Files
wazero/examples/allocation/rust
Crypt Keeper be33572289 Adds HostFunctionBuilder to enable high performance host functions (#828)
This PR follows @hafeidejiangyou advice to not only enable end users to
avoid reflection when calling host functions, but also use that approach
ourselves internally. The performance results are staggering and will be
noticable in high performance applications.

Before
```
BenchmarkHostCall/Call
BenchmarkHostCall/Call-16            	 1000000	      1050 ns/op
Benchmark_EnvironGet/environGet
Benchmark_EnvironGet/environGet-16         	  525492	      2224 ns/op
```

Now
```
BenchmarkHostCall/Call
BenchmarkHostCall/Call-16            	14807203	        83.22 ns/op
Benchmark_EnvironGet/environGet
Benchmark_EnvironGet/environGet-16         	  951690	      1054 ns/op
```

To accomplish this, this PR consolidates code around host function
definition and enables a fast path for functions where the user takes
responsibility for defining its WebAssembly mappings. Existing users
will need to change their code a bit, as signatures have changed.

For example, we are now more strict that all host functions require a
context parameter zero. Also, we've replaced
`HostModuleBuilder.ExportFunction` and `ExportFunctions` with a new type
`HostFunctionBuilder` that consolidates the responsibility and the
documentation.

```diff
 ctx := context.Background()
-hello := func() {
+hello := func(context.Context) {
         fmt.Fprintln(stdout, "hello!")
 }
-_, err := r.NewHostModuleBuilder("env").ExportFunction("hello", hello).Instantiate(ctx, r)
+_, err := r.NewHostModuleBuilder("env").
+        NewFunctionBuilder().WithFunc(hello).Export("hello").
+        Instantiate(ctx, r)
```

Power users can now use `HostFunctionBuilder` to define functions that
won't use reflection. There are two choices of interfaces to use
depending on if that function needs access to the calling module or not:
`api.GoFunction` and `api.GoModuleFunction`. Here's an example defining
one.

```go
builder.WithGoFunction(api.GoFunc(func(ctx context.Context, params []uint64) []uint64 {
	x, y := uint32(params[0]), uint32(params[1])
	sum := x + y
	return []uint64{sum}
}, []api.ValueType{api.ValueTypeI32, api.ValueTypeI32}, []api.ValueType{api.ValueTypeI32})
```
As you'll notice and as documented, this approach is more verbose and
not for everyone. If you aren't making a low-level library, you are
likely able to afford the 1us penalty for the convenience of reflection.
However, we are happy to enable this option for foundational libraries
and those with high performance requirements (like ourselves)!

Fixes #825

Signed-off-by: Adrian Cole <adrian@tetrate.io>
2022-10-28 07:51:08 -07:00
..

Rust allocation example

This example shows how to pass strings in and out of a Wasm function defined in Rust, built with cargo build --release --target wasm32-unknown-unknown

$ go run greet.go wazero
Hello, wazero!

Under the covers, lib.rs does a few things of interest:

  • Uses a WebAssembly-tuned memory allocator: wee_alloc.
  • Exports wrapper functions to allocate and deallocate memory.
  • Uses &str instead of CString (NUL-terminated strings).
  • Uses std::mem::forget to prevent Rust from eagerly freeing pointers returned.

Note: We chose to not use CString because it keeps the example similar to how you would track memory for arbitrary blobs. We also watched function signatures carefully as Rust compiles different WebAssembly signatures depending on the input type.

See https://wazero.io/languages/rust/ for more tips.