsort(1);
test_hsort(64);
test_hsort(65);
}
/***** GROUP TESTS *****/
/* This compares jacobian points including their Z, not just their geometric meaning. */
@@ -6629,6 +6701,161 @@ static void run_pubkey_comparison(void) {
CHECK(secp256k1_ec_pubkey_cmp(CTX, &pk2, &pk1) > 0);
}
static void test_sort_helper(secp256k1_pubkey *pk, size_t *pk_order, size_t n_pk) {
size_t i;
const secp256k1_pubkey *pk_test[5];
for (i = 0; i < n_pk; i++) {
pk_test[i] = &pk[pk_order[i]];
}
secp256k1_ec_pubkey_sort(CTX, pk_test, n_pk);
for (i = 0; i < n_pk; i++) {
CHECK(secp256k1_memcmp_var(pk_test[i], &pk[i], sizeof(*pk_test[i])) == 0);
}
}
static void permute(size_t *arr, size_t n) {
size_t i;
for (i = n - 1; i >= 1; i--) {
size_t tmp, j;
j = secp256k1_testrand_int(i + 1);
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
static void rand_pk(secp256k1_pubkey *pk) {
unsigned char seckey[32];
secp256k1_keypair keypair;
secp256k1_testrand256(seckey);
CHECK(secp256k1_keypair_create(CTX, &keypair, seckey) == 1);
CHECK(secp256k1_keypair_pub(CTX, pk, &keypair) == 1);
}
static void test_sort_api(void) {
secp256k1_pubkey pks[2];
const secp256k1_pubkey *pks_ptr[2];
pks_ptr[0] = &pks[0];
pks_ptr[1] = &pks[1];
rand_pk(&pks[0]);
rand_pk(&pks[1]);
CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ec_pubkey_sort(CTX, NULL, 2));
CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 0) == 1);
/* Test illegal public keys */
memset(&pks[0], 0, sizeof(pks[0]));
CHECK_ILLEGAL_VOID(CTX, CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1));
memset(&pks[1], 0, sizeof(pks[1]));
{
int32_t ecount = 0;
secp256k1_context_set_illegal_callback(CTX, counting_callback_fn, &ecount);
CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, 2) == 1);
CHECK(ecount == 2);
secp256k1_context_set_illegal_callback(CTX, NULL, NULL);
}
}
static void test_sort(void) {
secp256k1_pubkey pk[5];
unsigned char pk_ser[5][33] = {
{ 0x02, 0x08 },
{ 0x02, 0x0b },
{ 0x02, 0x0c },
{ 0x03, 0x05 },
{ 0x03, 0x0a },
};
int i;
size_t pk_order[5] = { 0, 1, 2, 3, 4 };
for (i = 0; i < 5; i++) {
CHECK(secp256k1_ec_pubkey_parse(CTX, &pk[i], pk_ser[i], sizeof(pk_ser[i])));
}
permute(pk_order, 1);
test_sort_helper(pk, pk_order, 1);
permute(pk_order, 2);
test_sort_helper(pk, pk_order, 2);
permute(pk_order, 3);
test_sort_helper(pk, pk_order, 3);
for (i = 0; i < COUNT; i++) {
permute(pk_order, 4);
test_sort_helper(pk, pk_order, 4);
}
for (i = 0; i < COUNT; i++) {
permute(pk_order, 5);
test_sort_helper(pk, pk_order, 5);
}
/* Check that sorting also works for random pubkeys */
for (i = 0; i < COUNT; i++) {
int j;
const secp256k1_pubkey *pk_ptr[5];
for (j = 0; j < 5; j++) {
rand_pk(&pk[j]);
pk_ptr[j] = &pk[j];
}
secp256k1_ec_pubkey_sort(CTX, pk_ptr, 5);
for (j = 1; j < 5; j++) {
CHECK(secp256k1_ec_pubkey_sort_cmp(&pk_ptr[j - 1], &pk_ptr[j], CTX) <= 0);
}
}
}
/* Test vectors from BIP-MuSig2 */
static void test_sort_vectors(void) {
enum { N_PUBKEYS = 6 };
unsigned char pk_ser[N_PUBKEYS][33] = {
{ 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F,
0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09,
0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8 },
{ 0x02, 0xF9, 0x30, 0x8A, 0x01, 0x92, 0x58, 0xC3, 0x10, 0x49, 0x34,
0x4F, 0x85, 0xF8, 0x9D, 0x52, 0x29, 0xB5, 0x31, 0xC8, 0x45, 0x83,
0x6F, 0x99, 0xB0, 0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9 },
{ 0x03, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, 0x36, 0x18,
0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2,
0xDE, 0xCE, 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 },
{ 0x02, 0x35, 0x90, 0xA9, 0x4E, 0x76, 0x8F, 0x8E, 0x18, 0x15, 0xC2,
0xF2, 0x4B, 0x4D, 0x80, 0xA8, 0xE3, 0x14, 0x93, 0x16, 0xC3, 0x51,
0x8C, 0xE7, 0xB7, 0xAD, 0x33, 0x83, 0x68, 0xD0, 0x38, 0xCA, 0x66 },
{ 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F,
0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09,
0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xFF },
{ 0x02, 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, 0x12, 0x1F,
0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, 0x01, 0x39, 0x71, 0x53, 0x09,
0xB0, 0x86, 0xC9, 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8 }
};
secp256k1_pubkey pubkeys[N_PUBKEYS];
secp256k1_pubkey *sorted[N_PUBKEYS];
const secp256k1_pubkey *pks_ptr[N_PUBKEYS];
int i;
sorted[0] = &pubkeys[3];
sorted[1] = &pubkeys[0];
sorted[2] = &pubkeys[0];
sorted[3] = &pubkeys[4];
sorted[4] = &pubkeys[1];
sorted[5] = &pubkeys[2];
for (i = 0; i < N_PUBKEYS; i++) {
CHECK(secp256k1_ec_pubkey_parse(CTX, &pubkeys[i], pk_ser[i], sizeof(pk_ser[i])));
pks_ptr[i] = &pubkeys[i];
}
CHECK(secp256k1_ec_pubkey_sort(CTX, pks_ptr, N_PUBKEYS) == 1);
for (i = 0; i < N_PUBKEYS; i++) {
CHECK(secp256k1_memcmp_var(pks_ptr[i], sorted[i], sizeof(secp256k1_pubkey)) == 0);
}
}
static void run_pubkey_sort(void) {
test_sort_api();
test_sort();
test_sort_vectors();
}
static void run_random_pubkeys(void) {
int i;
for (i = 0; i < 10*COUNT; i++) {
@@ -7588,6 +7815,9 @@ int main(int argc, char **argv) {
run_modinv_tests();
run_inverse_tests();
/* sorting tests */
run_hsort_tests();
/* hash tests */
run_sha256_known_output_tests();
run_sha256_counter_tests();
@@ -7644,6 +7874,7 @@ int main(int argc, char **argv) {
/* ecdsa tests */
run_ec_illegal_argument_tests();
run_pubkey_comparison();
run_pubkey_sort();
run_random_pubkeys();
run_ecdsa_der_parse();
run_ecdsa_sign_verify();