Files
wazero/internal/engine/wazevo/frontend/lower.go

3916 lines
120 KiB
Go

package frontend
import (
"encoding/binary"
"fmt"
"math"
"strings"
"github.com/tetratelabs/wazero/api"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
"github.com/tetratelabs/wazero/internal/engine/wazevo/wazevoapi"
"github.com/tetratelabs/wazero/internal/leb128"
"github.com/tetratelabs/wazero/internal/wasm"
)
type (
// loweringState is used to keep the state of lowering.
loweringState struct {
// values holds the values on the Wasm stack.
values []ssa.Value
controlFrames []controlFrame
unreachable bool
unreachableDepth int
tmpForBrTable []uint32
pc int
}
controlFrame struct {
kind controlFrameKind
// originalStackLen holds the number of values on the Wasm stack
// when start executing this control frame minus params for the block.
originalStackLenWithoutParam int
// blk is the loop header if this is loop, and is the else-block if this is an if frame.
blk,
// followingBlock is the basic block we enter if we reach "end" of block.
followingBlock ssa.BasicBlock
blockType *wasm.FunctionType
// clonedArgs hold the arguments to Else block.
clonedArgs []ssa.Value
}
controlFrameKind byte
)
// String implements fmt.Stringer for debugging.
func (l *loweringState) String() string {
var str []string
for _, v := range l.values {
str = append(str, fmt.Sprintf("v%v", v.ID()))
}
var frames []string
for i := range l.controlFrames {
frames = append(frames, l.controlFrames[i].kind.String())
}
return fmt.Sprintf("\n\tunreachable=%v(depth=%d)\n\tstack: %s\n\tcontrol frames: %s",
l.unreachable, l.unreachableDepth,
strings.Join(str, ", "),
strings.Join(frames, ", "),
)
}
const (
controlFrameKindFunction = iota + 1
controlFrameKindLoop
controlFrameKindIfWithElse
controlFrameKindIfWithoutElse
controlFrameKindBlock
)
// String implements fmt.Stringer for debugging.
func (k controlFrameKind) String() string {
switch k {
case controlFrameKindFunction:
return "function"
case controlFrameKindLoop:
return "loop"
case controlFrameKindIfWithElse:
return "if_with_else"
case controlFrameKindIfWithoutElse:
return "if_without_else"
case controlFrameKindBlock:
return "block"
default:
panic(k)
}
}
// isLoop returns true if this is a loop frame.
func (ctrl *controlFrame) isLoop() bool {
return ctrl.kind == controlFrameKindLoop
}
// reset resets the state of loweringState for reuse.
func (l *loweringState) reset() {
l.values = l.values[:0]
l.controlFrames = l.controlFrames[:0]
l.pc = 0
l.unreachable = false
l.unreachableDepth = 0
}
func (l *loweringState) peek() (ret ssa.Value) {
tail := len(l.values) - 1
return l.values[tail]
}
func (l *loweringState) pop() (ret ssa.Value) {
tail := len(l.values) - 1
ret = l.values[tail]
l.values = l.values[:tail]
return
}
func (l *loweringState) push(ret ssa.Value) {
l.values = append(l.values, ret)
}
func (l *loweringState) nPopInto(n int, dst []ssa.Value) {
if n == 0 {
return
}
tail := len(l.values)
begin := tail - n
view := l.values[begin:tail]
copy(dst, view)
l.values = l.values[:begin]
}
func (l *loweringState) nPeekDup(n int) []ssa.Value {
if n == 0 {
return nil
}
tail := len(l.values)
view := l.values[tail-n : tail]
return cloneValuesList(view)
}
func (l *loweringState) ctrlPop() (ret controlFrame) {
tail := len(l.controlFrames) - 1
ret = l.controlFrames[tail]
l.controlFrames = l.controlFrames[:tail]
return
}
func (l *loweringState) ctrlPush(ret controlFrame) {
l.controlFrames = append(l.controlFrames, ret)
}
func (l *loweringState) ctrlPeekAt(n int) (ret *controlFrame) {
tail := len(l.controlFrames) - 1
return &l.controlFrames[tail-n]
}
// lowerBody lowers the body of the Wasm function to the SSA form.
func (c *Compiler) lowerBody(entryBlk ssa.BasicBlock) {
c.ssaBuilder.Seal(entryBlk)
if c.needListener {
c.callListenerBefore()
}
// Pushes the empty control frame which corresponds to the function return.
c.loweringState.ctrlPush(controlFrame{
kind: controlFrameKindFunction,
blockType: c.wasmFunctionTyp,
followingBlock: c.ssaBuilder.ReturnBlock(),
})
for c.loweringState.pc < len(c.wasmFunctionBody) {
c.lowerCurrentOpcode()
}
}
func (c *Compiler) state() *loweringState {
return &c.loweringState
}
func (c *Compiler) lowerCurrentOpcode() {
op := c.wasmFunctionBody[c.loweringState.pc]
if c.needSourceOffsetInfo {
c.ssaBuilder.SetCurrentSourceOffset(
ssa.SourceOffset(c.loweringState.pc) + ssa.SourceOffset(c.wasmFunctionBodyOffsetInCodeSection),
)
}
builder := c.ssaBuilder
state := c.state()
switch op {
case wasm.OpcodeI32Const:
c := c.readI32s()
if state.unreachable {
break
}
iconst := builder.AllocateInstruction().AsIconst32(uint32(c)).Insert(builder)
value := iconst.Return()
state.push(value)
case wasm.OpcodeI64Const:
c := c.readI64s()
if state.unreachable {
break
}
iconst := builder.AllocateInstruction().AsIconst64(uint64(c)).Insert(builder)
value := iconst.Return()
state.push(value)
case wasm.OpcodeF32Const:
f32 := c.readF32()
if state.unreachable {
break
}
f32const := builder.AllocateInstruction().
AsF32const(f32).
Insert(builder).
Return()
state.push(f32const)
case wasm.OpcodeF64Const:
f64 := c.readF64()
if state.unreachable {
break
}
f64const := builder.AllocateInstruction().
AsF64const(f64).
Insert(builder).
Return()
state.push(f64const)
case wasm.OpcodeI32Add, wasm.OpcodeI64Add:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
iadd := builder.AllocateInstruction()
iadd.AsIadd(x, y)
builder.InsertInstruction(iadd)
value := iadd.Return()
state.push(value)
case wasm.OpcodeI32Sub, wasm.OpcodeI64Sub:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsIsub(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeF32Add, wasm.OpcodeF64Add:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
iadd := builder.AllocateInstruction()
iadd.AsFadd(x, y)
builder.InsertInstruction(iadd)
value := iadd.Return()
state.push(value)
case wasm.OpcodeI32Mul, wasm.OpcodeI64Mul:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
imul := builder.AllocateInstruction()
imul.AsImul(x, y)
builder.InsertInstruction(imul)
value := imul.Return()
state.push(value)
case wasm.OpcodeF32Sub, wasm.OpcodeF64Sub:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsFsub(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeF32Mul, wasm.OpcodeF64Mul:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsFmul(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeF32Div, wasm.OpcodeF64Div:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsFdiv(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeF32Max, wasm.OpcodeF64Max:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsFmax(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeF32Min, wasm.OpcodeF64Min:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
isub := builder.AllocateInstruction()
isub.AsFmin(x, y)
builder.InsertInstruction(isub)
value := isub.Return()
state.push(value)
case wasm.OpcodeI64Extend8S:
if state.unreachable {
break
}
c.insertIntegerExtend(true, 8, 64)
case wasm.OpcodeI64Extend16S:
if state.unreachable {
break
}
c.insertIntegerExtend(true, 16, 64)
case wasm.OpcodeI64Extend32S, wasm.OpcodeI64ExtendI32S:
if state.unreachable {
break
}
c.insertIntegerExtend(true, 32, 64)
case wasm.OpcodeI64ExtendI32U:
if state.unreachable {
break
}
c.insertIntegerExtend(false, 32, 64)
case wasm.OpcodeI32Extend8S:
if state.unreachable {
break
}
c.insertIntegerExtend(true, 8, 32)
case wasm.OpcodeI32Extend16S:
if state.unreachable {
break
}
c.insertIntegerExtend(true, 16, 32)
case wasm.OpcodeI32Eqz, wasm.OpcodeI64Eqz:
if state.unreachable {
break
}
x := state.pop()
zero := builder.AllocateInstruction()
if op == wasm.OpcodeI32Eqz {
zero.AsIconst32(0)
} else {
zero.AsIconst64(0)
}
builder.InsertInstruction(zero)
icmp := builder.AllocateInstruction().
AsIcmp(x, zero.Return(), ssa.IntegerCmpCondEqual).
Insert(builder).
Return()
state.push(icmp)
case wasm.OpcodeI32Eq, wasm.OpcodeI64Eq:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondEqual)
case wasm.OpcodeI32Ne, wasm.OpcodeI64Ne:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondNotEqual)
case wasm.OpcodeI32LtS, wasm.OpcodeI64LtS:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondSignedLessThan)
case wasm.OpcodeI32LtU, wasm.OpcodeI64LtU:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondUnsignedLessThan)
case wasm.OpcodeI32GtS, wasm.OpcodeI64GtS:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondSignedGreaterThan)
case wasm.OpcodeI32GtU, wasm.OpcodeI64GtU:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondUnsignedGreaterThan)
case wasm.OpcodeI32LeS, wasm.OpcodeI64LeS:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondSignedLessThanOrEqual)
case wasm.OpcodeI32LeU, wasm.OpcodeI64LeU:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondUnsignedLessThanOrEqual)
case wasm.OpcodeI32GeS, wasm.OpcodeI64GeS:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondSignedGreaterThanOrEqual)
case wasm.OpcodeI32GeU, wasm.OpcodeI64GeU:
if state.unreachable {
break
}
c.insertIcmp(ssa.IntegerCmpCondUnsignedGreaterThanOrEqual)
case wasm.OpcodeF32Eq, wasm.OpcodeF64Eq:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondEqual)
case wasm.OpcodeF32Ne, wasm.OpcodeF64Ne:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondNotEqual)
case wasm.OpcodeF32Lt, wasm.OpcodeF64Lt:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondLessThan)
case wasm.OpcodeF32Gt, wasm.OpcodeF64Gt:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondGreaterThan)
case wasm.OpcodeF32Le, wasm.OpcodeF64Le:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondLessThanOrEqual)
case wasm.OpcodeF32Ge, wasm.OpcodeF64Ge:
if state.unreachable {
break
}
c.insertFcmp(ssa.FloatCmpCondGreaterThanOrEqual)
case wasm.OpcodeF32Neg, wasm.OpcodeF64Neg:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsFneg(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Sqrt, wasm.OpcodeF64Sqrt:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsSqrt(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Abs, wasm.OpcodeF64Abs:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsFabs(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Copysign, wasm.OpcodeF64Copysign:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
v := builder.AllocateInstruction().AsFcopysign(x, y).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Ceil, wasm.OpcodeF64Ceil:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsCeil(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Floor, wasm.OpcodeF64Floor:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsFloor(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Trunc, wasm.OpcodeF64Trunc:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsTrunc(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeF32Nearest, wasm.OpcodeF64Nearest:
if state.unreachable {
break
}
x := state.pop()
v := builder.AllocateInstruction().AsNearest(x).Insert(builder).Return()
state.push(v)
case wasm.OpcodeI64TruncF64S, wasm.OpcodeI64TruncF32S,
wasm.OpcodeI32TruncF64S, wasm.OpcodeI32TruncF32S,
wasm.OpcodeI64TruncF64U, wasm.OpcodeI64TruncF32U,
wasm.OpcodeI32TruncF64U, wasm.OpcodeI32TruncF32U:
if state.unreachable {
break
}
ret := builder.AllocateInstruction().AsFcvtToInt(
state.pop(),
c.execCtxPtrValue,
op == wasm.OpcodeI64TruncF64S || op == wasm.OpcodeI64TruncF32S || op == wasm.OpcodeI32TruncF32S || op == wasm.OpcodeI32TruncF64S,
op == wasm.OpcodeI64TruncF64S || op == wasm.OpcodeI64TruncF32S || op == wasm.OpcodeI64TruncF64U || op == wasm.OpcodeI64TruncF32U,
false,
).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeMiscPrefix:
state.pc++
// A misc opcode is encoded as an unsigned variable 32-bit integer.
miscOpUint, num, err := leb128.LoadUint32(c.wasmFunctionBody[state.pc:])
if err != nil {
// In normal conditions this should never happen because the function has passed validation.
panic(fmt.Sprintf("failed to read misc opcode: %v", err))
}
state.pc += int(num - 1)
miscOp := wasm.OpcodeMisc(miscOpUint)
switch miscOp {
case wasm.OpcodeMiscI64TruncSatF64S, wasm.OpcodeMiscI64TruncSatF32S,
wasm.OpcodeMiscI32TruncSatF64S, wasm.OpcodeMiscI32TruncSatF32S,
wasm.OpcodeMiscI64TruncSatF64U, wasm.OpcodeMiscI64TruncSatF32U,
wasm.OpcodeMiscI32TruncSatF64U, wasm.OpcodeMiscI32TruncSatF32U:
if state.unreachable {
break
}
ret := builder.AllocateInstruction().AsFcvtToInt(
state.pop(),
c.execCtxPtrValue,
miscOp == wasm.OpcodeMiscI64TruncSatF64S || miscOp == wasm.OpcodeMiscI64TruncSatF32S || miscOp == wasm.OpcodeMiscI32TruncSatF32S || miscOp == wasm.OpcodeMiscI32TruncSatF64S,
miscOp == wasm.OpcodeMiscI64TruncSatF64S || miscOp == wasm.OpcodeMiscI64TruncSatF32S || miscOp == wasm.OpcodeMiscI64TruncSatF64U || miscOp == wasm.OpcodeMiscI64TruncSatF32U,
true,
).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeMiscTableSize:
tableIndex := c.readI32u()
if state.unreachable {
break
}
// Load the table.
loadTableInstancePtr := builder.AllocateInstruction()
loadTableInstancePtr.AsLoad(c.moduleCtxPtrValue, c.offset.TableOffset(int(tableIndex)).U32(), ssa.TypeI64)
builder.InsertInstruction(loadTableInstancePtr)
tableInstancePtr := loadTableInstancePtr.Return()
// Load the table's length.
loadTableLen := builder.AllocateInstruction().
AsLoad(tableInstancePtr, tableInstanceLenOffset, ssa.TypeI32).
Insert(builder)
state.push(loadTableLen.Return())
case wasm.OpcodeMiscTableGrow:
tableIndex := c.readI32u()
if state.unreachable {
break
}
c.storeCallerModuleContext()
tableIndexVal := builder.AllocateInstruction().AsIconst32(tableIndex).Insert(builder).Return()
num := state.pop()
r := state.pop()
tableGrowPtr := builder.AllocateInstruction().
AsLoad(c.execCtxPtrValue,
wazevoapi.ExecutionContextOffsetTableGrowTrampolineAddress.U32(),
ssa.TypeI64,
).Insert(builder).Return()
// TODO: reuse the slice.
args := []ssa.Value{c.execCtxPtrValue, tableIndexVal, num, r}
callGrowRet := builder.
AllocateInstruction().
AsCallIndirect(tableGrowPtr, &c.tableGrowSig, args).
Insert(builder).Return()
state.push(callGrowRet)
case wasm.OpcodeMiscTableCopy:
dstTableIndex := c.readI32u()
srcTableIndex := c.readI32u()
if state.unreachable {
break
}
copySize := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
srcOffset := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
dstOffset := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
// Out of bounds check.
dstTableInstancePtr := c.boundsCheckInTable(dstTableIndex, dstOffset, copySize)
srcTableInstancePtr := c.boundsCheckInTable(srcTableIndex, srcOffset, copySize)
dstTableBaseAddr := c.loadTableBaseAddr(dstTableInstancePtr)
srcTableBaseAddr := c.loadTableBaseAddr(srcTableInstancePtr)
three := builder.AllocateInstruction().AsIconst64(3).Insert(builder).Return()
dstOffsetInBytes := builder.AllocateInstruction().AsIshl(dstOffset, three).Insert(builder).Return()
dstAddr := builder.AllocateInstruction().AsIadd(dstTableBaseAddr, dstOffsetInBytes).Insert(builder).Return()
srcOffsetInBytes := builder.AllocateInstruction().AsIshl(srcOffset, three).Insert(builder).Return()
srcAddr := builder.AllocateInstruction().AsIadd(srcTableBaseAddr, srcOffsetInBytes).Insert(builder).Return()
copySizeInBytes := builder.AllocateInstruction().AsIshl(copySize, three).Insert(builder).Return()
c.callMemmove(dstAddr, srcAddr, copySizeInBytes)
case wasm.OpcodeMiscMemoryCopy:
state.pc += 2 // +2 to skip two memory indexes which are fixed to zero.
if state.unreachable {
break
}
copySize := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
srcOffset := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
dstOffset := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
// Out of bounds check.
memLen := c.getMemoryLenValue(false)
c.boundsCheckInMemory(memLen, dstOffset, copySize)
c.boundsCheckInMemory(memLen, srcOffset, copySize)
memBase := c.getMemoryBaseValue(false)
dstAddr := builder.AllocateInstruction().AsIadd(memBase, dstOffset).Insert(builder).Return()
srcAddr := builder.AllocateInstruction().AsIadd(memBase, srcOffset).Insert(builder).Return()
c.callMemmove(dstAddr, srcAddr, copySize)
case wasm.OpcodeMiscTableFill:
tableIndex := c.readI32u()
if state.unreachable {
break
}
fillSize := state.pop()
value := state.pop()
offset := state.pop()
fillSizeExt := builder.
AllocateInstruction().AsUExtend(fillSize, 32, 64).Insert(builder).Return()
offsetExt := builder.
AllocateInstruction().AsUExtend(offset, 32, 64).Insert(builder).Return()
tableInstancePtr := c.boundsCheckInTable(tableIndex, offsetExt, fillSizeExt)
three := builder.AllocateInstruction().AsIconst64(3).Insert(builder).Return()
offsetInBytes := builder.AllocateInstruction().AsIshl(offsetExt, three).Insert(builder).Return()
fillSizeInBytes := builder.AllocateInstruction().AsIshl(fillSizeExt, three).Insert(builder).Return()
// Calculate the base address of the table.
tableBaseAddr := c.loadTableBaseAddr(tableInstancePtr)
addr := builder.AllocateInstruction().AsIadd(tableBaseAddr, offsetInBytes).Insert(builder).Return()
// Prepare the loop and following block.
beforeLoop := builder.AllocateBasicBlock()
loopBlk := builder.AllocateBasicBlock()
loopVar := loopBlk.AddParam(builder, ssa.TypeI64)
followingBlk := builder.AllocateBasicBlock()
// Uses the copy trick for faster filling buffer like memory.fill, but in this case we copy 8 bytes at a time.
// buf := memoryInst.Buffer[offset : offset+fillSize]
// buf[0:8] = value
// for i := 8; i < fillSize; i *= 2 { Begin with 8 bytes.
// copy(buf[i:], buf[:i])
// }
// Insert the jump to the beforeLoop block; If the fillSize is zero, then jump to the following block to skip entire logics.
zero := builder.AllocateInstruction().AsIconst64(0).Insert(builder).Return()
ifFillSizeZero := builder.AllocateInstruction().AsIcmp(fillSizeExt, zero, ssa.IntegerCmpCondEqual).
Insert(builder).Return()
builder.AllocateInstruction().AsBrnz(ifFillSizeZero, nil, followingBlk).Insert(builder)
c.insertJumpToBlock(nil, beforeLoop)
// buf[0:8] = value
builder.SetCurrentBlock(beforeLoop)
builder.AllocateInstruction().AsStore(ssa.OpcodeStore, value, addr, 0).Insert(builder)
initValue := builder.AllocateInstruction().AsIconst64(8).Insert(builder).Return()
c.insertJumpToBlock([]ssa.Value{initValue}, loopBlk) // TODO: reuse the slice.
builder.SetCurrentBlock(loopBlk)
dstAddr := builder.AllocateInstruction().AsIadd(addr, loopVar).Insert(builder).Return()
// If loopVar*2 > fillSizeInBytes, then count must be fillSizeInBytes-loopVar.
var count ssa.Value
{
loopVarDoubled := builder.AllocateInstruction().AsIadd(loopVar, loopVar).Insert(builder).Return()
loopVarDoubledLargerThanFillSize := builder.
AllocateInstruction().AsIcmp(loopVarDoubled, fillSizeInBytes, ssa.IntegerCmpCondUnsignedGreaterThanOrEqual).
Insert(builder).Return()
diff := builder.AllocateInstruction().AsIsub(fillSizeInBytes, loopVar).Insert(builder).Return()
count = builder.AllocateInstruction().AsSelect(loopVarDoubledLargerThanFillSize, diff, loopVar).Insert(builder).Return()
}
c.callMemmove(dstAddr, addr, count)
shiftAmount := builder.AllocateInstruction().AsIconst64(1).Insert(builder).Return()
newLoopVar := builder.AllocateInstruction().AsIshl(loopVar, shiftAmount).Insert(builder).Return()
loopVarLessThanFillSize := builder.AllocateInstruction().
AsIcmp(newLoopVar, fillSizeInBytes, ssa.IntegerCmpCondUnsignedLessThan).Insert(builder).Return()
builder.AllocateInstruction().
AsBrnz(loopVarLessThanFillSize, []ssa.Value{newLoopVar}, loopBlk). // TODO: reuse the slice.
Insert(builder)
c.insertJumpToBlock(nil, followingBlk)
builder.SetCurrentBlock(followingBlk)
builder.Seal(beforeLoop)
builder.Seal(loopBlk)
builder.Seal(followingBlk)
case wasm.OpcodeMiscMemoryFill:
state.pc++ // Skip the memory index which is fixed to zero.
if state.unreachable {
break
}
fillSize := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
value := state.pop()
offset := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
// Out of bounds check.
c.boundsCheckInMemory(c.getMemoryLenValue(false), offset, fillSize)
// Calculate the base address:
addr := builder.AllocateInstruction().AsIadd(c.getMemoryBaseValue(false), offset).Insert(builder).Return()
// Uses the copy trick for faster filling buffer: https://gist.github.com/taylorza/df2f89d5f9ab3ffd06865062a4cf015d
// buf := memoryInst.Buffer[offset : offset+fillSize]
// buf[0] = value
// for i := 1; i < fillSize; i *= 2 {
// copy(buf[i:], buf[:i])
// }
// Prepare the loop and following block.
beforeLoop := builder.AllocateBasicBlock()
loopBlk := builder.AllocateBasicBlock()
loopVar := loopBlk.AddParam(builder, ssa.TypeI64)
followingBlk := builder.AllocateBasicBlock()
// Insert the jump to the beforeLoop block; If the fillSize is zero, then jump to the following block to skip entire logics.
zero := builder.AllocateInstruction().AsIconst64(0).Insert(builder).Return()
ifFillSizeZero := builder.AllocateInstruction().AsIcmp(fillSize, zero, ssa.IntegerCmpCondEqual).
Insert(builder).Return()
builder.AllocateInstruction().AsBrnz(ifFillSizeZero, nil, followingBlk).Insert(builder)
c.insertJumpToBlock(nil, beforeLoop)
// buf[0] = value
builder.SetCurrentBlock(beforeLoop)
builder.AllocateInstruction().AsStore(ssa.OpcodeIstore8, value, addr, 0).Insert(builder)
initValue := builder.AllocateInstruction().AsIconst64(1).Insert(builder).Return()
c.insertJumpToBlock([]ssa.Value{initValue}, loopBlk) // TODO: reuse the slice.
builder.SetCurrentBlock(loopBlk)
dstAddr := builder.AllocateInstruction().AsIadd(addr, loopVar).Insert(builder).Return()
// If loopVar*2 > fillSizeExt, then count must be fillSizeExt-loopVar.
var count ssa.Value
{
loopVarDoubled := builder.AllocateInstruction().AsIadd(loopVar, loopVar).Insert(builder).Return()
loopVarDoubledLargerThanFillSize := builder.
AllocateInstruction().AsIcmp(loopVarDoubled, fillSize, ssa.IntegerCmpCondUnsignedGreaterThanOrEqual).
Insert(builder).Return()
diff := builder.AllocateInstruction().AsIsub(fillSize, loopVar).Insert(builder).Return()
count = builder.AllocateInstruction().AsSelect(loopVarDoubledLargerThanFillSize, diff, loopVar).Insert(builder).Return()
}
c.callMemmove(dstAddr, addr, count)
shiftAmount := builder.AllocateInstruction().AsIconst64(1).Insert(builder).Return()
newLoopVar := builder.AllocateInstruction().AsIshl(loopVar, shiftAmount).Insert(builder).Return()
loopVarLessThanFillSize := builder.AllocateInstruction().
AsIcmp(newLoopVar, fillSize, ssa.IntegerCmpCondUnsignedLessThan).Insert(builder).Return()
builder.AllocateInstruction().
AsBrnz(loopVarLessThanFillSize, []ssa.Value{newLoopVar}, loopBlk). // TODO: reuse the slice.
Insert(builder)
c.insertJumpToBlock(nil, followingBlk)
builder.SetCurrentBlock(followingBlk)
builder.Seal(beforeLoop)
builder.Seal(loopBlk)
builder.Seal(followingBlk)
case wasm.OpcodeMiscMemoryInit:
index := c.readI32u()
state.pc++ // Skip the memory index which is fixed to zero.
if state.unreachable {
break
}
copySize := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
offsetInDataInstance := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
offsetInMemory := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
dataInstPtr := c.dataOrElementInstanceAddr(index, c.offset.DataInstances1stElement)
// Bounds check.
c.boundsCheckInMemory(c.getMemoryLenValue(false), offsetInMemory, copySize)
c.boundsCheckInDataOrElementInstance(dataInstPtr, offsetInDataInstance, copySize, wazevoapi.ExitCodeMemoryOutOfBounds)
dataInstBaseAddr := builder.AllocateInstruction().AsLoad(dataInstPtr, 0, ssa.TypeI64).Insert(builder).Return()
srcAddr := builder.AllocateInstruction().AsIadd(dataInstBaseAddr, offsetInDataInstance).Insert(builder).Return()
memBase := c.getMemoryBaseValue(false)
dstAddr := builder.AllocateInstruction().AsIadd(memBase, offsetInMemory).Insert(builder).Return()
c.callMemmove(dstAddr, srcAddr, copySize)
case wasm.OpcodeMiscTableInit:
elemIndex := c.readI32u()
tableIndex := c.readI32u()
if state.unreachable {
break
}
copySize := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
offsetInElementInstance := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
offsetInTable := builder.
AllocateInstruction().AsUExtend(state.pop(), 32, 64).Insert(builder).Return()
elemInstPtr := c.dataOrElementInstanceAddr(elemIndex, c.offset.ElementInstances1stElement)
// Bounds check.
tableInstancePtr := c.boundsCheckInTable(tableIndex, offsetInTable, copySize)
c.boundsCheckInDataOrElementInstance(elemInstPtr, offsetInElementInstance, copySize, wazevoapi.ExitCodeTableOutOfBounds)
three := builder.AllocateInstruction().AsIconst64(3).Insert(builder).Return()
// Calculates the destination address in the table.
tableOffsetInBytes := builder.AllocateInstruction().AsIshl(offsetInTable, three).Insert(builder).Return()
tableBaseAddr := c.loadTableBaseAddr(tableInstancePtr)
dstAddr := builder.AllocateInstruction().AsIadd(tableBaseAddr, tableOffsetInBytes).Insert(builder).Return()
// Calculates the source address in the element instance.
srcOffsetInBytes := builder.AllocateInstruction().AsIshl(offsetInElementInstance, three).Insert(builder).Return()
elemInstBaseAddr := builder.AllocateInstruction().AsLoad(elemInstPtr, 0, ssa.TypeI64).Insert(builder).Return()
srcAddr := builder.AllocateInstruction().AsIadd(elemInstBaseAddr, srcOffsetInBytes).Insert(builder).Return()
copySizeInBytes := builder.AllocateInstruction().AsIshl(copySize, three).Insert(builder).Return()
c.callMemmove(dstAddr, srcAddr, copySizeInBytes)
case wasm.OpcodeMiscElemDrop:
index := c.readI32u()
if state.unreachable {
break
}
c.dropDataOrElementInstance(index, c.offset.ElementInstances1stElement)
case wasm.OpcodeMiscDataDrop:
index := c.readI32u()
if state.unreachable {
break
}
c.dropDataOrElementInstance(index, c.offset.DataInstances1stElement)
default:
panic("Unknown MiscOp " + wasm.MiscInstructionName(miscOp))
}
case wasm.OpcodeI32ReinterpretF32:
if state.unreachable {
break
}
reinterpret := builder.AllocateInstruction().
AsBitcast(state.pop(), ssa.TypeI32).
Insert(builder).Return()
state.push(reinterpret)
case wasm.OpcodeI64ReinterpretF64:
if state.unreachable {
break
}
reinterpret := builder.AllocateInstruction().
AsBitcast(state.pop(), ssa.TypeI64).
Insert(builder).Return()
state.push(reinterpret)
case wasm.OpcodeF32ReinterpretI32:
if state.unreachable {
break
}
reinterpret := builder.AllocateInstruction().
AsBitcast(state.pop(), ssa.TypeF32).
Insert(builder).Return()
state.push(reinterpret)
case wasm.OpcodeF64ReinterpretI64:
if state.unreachable {
break
}
reinterpret := builder.AllocateInstruction().
AsBitcast(state.pop(), ssa.TypeF64).
Insert(builder).Return()
state.push(reinterpret)
case wasm.OpcodeI32DivS, wasm.OpcodeI64DivS:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
result := builder.AllocateInstruction().AsSDiv(x, y, c.execCtxPtrValue).Insert(builder).Return()
state.push(result)
case wasm.OpcodeI32DivU, wasm.OpcodeI64DivU:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
result := builder.AllocateInstruction().AsUDiv(x, y, c.execCtxPtrValue).Insert(builder).Return()
state.push(result)
case wasm.OpcodeI32RemS, wasm.OpcodeI64RemS:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
result := builder.AllocateInstruction().AsSRem(x, y, c.execCtxPtrValue).Insert(builder).Return()
state.push(result)
case wasm.OpcodeI32RemU, wasm.OpcodeI64RemU:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
result := builder.AllocateInstruction().AsURem(x, y, c.execCtxPtrValue).Insert(builder).Return()
state.push(result)
case wasm.OpcodeI32And, wasm.OpcodeI64And:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
and := builder.AllocateInstruction()
and.AsBand(x, y)
builder.InsertInstruction(and)
value := and.Return()
state.push(value)
case wasm.OpcodeI32Or, wasm.OpcodeI64Or:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
or := builder.AllocateInstruction()
or.AsBor(x, y)
builder.InsertInstruction(or)
value := or.Return()
state.push(value)
case wasm.OpcodeI32Xor, wasm.OpcodeI64Xor:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
xor := builder.AllocateInstruction()
xor.AsBxor(x, y)
builder.InsertInstruction(xor)
value := xor.Return()
state.push(value)
case wasm.OpcodeI32Shl, wasm.OpcodeI64Shl:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
ishl := builder.AllocateInstruction()
ishl.AsIshl(x, y)
builder.InsertInstruction(ishl)
value := ishl.Return()
state.push(value)
case wasm.OpcodeI32ShrU, wasm.OpcodeI64ShrU:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
ishl := builder.AllocateInstruction()
ishl.AsUshr(x, y)
builder.InsertInstruction(ishl)
value := ishl.Return()
state.push(value)
case wasm.OpcodeI32ShrS, wasm.OpcodeI64ShrS:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
ishl := builder.AllocateInstruction()
ishl.AsSshr(x, y)
builder.InsertInstruction(ishl)
value := ishl.Return()
state.push(value)
case wasm.OpcodeI32Rotl, wasm.OpcodeI64Rotl:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
rotl := builder.AllocateInstruction()
rotl.AsRotl(x, y)
builder.InsertInstruction(rotl)
value := rotl.Return()
state.push(value)
case wasm.OpcodeI32Rotr, wasm.OpcodeI64Rotr:
if state.unreachable {
break
}
y, x := state.pop(), state.pop()
rotr := builder.AllocateInstruction()
rotr.AsRotr(x, y)
builder.InsertInstruction(rotr)
value := rotr.Return()
state.push(value)
case wasm.OpcodeI32Clz, wasm.OpcodeI64Clz:
if state.unreachable {
break
}
x := state.pop()
clz := builder.AllocateInstruction()
clz.AsClz(x)
builder.InsertInstruction(clz)
value := clz.Return()
state.push(value)
case wasm.OpcodeI32Ctz, wasm.OpcodeI64Ctz:
if state.unreachable {
break
}
x := state.pop()
ctz := builder.AllocateInstruction()
ctz.AsCtz(x)
builder.InsertInstruction(ctz)
value := ctz.Return()
state.push(value)
case wasm.OpcodeI32Popcnt, wasm.OpcodeI64Popcnt:
if state.unreachable {
break
}
x := state.pop()
popcnt := builder.AllocateInstruction()
popcnt.AsPopcnt(x)
builder.InsertInstruction(popcnt)
value := popcnt.Return()
state.push(value)
case wasm.OpcodeI32WrapI64:
if state.unreachable {
break
}
x := state.pop()
wrap := builder.AllocateInstruction().AsIreduce(x, ssa.TypeI32).Insert(builder).Return()
state.push(wrap)
case wasm.OpcodeGlobalGet:
index := c.readI32u()
if state.unreachable {
break
}
v := c.getWasmGlobalValue(index, false)
state.push(v)
case wasm.OpcodeGlobalSet:
index := c.readI32u()
if state.unreachable {
break
}
v := state.pop()
c.setWasmGlobalValue(index, v)
case wasm.OpcodeLocalGet:
index := c.readI32u()
if state.unreachable {
break
}
variable := c.localVariable(index)
v := builder.MustFindValue(variable)
state.push(v)
case wasm.OpcodeLocalSet:
index := c.readI32u()
if state.unreachable {
break
}
variable := c.localVariable(index)
newValue := state.pop()
builder.DefineVariableInCurrentBB(variable, newValue)
case wasm.OpcodeLocalTee:
index := c.readI32u()
if state.unreachable {
break
}
variable := c.localVariable(index)
newValue := state.peek()
builder.DefineVariableInCurrentBB(variable, newValue)
case wasm.OpcodeSelect, wasm.OpcodeTypedSelect:
if op == wasm.OpcodeTypedSelect {
state.pc += 2 // ignores the type which is only needed during validation.
}
if state.unreachable {
break
}
cond := state.pop()
v2 := state.pop()
v1 := state.pop()
sl := builder.AllocateInstruction().
AsSelect(cond, v1, v2).
Insert(builder).
Return()
state.push(sl)
case wasm.OpcodeMemorySize:
state.pc++ // skips the memory index.
if state.unreachable {
break
}
var memSizeInBytes ssa.Value
if c.offset.LocalMemoryBegin < 0 {
memInstPtr := builder.AllocateInstruction().
AsLoad(c.moduleCtxPtrValue, c.offset.ImportedMemoryBegin.U32(), ssa.TypeI64).
Insert(builder).
Return()
memSizeInBytes = builder.AllocateInstruction().
AsLoad(memInstPtr, memoryInstanceBufSizeOffset, ssa.TypeI32).
Insert(builder).
Return()
} else {
memSizeInBytes = builder.AllocateInstruction().
AsLoad(c.moduleCtxPtrValue, c.offset.LocalMemoryLen().U32(), ssa.TypeI32).
Insert(builder).
Return()
}
amount := builder.AllocateInstruction()
amount.AsIconst32(uint32(wasm.MemoryPageSizeInBits))
builder.InsertInstruction(amount)
memSize := builder.AllocateInstruction().
AsUshr(memSizeInBytes, amount.Return()).
Insert(builder).
Return()
state.push(memSize)
case wasm.OpcodeMemoryGrow:
state.pc++ // skips the memory index.
if state.unreachable {
break
}
c.storeCallerModuleContext()
pages := state.pop()
memoryGrowPtr := builder.AllocateInstruction().
AsLoad(c.execCtxPtrValue,
wazevoapi.ExecutionContextOffsetMemoryGrowTrampolineAddress.U32(),
ssa.TypeI64,
).Insert(builder).Return()
// TODO: reuse the slice.
args := []ssa.Value{c.execCtxPtrValue, pages}
callGrowRet := builder.
AllocateInstruction().
AsCallIndirect(memoryGrowPtr, &c.memoryGrowSig, args).
Insert(builder).Return()
state.push(callGrowRet)
// After the memory grow, reload the cached memory base and len.
c.reloadMemoryBaseLen()
case wasm.OpcodeI32Store,
wasm.OpcodeI64Store,
wasm.OpcodeF32Store,
wasm.OpcodeF64Store,
wasm.OpcodeI32Store8,
wasm.OpcodeI32Store16,
wasm.OpcodeI64Store8,
wasm.OpcodeI64Store16,
wasm.OpcodeI64Store32:
_, offset := c.readMemArg()
if state.unreachable {
break
}
var opSize uint64
var opcode ssa.Opcode
switch op {
case wasm.OpcodeI32Store, wasm.OpcodeF32Store:
opcode = ssa.OpcodeStore
opSize = 4
case wasm.OpcodeI64Store, wasm.OpcodeF64Store:
opcode = ssa.OpcodeStore
opSize = 8
case wasm.OpcodeI32Store8, wasm.OpcodeI64Store8:
opcode = ssa.OpcodeIstore8
opSize = 1
case wasm.OpcodeI32Store16, wasm.OpcodeI64Store16:
opcode = ssa.OpcodeIstore16
opSize = 2
case wasm.OpcodeI64Store32:
opcode = ssa.OpcodeIstore32
opSize = 4
default:
panic("BUG")
}
value := state.pop()
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), opSize)
builder.AllocateInstruction().
AsStore(opcode, value, addr, offset).
Insert(builder)
case wasm.OpcodeI32Load,
wasm.OpcodeI64Load,
wasm.OpcodeF32Load,
wasm.OpcodeF64Load,
wasm.OpcodeI32Load8S,
wasm.OpcodeI32Load8U,
wasm.OpcodeI32Load16S,
wasm.OpcodeI32Load16U,
wasm.OpcodeI64Load8S,
wasm.OpcodeI64Load8U,
wasm.OpcodeI64Load16S,
wasm.OpcodeI64Load16U,
wasm.OpcodeI64Load32S,
wasm.OpcodeI64Load32U:
_, offset := c.readMemArg()
if state.unreachable {
break
}
var opSize uint64
switch op {
case wasm.OpcodeI32Load, wasm.OpcodeF32Load:
opSize = 4
case wasm.OpcodeI64Load, wasm.OpcodeF64Load:
opSize = 8
case wasm.OpcodeI32Load8S, wasm.OpcodeI32Load8U:
opSize = 1
case wasm.OpcodeI32Load16S, wasm.OpcodeI32Load16U:
opSize = 2
case wasm.OpcodeI64Load8S, wasm.OpcodeI64Load8U:
opSize = 1
case wasm.OpcodeI64Load16S, wasm.OpcodeI64Load16U:
opSize = 2
case wasm.OpcodeI64Load32S, wasm.OpcodeI64Load32U:
opSize = 4
default:
panic("BUG")
}
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), opSize)
load := builder.AllocateInstruction()
switch op {
case wasm.OpcodeI32Load:
load.AsLoad(addr, offset, ssa.TypeI32)
case wasm.OpcodeI64Load:
load.AsLoad(addr, offset, ssa.TypeI64)
case wasm.OpcodeF32Load:
load.AsLoad(addr, offset, ssa.TypeF32)
case wasm.OpcodeF64Load:
load.AsLoad(addr, offset, ssa.TypeF64)
case wasm.OpcodeI32Load8S:
load.AsExtLoad(ssa.OpcodeSload8, addr, offset, false)
case wasm.OpcodeI32Load8U:
load.AsExtLoad(ssa.OpcodeUload8, addr, offset, false)
case wasm.OpcodeI32Load16S:
load.AsExtLoad(ssa.OpcodeSload16, addr, offset, false)
case wasm.OpcodeI32Load16U:
load.AsExtLoad(ssa.OpcodeUload16, addr, offset, false)
case wasm.OpcodeI64Load8S:
load.AsExtLoad(ssa.OpcodeSload8, addr, offset, true)
case wasm.OpcodeI64Load8U:
load.AsExtLoad(ssa.OpcodeUload8, addr, offset, true)
case wasm.OpcodeI64Load16S:
load.AsExtLoad(ssa.OpcodeSload16, addr, offset, true)
case wasm.OpcodeI64Load16U:
load.AsExtLoad(ssa.OpcodeUload16, addr, offset, true)
case wasm.OpcodeI64Load32S:
load.AsExtLoad(ssa.OpcodeSload32, addr, offset, true)
case wasm.OpcodeI64Load32U:
load.AsExtLoad(ssa.OpcodeUload32, addr, offset, true)
default:
panic("BUG")
}
builder.InsertInstruction(load)
state.push(load.Return())
case wasm.OpcodeBlock:
// Note: we do not need to create a BB for this as that would always have only one predecessor
// which is the current BB, and therefore it's always ok to merge them in any way.
bt := c.readBlockType()
if state.unreachable {
state.unreachableDepth++
break
}
followingBlk := builder.AllocateBasicBlock()
c.addBlockParamsFromWasmTypes(bt.Results, followingBlk)
state.ctrlPush(controlFrame{
kind: controlFrameKindBlock,
originalStackLenWithoutParam: len(state.values) - len(bt.Params),
followingBlock: followingBlk,
blockType: bt,
})
case wasm.OpcodeLoop:
bt := c.readBlockType()
if state.unreachable {
state.unreachableDepth++
break
}
loopHeader, afterLoopBlock := builder.AllocateBasicBlock(), builder.AllocateBasicBlock()
c.addBlockParamsFromWasmTypes(bt.Params, loopHeader)
c.addBlockParamsFromWasmTypes(bt.Results, afterLoopBlock)
originalLen := len(state.values) - len(bt.Params)
state.ctrlPush(controlFrame{
originalStackLenWithoutParam: originalLen,
kind: controlFrameKindLoop,
blk: loopHeader,
followingBlock: afterLoopBlock,
blockType: bt,
})
var args []ssa.Value
if len(bt.Params) > 0 {
args = cloneValuesList(state.values[originalLen:])
}
// Insert the jump to the header of loop.
br := builder.AllocateInstruction()
br.AsJump(args, loopHeader)
builder.InsertInstruction(br)
c.switchTo(originalLen, loopHeader)
if c.ensureTermination {
checkModuleExitCodePtr := builder.AllocateInstruction().
AsLoad(c.execCtxPtrValue,
wazevoapi.ExecutionContextOffsetCheckModuleExitCodeTrampolineAddress.U32(),
ssa.TypeI64,
).Insert(builder).Return()
c.checkModuleExitCodeArg[0] = c.execCtxPtrValue
builder.AllocateInstruction().
AsCallIndirect(checkModuleExitCodePtr, &c.checkModuleExitCodeSig, c.checkModuleExitCodeArg[:]).
Insert(builder)
}
case wasm.OpcodeIf:
bt := c.readBlockType()
if state.unreachable {
state.unreachableDepth++
break
}
v := state.pop()
thenBlk, elseBlk, followingBlk := builder.AllocateBasicBlock(), builder.AllocateBasicBlock(), builder.AllocateBasicBlock()
// We do not make the Wasm-level block parameters as SSA-level block params for if-else blocks
// since they won't be PHI and the definition is unique.
// On the other hand, the following block after if-else-end will likely have
// multiple definitions (one in Then and another in Else blocks).
c.addBlockParamsFromWasmTypes(bt.Results, followingBlk)
var args []ssa.Value
if len(bt.Params) > 0 {
args = cloneValuesList(state.values[len(state.values)-len(bt.Params):])
}
// Insert the conditional jump to the Else block.
brz := builder.AllocateInstruction()
brz.AsBrz(v, nil, elseBlk)
builder.InsertInstruction(brz)
// Then, insert the jump to the Then block.
br := builder.AllocateInstruction()
br.AsJump(nil, thenBlk)
builder.InsertInstruction(br)
state.ctrlPush(controlFrame{
kind: controlFrameKindIfWithoutElse,
originalStackLenWithoutParam: len(state.values) - len(bt.Params),
blk: elseBlk,
followingBlock: followingBlk,
blockType: bt,
clonedArgs: args,
})
builder.SetCurrentBlock(thenBlk)
// Then and Else (if exists) have only one predecessor.
builder.Seal(thenBlk)
builder.Seal(elseBlk)
case wasm.OpcodeElse:
ifctrl := state.ctrlPeekAt(0)
if unreachable := state.unreachable; unreachable && state.unreachableDepth > 0 {
// If it is currently in unreachable and is a nested if,
// we just remove the entire else block.
break
}
ifctrl.kind = controlFrameKindIfWithElse
if !state.unreachable {
// If this Then block is currently reachable, we have to insert the branching to the following BB.
followingBlk := ifctrl.followingBlock // == the BB after if-then-else.
args := c.loweringState.nPeekDup(len(ifctrl.blockType.Results))
c.insertJumpToBlock(args, followingBlk)
} else {
state.unreachable = false
}
// Reset the stack so that we can correctly handle the else block.
state.values = state.values[:ifctrl.originalStackLenWithoutParam]
elseBlk := ifctrl.blk
for _, arg := range ifctrl.clonedArgs {
state.push(arg)
}
builder.SetCurrentBlock(elseBlk)
case wasm.OpcodeEnd:
if state.unreachableDepth > 0 {
state.unreachableDepth--
break
}
ctrl := state.ctrlPop()
followingBlk := ctrl.followingBlock
unreachable := state.unreachable
if !unreachable {
// Top n-th args will be used as a result of the current control frame.
args := c.loweringState.nPeekDup(len(ctrl.blockType.Results))
// Insert the unconditional branch to the target.
c.insertJumpToBlock(args, followingBlk)
} else { // recover from the unreachable state.
state.unreachable = false
}
switch ctrl.kind {
case controlFrameKindFunction:
break // This is the very end of function.
case controlFrameKindLoop:
// Loop header block can be reached from any br/br_table contained in the loop,
// so now that we've reached End of it, we can seal it.
builder.Seal(ctrl.blk)
case controlFrameKindIfWithoutElse:
// If this is the end of Then block, we have to emit the empty Else block.
elseBlk := ctrl.blk
builder.SetCurrentBlock(elseBlk)
c.insertJumpToBlock(ctrl.clonedArgs, followingBlk)
}
builder.Seal(ctrl.followingBlock)
// Ready to start translating the following block.
c.switchTo(ctrl.originalStackLenWithoutParam, followingBlk)
case wasm.OpcodeBr:
labelIndex := c.readI32u()
if state.unreachable {
break
}
targetBlk, argNum := state.brTargetArgNumFor(labelIndex)
args := c.loweringState.nPeekDup(argNum)
c.insertJumpToBlock(args, targetBlk)
state.unreachable = true
case wasm.OpcodeBrIf:
labelIndex := c.readI32u()
if state.unreachable {
break
}
v := state.pop()
targetBlk, argNum := state.brTargetArgNumFor(labelIndex)
args := c.loweringState.nPeekDup(argNum)
// Insert the conditional jump to the target block.
brnz := builder.AllocateInstruction()
brnz.AsBrnz(v, args, targetBlk)
builder.InsertInstruction(brnz)
// Insert the unconditional jump to the Else block which corresponds to after br_if.
elseBlk := builder.AllocateBasicBlock()
c.insertJumpToBlock(nil, elseBlk)
// Now start translating the instructions after br_if.
builder.Seal(elseBlk) // Else of br_if has the current block as the only one successor.
builder.SetCurrentBlock(elseBlk)
case wasm.OpcodeBrTable:
labels := state.tmpForBrTable
labels = labels[:0]
labelCount := c.readI32u()
for i := 0; i < int(labelCount); i++ {
labels = append(labels, c.readI32u())
}
labels = append(labels, c.readI32u()) // default label.
if state.unreachable {
break
}
index := state.pop()
if labelCount == 0 { // If this br_table is empty, we can just emit the unconditional jump.
targetBlk, argNum := state.brTargetArgNumFor(labels[0])
args := c.loweringState.nPeekDup(argNum)
c.insertJumpToBlock(args, targetBlk)
} else {
c.lowerBrTable(labels, index)
}
state.unreachable = true
case wasm.OpcodeNop:
case wasm.OpcodeReturn:
if state.unreachable {
break
}
if c.needListener {
c.callListenerAfter()
}
results := c.loweringState.nPeekDup(c.results())
instr := builder.AllocateInstruction()
instr.AsReturn(results)
builder.InsertInstruction(instr)
state.unreachable = true
case wasm.OpcodeUnreachable:
if state.unreachable {
break
}
exit := builder.AllocateInstruction()
exit.AsExitWithCode(c.execCtxPtrValue, wazevoapi.ExitCodeUnreachable)
builder.InsertInstruction(exit)
state.unreachable = true
case wasm.OpcodeCallIndirect:
typeIndex := c.readI32u()
tableIndex := c.readI32u()
if state.unreachable {
break
}
c.lowerCallIndirect(typeIndex, tableIndex)
case wasm.OpcodeCall:
fnIndex := c.readI32u()
if state.unreachable {
break
}
// Before transfer the control to the callee, we have to store the current module's moduleContextPtr
// into execContext.callerModuleContextPtr in case when the callee is a Go function.
//
// TODO: maybe this can be optimized out if this is in-module function calls. Investigate later.
c.storeCallerModuleContext()
var typIndex wasm.Index
if fnIndex < c.m.ImportFunctionCount {
var fi int
for i := range c.m.ImportSection {
imp := &c.m.ImportSection[i]
if imp.Type == wasm.ExternTypeFunc {
if fi == int(fnIndex) {
typIndex = imp.DescFunc
break
}
fi++
}
}
} else {
typIndex = c.m.FunctionSection[fnIndex-c.m.ImportFunctionCount]
}
typ := &c.m.TypeSection[typIndex]
// TODO: reuse slice?
argN := len(typ.Params)
args := make([]ssa.Value, argN+2)
args[0] = c.execCtxPtrValue
state.nPopInto(argN, args[2:])
sig := c.signatures[typ]
call := builder.AllocateInstruction()
if fnIndex >= c.m.ImportFunctionCount {
args[1] = c.moduleCtxPtrValue // This case the callee module is itself.
call.AsCall(FunctionIndexToFuncRef(fnIndex), sig, args)
builder.InsertInstruction(call)
} else {
// This case we have to read the address of the imported function from the module context.
moduleCtx := c.moduleCtxPtrValue
loadFuncPtr, loadModuleCtxPtr := builder.AllocateInstruction(), builder.AllocateInstruction()
funcPtrOffset, moduleCtxPtrOffset, _ := c.offset.ImportedFunctionOffset(fnIndex)
loadFuncPtr.AsLoad(moduleCtx, funcPtrOffset.U32(), ssa.TypeI64)
loadModuleCtxPtr.AsLoad(moduleCtx, moduleCtxPtrOffset.U32(), ssa.TypeI64)
builder.InsertInstruction(loadFuncPtr)
builder.InsertInstruction(loadModuleCtxPtr)
args[1] = loadModuleCtxPtr.Return() // This case the callee module is itself.
call.AsCallIndirect(loadFuncPtr.Return(), sig, args)
builder.InsertInstruction(call)
}
first, rest := call.Returns()
if first.Valid() {
state.push(first)
}
for _, v := range rest {
state.push(v)
}
c.reloadAfterCall()
case wasm.OpcodeDrop:
if state.unreachable {
break
}
_ = state.pop()
case wasm.OpcodeF64ConvertI32S, wasm.OpcodeF64ConvertI64S, wasm.OpcodeF64ConvertI32U, wasm.OpcodeF64ConvertI64U:
if state.unreachable {
break
}
result := builder.AllocateInstruction().AsFcvtFromInt(
state.pop(),
op == wasm.OpcodeF64ConvertI32S || op == wasm.OpcodeF64ConvertI64S,
true,
).Insert(builder).Return()
state.push(result)
case wasm.OpcodeF32ConvertI32S, wasm.OpcodeF32ConvertI64S, wasm.OpcodeF32ConvertI32U, wasm.OpcodeF32ConvertI64U:
if state.unreachable {
break
}
result := builder.AllocateInstruction().AsFcvtFromInt(
state.pop(),
op == wasm.OpcodeF32ConvertI32S || op == wasm.OpcodeF32ConvertI64S,
false,
).Insert(builder).Return()
state.push(result)
case wasm.OpcodeF32DemoteF64:
if state.unreachable {
break
}
cvt := builder.AllocateInstruction()
cvt.AsFdemote(state.pop())
builder.InsertInstruction(cvt)
state.push(cvt.Return())
case wasm.OpcodeF64PromoteF32:
if state.unreachable {
break
}
cvt := builder.AllocateInstruction()
cvt.AsFpromote(state.pop())
builder.InsertInstruction(cvt)
state.push(cvt.Return())
case wasm.OpcodeVecPrefix:
state.pc++
vecOp := c.wasmFunctionBody[state.pc]
switch vecOp {
case wasm.OpcodeVecV128Const:
state.pc++
lo := binary.LittleEndian.Uint64(c.wasmFunctionBody[state.pc:])
state.pc += 8
hi := binary.LittleEndian.Uint64(c.wasmFunctionBody[state.pc:])
state.pc += 7
if state.unreachable {
break
}
ret := builder.AllocateInstruction().AsVconst(lo, hi).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Load:
_, offset := c.readMemArg()
if state.unreachable {
break
}
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), 16)
load := builder.AllocateInstruction()
load.AsLoad(addr, offset, ssa.TypeV128)
builder.InsertInstruction(load)
state.push(load.Return())
case wasm.OpcodeVecV128Load8Lane, wasm.OpcodeVecV128Load16Lane, wasm.OpcodeVecV128Load32Lane:
_, offset := c.readMemArg()
state.pc++
if state.unreachable {
break
}
var lane ssa.VecLane
var loadOp ssa.Opcode
var opSize uint64
switch vecOp {
case wasm.OpcodeVecV128Load8Lane:
loadOp, lane, opSize = ssa.OpcodeUload8, ssa.VecLaneI8x16, 1
case wasm.OpcodeVecV128Load16Lane:
loadOp, lane, opSize = ssa.OpcodeUload16, ssa.VecLaneI16x8, 2
case wasm.OpcodeVecV128Load32Lane:
loadOp, lane, opSize = ssa.OpcodeUload32, ssa.VecLaneI32x4, 4
}
laneIndex := c.wasmFunctionBody[state.pc]
vector := state.pop()
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), opSize)
load := builder.AllocateInstruction().
AsExtLoad(loadOp, addr, offset, false).
Insert(builder).Return()
ret := builder.AllocateInstruction().
AsInsertlane(vector, load, laneIndex, lane).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Load64Lane:
_, offset := c.readMemArg()
state.pc++
if state.unreachable {
break
}
laneIndex := c.wasmFunctionBody[state.pc]
vector := state.pop()
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), 8)
load := builder.AllocateInstruction().
AsLoad(addr, offset, ssa.TypeI64).
Insert(builder).Return()
ret := builder.AllocateInstruction().
AsInsertlane(vector, load, laneIndex, ssa.VecLaneI64x2).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Load32zero, wasm.OpcodeVecV128Load64zero:
_, offset := c.readMemArg()
if state.unreachable {
break
}
var scalarType ssa.Type
switch vecOp {
case wasm.OpcodeVecV128Load32zero:
scalarType = ssa.TypeF32
case wasm.OpcodeVecV128Load64zero:
scalarType = ssa.TypeF64
}
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), uint64(scalarType.Size()))
ret := builder.AllocateInstruction().
AsVZeroExtLoad(addr, offset, scalarType).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Load8x8u, wasm.OpcodeVecV128Load8x8s,
wasm.OpcodeVecV128Load16x4u, wasm.OpcodeVecV128Load16x4s,
wasm.OpcodeVecV128Load32x2u, wasm.OpcodeVecV128Load32x2s:
_, offset := c.readMemArg()
if state.unreachable {
break
}
var lane ssa.VecLane
var signed bool
switch vecOp {
case wasm.OpcodeVecV128Load8x8s:
signed = true
fallthrough
case wasm.OpcodeVecV128Load8x8u:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecV128Load16x4s:
signed = true
fallthrough
case wasm.OpcodeVecV128Load16x4u:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecV128Load32x2s:
signed = true
fallthrough
case wasm.OpcodeVecV128Load32x2u:
lane = ssa.VecLaneI32x4
}
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), 8)
load := builder.AllocateInstruction().
AsLoad(addr, offset, ssa.TypeV128).
Insert(builder).Return()
ret := builder.AllocateInstruction().
AsWiden(load, lane, signed, true).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Load8Splat, wasm.OpcodeVecV128Load16Splat,
wasm.OpcodeVecV128Load32Splat, wasm.OpcodeVecV128Load64Splat:
_, offset := c.readMemArg()
if state.unreachable {
break
}
var lane ssa.VecLane
var opSize uint64
switch vecOp {
case wasm.OpcodeVecV128Load8Splat:
lane, opSize = ssa.VecLaneI8x16, 1
case wasm.OpcodeVecV128Load16Splat:
lane, opSize = ssa.VecLaneI16x8, 2
case wasm.OpcodeVecV128Load32Splat:
lane, opSize = ssa.VecLaneI32x4, 4
case wasm.OpcodeVecV128Load64Splat:
lane, opSize = ssa.VecLaneI64x2, 8
}
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), opSize)
ret := builder.AllocateInstruction().
AsLoadSplat(addr, offset, lane).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Store:
_, offset := c.readMemArg()
if state.unreachable {
break
}
value := state.pop()
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), 16)
builder.AllocateInstruction().
AsStore(ssa.OpcodeStore, value, addr, offset).
Insert(builder)
case wasm.OpcodeVecV128Store8Lane, wasm.OpcodeVecV128Store16Lane,
wasm.OpcodeVecV128Store32Lane, wasm.OpcodeVecV128Store64Lane:
_, offset := c.readMemArg()
state.pc++
if state.unreachable {
break
}
laneIndex := c.wasmFunctionBody[state.pc]
var storeOp ssa.Opcode
var lane ssa.VecLane
var opSize uint64
switch vecOp {
case wasm.OpcodeVecV128Store8Lane:
storeOp, lane, opSize = ssa.OpcodeIstore8, ssa.VecLaneI8x16, 1
case wasm.OpcodeVecV128Store16Lane:
storeOp, lane, opSize = ssa.OpcodeIstore16, ssa.VecLaneI16x8, 2
case wasm.OpcodeVecV128Store32Lane:
storeOp, lane, opSize = ssa.OpcodeIstore32, ssa.VecLaneI32x4, 4
case wasm.OpcodeVecV128Store64Lane:
storeOp, lane, opSize = ssa.OpcodeStore, ssa.VecLaneI64x2, 8
}
vector := state.pop()
baseAddr := state.pop()
addr := c.memOpSetup(baseAddr, uint64(offset), opSize)
value := builder.AllocateInstruction().
AsExtractlane(vector, laneIndex, lane, false).
Insert(builder).Return()
builder.AllocateInstruction().
AsStore(storeOp, value, addr, offset).
Insert(builder)
case wasm.OpcodeVecV128Not:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVbnot(v1).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128And:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVband(v1, v2).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128AndNot:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVbandnot(v1, v2).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Or:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVbor(v1, v2).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Xor:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVbxor(v1, v2).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128Bitselect:
if state.unreachable {
break
}
c := state.pop()
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVbitselect(c, v1, v2).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128AnyTrue:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVanyTrue(v1).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16AllTrue, wasm.OpcodeVecI16x8AllTrue, wasm.OpcodeVecI32x4AllTrue, wasm.OpcodeVecI64x2AllTrue:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16AllTrue:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8AllTrue:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4AllTrue:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2AllTrue:
lane = ssa.VecLaneI64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVallTrue(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16BitMask, wasm.OpcodeVecI16x8BitMask, wasm.OpcodeVecI32x4BitMask, wasm.OpcodeVecI64x2BitMask:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16BitMask:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8BitMask:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4BitMask:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2BitMask:
lane = ssa.VecLaneI64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVhighBits(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Abs, wasm.OpcodeVecI16x8Abs, wasm.OpcodeVecI32x4Abs, wasm.OpcodeVecI64x2Abs:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Abs:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Abs:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Abs:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Abs:
lane = ssa.VecLaneI64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIabs(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Neg, wasm.OpcodeVecI16x8Neg, wasm.OpcodeVecI32x4Neg, wasm.OpcodeVecI64x2Neg:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Neg:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Neg:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Neg:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Neg:
lane = ssa.VecLaneI64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIneg(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Popcnt:
if state.unreachable {
break
}
lane := ssa.VecLaneI8x16
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIpopcnt(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Add, wasm.OpcodeVecI16x8Add, wasm.OpcodeVecI32x4Add, wasm.OpcodeVecI64x2Add:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Add:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Add:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Add:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Add:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIadd(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16AddSatS, wasm.OpcodeVecI16x8AddSatS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16AddSatS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8AddSatS:
lane = ssa.VecLaneI16x8
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVSaddSat(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16AddSatU, wasm.OpcodeVecI16x8AddSatU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16AddSatU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8AddSatU:
lane = ssa.VecLaneI16x8
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVUaddSat(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16SubSatS, wasm.OpcodeVecI16x8SubSatS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16SubSatS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8SubSatS:
lane = ssa.VecLaneI16x8
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVSsubSat(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16SubSatU, wasm.OpcodeVecI16x8SubSatU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16SubSatU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8SubSatU:
lane = ssa.VecLaneI16x8
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVUsubSat(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Sub, wasm.OpcodeVecI16x8Sub, wasm.OpcodeVecI32x4Sub, wasm.OpcodeVecI64x2Sub:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Sub:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Sub:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Sub:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Sub:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIsub(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16MinS, wasm.OpcodeVecI16x8MinS, wasm.OpcodeVecI32x4MinS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16MinS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8MinS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4MinS:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVImin(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16MinU, wasm.OpcodeVecI16x8MinU, wasm.OpcodeVecI32x4MinU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16MinU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8MinU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4MinU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVUmin(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16MaxS, wasm.OpcodeVecI16x8MaxS, wasm.OpcodeVecI32x4MaxS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16MaxS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8MaxS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4MaxS:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVImax(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16MaxU, wasm.OpcodeVecI16x8MaxU, wasm.OpcodeVecI32x4MaxU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16MaxU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8MaxU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4MaxU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVUmax(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16AvgrU, wasm.OpcodeVecI16x8AvgrU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16AvgrU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8AvgrU:
lane = ssa.VecLaneI16x8
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVAvgRound(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8Mul, wasm.OpcodeVecI32x4Mul, wasm.OpcodeVecI64x2Mul:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI16x8Mul:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Mul:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Mul:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVImul(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8Q15mulrSatS:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsSqmulRoundSat(v1, v2, ssa.VecLaneI16x8).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Eq, wasm.OpcodeVecI16x8Eq, wasm.OpcodeVecI32x4Eq, wasm.OpcodeVecI64x2Eq:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Eq:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Eq:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Eq:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Eq:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Ne, wasm.OpcodeVecI16x8Ne, wasm.OpcodeVecI32x4Ne, wasm.OpcodeVecI64x2Ne:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Ne:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Ne:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Ne:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Ne:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondNotEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16LtS, wasm.OpcodeVecI16x8LtS, wasm.OpcodeVecI32x4LtS, wasm.OpcodeVecI64x2LtS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16LtS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8LtS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4LtS:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2LtS:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondSignedLessThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16LtU, wasm.OpcodeVecI16x8LtU, wasm.OpcodeVecI32x4LtU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16LtU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8LtU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4LtU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondUnsignedLessThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16LeS, wasm.OpcodeVecI16x8LeS, wasm.OpcodeVecI32x4LeS, wasm.OpcodeVecI64x2LeS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16LeS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8LeS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4LeS:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2LeS:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondSignedLessThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16LeU, wasm.OpcodeVecI16x8LeU, wasm.OpcodeVecI32x4LeU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16LeU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8LeU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4LeU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondUnsignedLessThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16GtS, wasm.OpcodeVecI16x8GtS, wasm.OpcodeVecI32x4GtS, wasm.OpcodeVecI64x2GtS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16GtS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8GtS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4GtS:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2GtS:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondSignedGreaterThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16GtU, wasm.OpcodeVecI16x8GtU, wasm.OpcodeVecI32x4GtU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16GtU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8GtU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4GtU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondUnsignedGreaterThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16GeS, wasm.OpcodeVecI16x8GeS, wasm.OpcodeVecI32x4GeS, wasm.OpcodeVecI64x2GeS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16GeS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8GeS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4GeS:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2GeS:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondSignedGreaterThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16GeU, wasm.OpcodeVecI16x8GeU, wasm.OpcodeVecI32x4GeU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16GeU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8GeU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4GeU:
lane = ssa.VecLaneI32x4
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVIcmp(v1, v2, ssa.IntegerCmpCondUnsignedGreaterThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Max, wasm.OpcodeVecF64x2Max:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Max:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Max:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFmax(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Abs, wasm.OpcodeVecF64x2Abs:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Abs:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Abs:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFabs(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Min, wasm.OpcodeVecF64x2Min:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Min:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Min:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFmin(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Neg, wasm.OpcodeVecF64x2Neg:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Neg:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Neg:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFneg(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Sqrt, wasm.OpcodeVecF64x2Sqrt:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Sqrt:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Sqrt:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVSqrt(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Add, wasm.OpcodeVecF64x2Add:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Add:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Add:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFadd(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Sub, wasm.OpcodeVecF64x2Sub:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Sub:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Sub:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFsub(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Mul, wasm.OpcodeVecF64x2Mul:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Mul:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Mul:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFmul(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Div, wasm.OpcodeVecF64x2Div:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Div:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Div:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFdiv(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8ExtaddPairwiseI8x16S, wasm.OpcodeVecI16x8ExtaddPairwiseI8x16U:
if state.unreachable {
break
}
v1 := state.pop()
// TODO: The sequence `Widen; Widen; IaddPairwise` can be substituted for a single instruction on some ISAs.
signed := vecOp == wasm.OpcodeVecI16x8ExtaddPairwiseI8x16S
vlo := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI8x16, signed, true).Insert(builder).Return()
vhi := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI8x16, signed, false).Insert(builder).Return()
ret := builder.AllocateInstruction().AsIaddPairwise(vlo, vhi, ssa.VecLaneI16x8).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI32x4ExtaddPairwiseI16x8S, wasm.OpcodeVecI32x4ExtaddPairwiseI16x8U:
if state.unreachable {
break
}
v1 := state.pop()
// TODO: The sequence `Widen; Widen; IaddPairwise` can be substituted for a single instruction on some ISAs.
signed := vecOp == wasm.OpcodeVecI32x4ExtaddPairwiseI16x8S
vlo := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI16x8, signed, true).Insert(builder).Return()
vhi := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI16x8, signed, false).Insert(builder).Return()
ret := builder.AllocateInstruction().AsIaddPairwise(vlo, vhi, ssa.VecLaneI32x4).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8ExtMulLowI8x16S, wasm.OpcodeVecI16x8ExtMulLowI8x16U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI8x16, ssa.VecLaneI16x8,
vecOp == wasm.OpcodeVecI16x8ExtMulLowI8x16S, true)
state.push(ret)
case wasm.OpcodeVecI16x8ExtMulHighI8x16S, wasm.OpcodeVecI16x8ExtMulHighI8x16U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI8x16, ssa.VecLaneI16x8,
vecOp == wasm.OpcodeVecI16x8ExtMulHighI8x16S, false)
state.push(ret)
case wasm.OpcodeVecI32x4ExtMulLowI16x8S, wasm.OpcodeVecI32x4ExtMulLowI16x8U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI16x8, ssa.VecLaneI32x4,
vecOp == wasm.OpcodeVecI32x4ExtMulLowI16x8S, true)
state.push(ret)
case wasm.OpcodeVecI32x4ExtMulHighI16x8S, wasm.OpcodeVecI32x4ExtMulHighI16x8U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI16x8, ssa.VecLaneI32x4,
vecOp == wasm.OpcodeVecI32x4ExtMulHighI16x8S, false)
state.push(ret)
case wasm.OpcodeVecI64x2ExtMulLowI32x4S, wasm.OpcodeVecI64x2ExtMulLowI32x4U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI32x4, ssa.VecLaneI64x2,
vecOp == wasm.OpcodeVecI64x2ExtMulLowI32x4S, true)
state.push(ret)
case wasm.OpcodeVecI64x2ExtMulHighI32x4S, wasm.OpcodeVecI64x2ExtMulHighI32x4U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := c.lowerExtMul(
v1, v2,
ssa.VecLaneI32x4, ssa.VecLaneI64x2,
vecOp == wasm.OpcodeVecI64x2ExtMulHighI32x4S, false)
state.push(ret)
case wasm.OpcodeVecI32x4DotI16x8S:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
// TODO: The sequence `Widen; Widen; VIMul` can be substituted for a single instruction on some ISAs.
v1lo := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI16x8, true, true).Insert(builder).Return()
v2lo := builder.AllocateInstruction().AsWiden(v2, ssa.VecLaneI16x8, true, true).Insert(builder).Return()
low := builder.AllocateInstruction().AsVImul(v1lo, v2lo, ssa.VecLaneI32x4).Insert(builder).Return()
v1hi := builder.AllocateInstruction().AsWiden(v1, ssa.VecLaneI16x8, true, false).Insert(builder).Return()
v2hi := builder.AllocateInstruction().AsWiden(v2, ssa.VecLaneI16x8, true, false).Insert(builder).Return()
high := builder.AllocateInstruction().AsVImul(v1hi, v2hi, ssa.VecLaneI32x4).Insert(builder).Return()
ret := builder.AllocateInstruction().AsIaddPairwise(low, high, ssa.VecLaneI32x4).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Eq, wasm.OpcodeVecF64x2Eq:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Eq:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Eq:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Ne, wasm.OpcodeVecF64x2Ne:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Ne:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Ne:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondNotEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Lt, wasm.OpcodeVecF64x2Lt:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Lt:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Lt:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondLessThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Le, wasm.OpcodeVecF64x2Le:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Le:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Le:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondLessThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Gt, wasm.OpcodeVecF64x2Gt:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Gt:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Gt:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondGreaterThan, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Ge, wasm.OpcodeVecF64x2Ge:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Ge:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Ge:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcmp(v1, v2, ssa.FloatCmpCondGreaterThanOrEqual, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Ceil, wasm.OpcodeVecF64x2Ceil:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Ceil:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Ceil:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVCeil(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Floor, wasm.OpcodeVecF64x2Floor:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Floor:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Floor:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVFloor(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Trunc, wasm.OpcodeVecF64x2Trunc:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Trunc:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Trunc:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVTrunc(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Nearest, wasm.OpcodeVecF64x2Nearest:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Nearest:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Nearest:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsVNearest(v1, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Pmin, wasm.OpcodeVecF64x2Pmin:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Pmin:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Pmin:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVMinPseudo(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4Pmax, wasm.OpcodeVecF64x2Pmax:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecF32x4Pmax:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Pmax:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVMaxPseudo(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI32x4TruncSatF32x4S, wasm.OpcodeVecI32x4TruncSatF32x4U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcvtToIntSat(v1, ssa.VecLaneF32x4, vecOp == wasm.OpcodeVecI32x4TruncSatF32x4S).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI32x4TruncSatF64x2SZero, wasm.OpcodeVecI32x4TruncSatF64x2UZero:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcvtToIntSat(v1, ssa.VecLaneF64x2, vecOp == wasm.OpcodeVecI32x4TruncSatF64x2SZero).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4ConvertI32x4S, wasm.OpcodeVecF32x4ConvertI32x4U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsVFcvtFromInt(v1, ssa.VecLaneF32x4, vecOp == wasm.OpcodeVecF32x4ConvertI32x4S).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF64x2ConvertLowI32x4S, wasm.OpcodeVecF64x2ConvertLowI32x4U:
if state.unreachable {
break
}
v1 := state.pop()
v1w := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI32x4, vecOp == wasm.OpcodeVecF64x2ConvertLowI32x4S, true).Insert(builder).Return()
ret := builder.AllocateInstruction().
AsVFcvtFromInt(v1w, ssa.VecLaneF64x2, vecOp == wasm.OpcodeVecF64x2ConvertLowI32x4S).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16NarrowI16x8S, wasm.OpcodeVecI8x16NarrowI16x8U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsNarrow(v1, v2, ssa.VecLaneI16x8, vecOp == wasm.OpcodeVecI8x16NarrowI16x8S).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8NarrowI32x4S, wasm.OpcodeVecI16x8NarrowI32x4U:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().
AsNarrow(v1, v2, ssa.VecLaneI32x4, vecOp == wasm.OpcodeVecI16x8NarrowI32x4S).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8ExtendLowI8x16S, wasm.OpcodeVecI16x8ExtendLowI8x16U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI8x16, vecOp == wasm.OpcodeVecI16x8ExtendLowI8x16S, true).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI16x8ExtendHighI8x16S, wasm.OpcodeVecI16x8ExtendHighI8x16U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI8x16, vecOp == wasm.OpcodeVecI16x8ExtendHighI8x16S, false).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI32x4ExtendLowI16x8S, wasm.OpcodeVecI32x4ExtendLowI16x8U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI16x8, vecOp == wasm.OpcodeVecI32x4ExtendLowI16x8S, true).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI32x4ExtendHighI16x8S, wasm.OpcodeVecI32x4ExtendHighI16x8U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI16x8, vecOp == wasm.OpcodeVecI32x4ExtendHighI16x8S, false).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI64x2ExtendLowI32x4S, wasm.OpcodeVecI64x2ExtendLowI32x4U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI32x4, vecOp == wasm.OpcodeVecI64x2ExtendLowI32x4S, true).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI64x2ExtendHighI32x4S, wasm.OpcodeVecI64x2ExtendHighI32x4U:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsWiden(v1, ssa.VecLaneI32x4, vecOp == wasm.OpcodeVecI64x2ExtendHighI32x4S, false).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF64x2PromoteLowF32x4Zero:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsFvpromoteLow(v1, ssa.VecLaneF32x4).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecF32x4DemoteF64x2Zero:
if state.unreachable {
break
}
v1 := state.pop()
ret := builder.AllocateInstruction().
AsFvdemote(v1, ssa.VecLaneF64x2).
Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Shl, wasm.OpcodeVecI16x8Shl, wasm.OpcodeVecI32x4Shl, wasm.OpcodeVecI64x2Shl:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Shl:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Shl:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Shl:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Shl:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVIshl(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16ShrS, wasm.OpcodeVecI16x8ShrS, wasm.OpcodeVecI32x4ShrS, wasm.OpcodeVecI64x2ShrS:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16ShrS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8ShrS:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4ShrS:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2ShrS:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVSshr(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16ShrU, wasm.OpcodeVecI16x8ShrU, wasm.OpcodeVecI32x4ShrU, wasm.OpcodeVecI64x2ShrU:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16ShrU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8ShrU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4ShrU:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2ShrU:
lane = ssa.VecLaneI64x2
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsVUshr(v1, v2, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16ExtractLaneS, wasm.OpcodeVecI16x8ExtractLaneS:
state.pc++
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16ExtractLaneS:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8ExtractLaneS:
lane = ssa.VecLaneI16x8
}
v1 := state.pop()
index := c.wasmFunctionBody[state.pc]
ext := builder.AllocateInstruction().AsExtractlane(v1, index, lane, true).Insert(builder).Return()
state.push(ext)
case wasm.OpcodeVecI8x16ExtractLaneU, wasm.OpcodeVecI16x8ExtractLaneU,
wasm.OpcodeVecI32x4ExtractLane, wasm.OpcodeVecI64x2ExtractLane,
wasm.OpcodeVecF32x4ExtractLane, wasm.OpcodeVecF64x2ExtractLane:
state.pc++ // Skip the immediate value.
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16ExtractLaneU:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8ExtractLaneU:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4ExtractLane:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2ExtractLane:
lane = ssa.VecLaneI64x2
case wasm.OpcodeVecF32x4ExtractLane:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2ExtractLane:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
index := c.wasmFunctionBody[state.pc]
ext := builder.AllocateInstruction().AsExtractlane(v1, index, lane, false).Insert(builder).Return()
state.push(ext)
case wasm.OpcodeVecI8x16ReplaceLane, wasm.OpcodeVecI16x8ReplaceLane,
wasm.OpcodeVecI32x4ReplaceLane, wasm.OpcodeVecI64x2ReplaceLane,
wasm.OpcodeVecF32x4ReplaceLane, wasm.OpcodeVecF64x2ReplaceLane:
state.pc++
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16ReplaceLane:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8ReplaceLane:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4ReplaceLane:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2ReplaceLane:
lane = ssa.VecLaneI64x2
case wasm.OpcodeVecF32x4ReplaceLane:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2ReplaceLane:
lane = ssa.VecLaneF64x2
}
v2 := state.pop()
v1 := state.pop()
index := c.wasmFunctionBody[state.pc]
ret := builder.AllocateInstruction().AsInsertlane(v1, v2, index, lane).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecV128i8x16Shuffle:
state.pc++
laneIndexes := c.wasmFunctionBody[state.pc : state.pc+16]
state.pc += 15
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsShuffle(v1, v2, laneIndexes).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Swizzle:
if state.unreachable {
break
}
v2 := state.pop()
v1 := state.pop()
ret := builder.AllocateInstruction().AsSwizzle(v1, v2, ssa.VecLaneI8x16).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeVecI8x16Splat,
wasm.OpcodeVecI16x8Splat,
wasm.OpcodeVecI32x4Splat,
wasm.OpcodeVecI64x2Splat,
wasm.OpcodeVecF32x4Splat,
wasm.OpcodeVecF64x2Splat:
if state.unreachable {
break
}
var lane ssa.VecLane
switch vecOp {
case wasm.OpcodeVecI8x16Splat:
lane = ssa.VecLaneI8x16
case wasm.OpcodeVecI16x8Splat:
lane = ssa.VecLaneI16x8
case wasm.OpcodeVecI32x4Splat:
lane = ssa.VecLaneI32x4
case wasm.OpcodeVecI64x2Splat:
lane = ssa.VecLaneI64x2
case wasm.OpcodeVecF32x4Splat:
lane = ssa.VecLaneF32x4
case wasm.OpcodeVecF64x2Splat:
lane = ssa.VecLaneF64x2
}
v1 := state.pop()
ret := builder.AllocateInstruction().AsSplat(v1, lane).Insert(builder).Return()
state.push(ret)
default:
panic("TODO: unsupported vector instruction: " + wasm.VectorInstructionName(vecOp))
}
case wasm.OpcodeRefFunc:
funcIndex := c.readI32u()
if state.unreachable {
break
}
c.storeCallerModuleContext()
funcIndexVal := builder.AllocateInstruction().AsIconst32(funcIndex).Insert(builder).Return()
refFuncPtr := builder.AllocateInstruction().
AsLoad(c.execCtxPtrValue,
wazevoapi.ExecutionContextOffsetRefFuncTrampolineAddress.U32(),
ssa.TypeI64,
).Insert(builder).Return()
// TODO: reuse the slice.
args := []ssa.Value{c.execCtxPtrValue, funcIndexVal}
refFuncRet := builder.
AllocateInstruction().
AsCallIndirect(refFuncPtr, &c.refFuncSig, args).
Insert(builder).Return()
state.push(refFuncRet)
case wasm.OpcodeRefNull:
c.loweringState.pc++ // skips the reference type as we treat both of them as i64(0).
if state.unreachable {
break
}
ret := builder.AllocateInstruction().AsIconst64(0).Insert(builder).Return()
state.push(ret)
case wasm.OpcodeRefIsNull:
if state.unreachable {
break
}
r := state.pop()
zero := builder.AllocateInstruction().AsIconst64(0).Insert(builder)
icmp := builder.AllocateInstruction().
AsIcmp(r, zero.Return(), ssa.IntegerCmpCondEqual).
Insert(builder).
Return()
state.push(icmp)
case wasm.OpcodeTableSet:
tableIndex := c.readI32u()
if state.unreachable {
break
}
r := state.pop()
targetOffsetInTable := state.pop()
elementAddr := c.lowerAccessTableWithBoundsCheck(tableIndex, targetOffsetInTable)
builder.AllocateInstruction().AsStore(ssa.OpcodeStore, r, elementAddr, 0).Insert(builder)
case wasm.OpcodeTableGet:
tableIndex := c.readI32u()
if state.unreachable {
break
}
targetOffsetInTable := state.pop()
elementAddr := c.lowerAccessTableWithBoundsCheck(tableIndex, targetOffsetInTable)
loaded := builder.AllocateInstruction().AsLoad(elementAddr, 0, ssa.TypeI64).Insert(builder).Return()
state.push(loaded)
default:
panic("TODO: unsupported in wazevo yet: " + wasm.InstructionName(op))
}
if wazevoapi.FrontEndLoggingEnabled {
fmt.Println("--------- Translated " + wasm.InstructionName(op) + " --------")
fmt.Println("state: " + c.loweringState.String())
fmt.Println(c.formatBuilder())
fmt.Println("--------------------------")
}
c.loweringState.pc++
}
func (c *Compiler) lowerExtMul(v1, v2 ssa.Value, from, to ssa.VecLane, signed, low bool) ssa.Value {
// TODO: The sequence `Widen; Widen; VIMul` can be substituted for a single instruction on some ISAs.
builder := c.ssaBuilder
v1lo := builder.AllocateInstruction().AsWiden(v1, from, signed, low).Insert(builder).Return()
v2lo := builder.AllocateInstruction().AsWiden(v2, from, signed, low).Insert(builder).Return()
return builder.AllocateInstruction().AsVImul(v1lo, v2lo, to).Insert(builder).Return()
}
const (
tableInstanceBaseAddressOffset = 0
tableInstanceLenOffset = tableInstanceBaseAddressOffset + 8
)
func (c *Compiler) lowerAccessTableWithBoundsCheck(tableIndex uint32, elementOffsetInTable ssa.Value) (elementAddress ssa.Value) {
builder := c.ssaBuilder
// Load the table.
loadTableInstancePtr := builder.AllocateInstruction()
loadTableInstancePtr.AsLoad(c.moduleCtxPtrValue, c.offset.TableOffset(int(tableIndex)).U32(), ssa.TypeI64)
builder.InsertInstruction(loadTableInstancePtr)
tableInstancePtr := loadTableInstancePtr.Return()
// Load the table's length.
loadTableLen := builder.AllocateInstruction()
loadTableLen.AsLoad(tableInstancePtr, tableInstanceLenOffset, ssa.TypeI32)
builder.InsertInstruction(loadTableLen)
tableLen := loadTableLen.Return()
// Compare the length and the target, and trap if out of bounds.
checkOOB := builder.AllocateInstruction()
checkOOB.AsIcmp(elementOffsetInTable, tableLen, ssa.IntegerCmpCondUnsignedGreaterThanOrEqual)
builder.InsertInstruction(checkOOB)
exitIfOOB := builder.AllocateInstruction()
exitIfOOB.AsExitIfTrueWithCode(c.execCtxPtrValue, checkOOB.Return(), wazevoapi.ExitCodeTableOutOfBounds)
builder.InsertInstruction(exitIfOOB)
// Get the base address of wasm.TableInstance.References.
loadTableBaseAddress := builder.AllocateInstruction()
loadTableBaseAddress.AsLoad(tableInstancePtr, tableInstanceBaseAddressOffset, ssa.TypeI64)
builder.InsertInstruction(loadTableBaseAddress)
tableBase := loadTableBaseAddress.Return()
// Calculate the address of the target function. First we need to multiply targetOffsetInTable by 8 (pointer size).
multiplyBy8 := builder.AllocateInstruction()
three := builder.AllocateInstruction()
three.AsIconst64(3)
builder.InsertInstruction(three)
multiplyBy8.AsIshl(elementOffsetInTable, three.Return())
builder.InsertInstruction(multiplyBy8)
targetOffsetInTableMultipliedBy8 := multiplyBy8.Return()
// Then add the multiplied value to the base which results in the address of the target function (*wazevo.functionInstance)
calcElementAddressInTable := builder.AllocateInstruction()
calcElementAddressInTable.AsIadd(tableBase, targetOffsetInTableMultipliedBy8)
builder.InsertInstruction(calcElementAddressInTable)
return calcElementAddressInTable.Return()
}
func (c *Compiler) lowerCallIndirect(typeIndex, tableIndex uint32) {
builder := c.ssaBuilder
state := c.state()
elementOffsetInTable := state.pop()
functionInstancePtrAddress := c.lowerAccessTableWithBoundsCheck(tableIndex, elementOffsetInTable)
loadFunctionInstancePtr := builder.AllocateInstruction()
loadFunctionInstancePtr.AsLoad(functionInstancePtrAddress, 0, ssa.TypeI64)
builder.InsertInstruction(loadFunctionInstancePtr)
functionInstancePtr := loadFunctionInstancePtr.Return()
// Check if it is not the null pointer.
zero := builder.AllocateInstruction()
zero.AsIconst64(0)
builder.InsertInstruction(zero)
checkNull := builder.AllocateInstruction()
checkNull.AsIcmp(functionInstancePtr, zero.Return(), ssa.IntegerCmpCondEqual)
builder.InsertInstruction(checkNull)
exitIfNull := builder.AllocateInstruction()
exitIfNull.AsExitIfTrueWithCode(c.execCtxPtrValue, checkNull.Return(), wazevoapi.ExitCodeIndirectCallNullPointer)
builder.InsertInstruction(exitIfNull)
// We need to do the type check. First, load the target function instance's typeID.
loadTypeID := builder.AllocateInstruction()
loadTypeID.AsLoad(functionInstancePtr, wazevoapi.FunctionInstanceTypeIDOffset, ssa.TypeI32)
builder.InsertInstruction(loadTypeID)
actualTypeID := loadTypeID.Return()
// Next, we load the expected TypeID:
loadTypeIDsBegin := builder.AllocateInstruction()
loadTypeIDsBegin.AsLoad(c.moduleCtxPtrValue, c.offset.TypeIDs1stElement.U32(), ssa.TypeI64)
builder.InsertInstruction(loadTypeIDsBegin)
typeIDsBegin := loadTypeIDsBegin.Return()
loadExpectedTypeID := builder.AllocateInstruction()
loadExpectedTypeID.AsLoad(typeIDsBegin, uint32(typeIndex)*4 /* size of wasm.FunctionTypeID */, ssa.TypeI32)
builder.InsertInstruction(loadExpectedTypeID)
expectedTypeID := loadExpectedTypeID.Return()
// Check if the type ID matches.
checkTypeID := builder.AllocateInstruction()
checkTypeID.AsIcmp(actualTypeID, expectedTypeID, ssa.IntegerCmpCondNotEqual)
builder.InsertInstruction(checkTypeID)
exitIfNotMatch := builder.AllocateInstruction()
exitIfNotMatch.AsExitIfTrueWithCode(c.execCtxPtrValue, checkTypeID.Return(), wazevoapi.ExitCodeIndirectCallTypeMismatch)
builder.InsertInstruction(exitIfNotMatch)
// Now ready to call the function. Load the executable and moduleContextOpaquePtr from the function instance.
loadExecutablePtr := builder.AllocateInstruction()
loadExecutablePtr.AsLoad(functionInstancePtr, wazevoapi.FunctionInstanceExecutableOffset, ssa.TypeI64)
builder.InsertInstruction(loadExecutablePtr)
executablePtr := loadExecutablePtr.Return()
loadModuleContextOpaquePtr := builder.AllocateInstruction()
loadModuleContextOpaquePtr.AsLoad(functionInstancePtr, wazevoapi.FunctionInstanceModuleContextOpaquePtrOffset, ssa.TypeI64)
builder.InsertInstruction(loadModuleContextOpaquePtr)
moduleContextOpaquePtr := loadModuleContextOpaquePtr.Return()
// TODO: reuse slice?
typ := &c.m.TypeSection[typeIndex]
argN := len(typ.Params)
args := make([]ssa.Value, argN+2)
args[0] = c.execCtxPtrValue
args[1] = moduleContextOpaquePtr
state.nPopInto(argN, args[2:])
// Before transfer the control to the callee, we have to store the current module's moduleContextPtr
// into execContext.callerModuleContextPtr in case when the callee is a Go function.
c.storeCallerModuleContext()
call := builder.AllocateInstruction()
call.AsCallIndirect(executablePtr, c.signatures[typ], args)
builder.InsertInstruction(call)
first, rest := call.Returns()
if first.Valid() {
state.push(first)
}
for _, v := range rest {
state.push(v)
}
c.reloadAfterCall()
}
// memOpSetup inserts the bounds check and calculates the address of the memory operation (loads/stores).
func (c *Compiler) memOpSetup(baseAddr ssa.Value, constOffset, operationSizeInBytes uint64) (address ssa.Value) {
builder := c.ssaBuilder
ceil := constOffset + operationSizeInBytes
ceilConst := builder.AllocateInstruction()
ceilConst.AsIconst64(ceil)
builder.InsertInstruction(ceilConst)
// We calculate the offset in 64-bit space.
extBaseAddr := builder.AllocateInstruction()
extBaseAddr.AsUExtend(baseAddr, 32, 64)
builder.InsertInstruction(extBaseAddr)
// Note: memLen is already zero extended to 64-bit space at the load time.
memLen := c.getMemoryLenValue(false)
// baseAddrPlusCeil = baseAddr + ceil
baseAddrPlusCeil := builder.AllocateInstruction()
baseAddrPlusCeil.AsIadd(extBaseAddr.Return(), ceilConst.Return())
builder.InsertInstruction(baseAddrPlusCeil)
// Check for out of bounds memory access: `memLen >= baseAddrPlusCeil`.
cmp := builder.AllocateInstruction()
cmp.AsIcmp(memLen, baseAddrPlusCeil.Return(), ssa.IntegerCmpCondUnsignedLessThan)
builder.InsertInstruction(cmp)
exitIfNZ := builder.AllocateInstruction()
exitIfNZ.AsExitIfTrueWithCode(c.execCtxPtrValue, cmp.Return(), wazevoapi.ExitCodeMemoryOutOfBounds)
builder.InsertInstruction(exitIfNZ)
// Load the value from memBase + extBaseAddr.
memBase := c.getMemoryBaseValue(false)
addrCalc := builder.AllocateInstruction()
addrCalc.AsIadd(memBase, extBaseAddr.Return())
builder.InsertInstruction(addrCalc)
return addrCalc.Return()
}
func (c *Compiler) callMemmove(dst, src, size ssa.Value) {
args := []ssa.Value{dst, src, size} // TODO: reuse the slice.
builder := c.ssaBuilder
memmovePtr := builder.AllocateInstruction().
AsLoad(c.execCtxPtrValue,
wazevoapi.ExecutionContextOffsetMemmoveAddress.U32(),
ssa.TypeI64,
).Insert(builder).Return()
builder.AllocateInstruction().AsCallIndirect(memmovePtr, &c.memmoveSig, args).Insert(builder)
}
func (c *Compiler) reloadAfterCall() {
// Note that when these are not used in the following instructions, they will be optimized out.
// So in any ways, we define them!
// After calling any function, memory buffer might have changed. So we need to re-defined the variable.
if c.needMemory {
c.reloadMemoryBaseLen()
}
// Also, any mutable Global can change.
for _, index := range c.mutableGlobalVariablesIndexes {
_ = c.getWasmGlobalValue(index, true)
}
}
func (c *Compiler) reloadMemoryBaseLen() {
_ = c.getMemoryBaseValue(true)
_ = c.getMemoryLenValue(true)
}
// globalInstanceValueOffset is the offsetOf .Value field of wasm.GlobalInstance.
const globalInstanceValueOffset = 8
func (c *Compiler) setWasmGlobalValue(index wasm.Index, v ssa.Value) {
variable := c.globalVariables[index]
instanceOffset := c.offset.GlobalInstanceOffset(index)
builder := c.ssaBuilder
loadGlobalInstPtr := builder.AllocateInstruction()
loadGlobalInstPtr.AsLoad(c.moduleCtxPtrValue, uint32(instanceOffset), ssa.TypeI64)
builder.InsertInstruction(loadGlobalInstPtr)
store := builder.AllocateInstruction()
store.AsStore(ssa.OpcodeStore, v, loadGlobalInstPtr.Return(), uint32(globalInstanceValueOffset))
builder.InsertInstruction(store)
// The value has changed to `v`, so we record it.
builder.DefineVariableInCurrentBB(variable, v)
}
func (c *Compiler) getWasmGlobalValue(index wasm.Index, forceLoad bool) ssa.Value {
variable := c.globalVariables[index]
typ := c.globalVariablesTypes[index]
instanceOffset := c.offset.GlobalInstanceOffset(index)
builder := c.ssaBuilder
if !forceLoad {
if v := builder.FindValueInLinearPath(variable); v.Valid() {
return v
}
}
loadGlobalInstPtr := builder.AllocateInstruction()
loadGlobalInstPtr.AsLoad(c.moduleCtxPtrValue, uint32(instanceOffset), ssa.TypeI64)
builder.InsertInstruction(loadGlobalInstPtr)
load := builder.AllocateInstruction()
load.AsLoad(loadGlobalInstPtr.Return(), uint32(globalInstanceValueOffset), typ)
builder.InsertInstruction(load)
ret := load.Return()
builder.DefineVariableInCurrentBB(variable, ret)
return ret
}
const (
memoryInstanceBufOffset = 0
memoryInstanceBufSizeOffset = memoryInstanceBufOffset + 8
)
func (c *Compiler) getMemoryBaseValue(forceReload bool) ssa.Value {
builder := c.ssaBuilder
variable := c.memoryBaseVariable
if !forceReload {
if v := builder.FindValueInLinearPath(variable); v.Valid() {
return v
}
}
var ret ssa.Value
if c.offset.LocalMemoryBegin < 0 {
loadMemInstPtr := builder.AllocateInstruction()
loadMemInstPtr.AsLoad(c.moduleCtxPtrValue, c.offset.ImportedMemoryBegin.U32(), ssa.TypeI64)
builder.InsertInstruction(loadMemInstPtr)
memInstPtr := loadMemInstPtr.Return()
loadBufPtr := builder.AllocateInstruction()
loadBufPtr.AsLoad(memInstPtr, memoryInstanceBufOffset, ssa.TypeI64)
builder.InsertInstruction(loadBufPtr)
ret = loadBufPtr.Return()
} else {
load := builder.AllocateInstruction()
load.AsLoad(c.moduleCtxPtrValue, c.offset.LocalMemoryBase().U32(), ssa.TypeI64)
builder.InsertInstruction(load)
ret = load.Return()
}
builder.DefineVariableInCurrentBB(variable, ret)
return ret
}
func (c *Compiler) getMemoryLenValue(forceReload bool) ssa.Value {
variable := c.memoryLenVariable
builder := c.ssaBuilder
if !forceReload {
if v := builder.FindValueInLinearPath(variable); v.Valid() {
return v
}
}
var ret ssa.Value
if c.offset.LocalMemoryBegin < 0 {
loadMemInstPtr := builder.AllocateInstruction()
loadMemInstPtr.AsLoad(c.moduleCtxPtrValue, c.offset.ImportedMemoryBegin.U32(), ssa.TypeI64)
builder.InsertInstruction(loadMemInstPtr)
memInstPtr := loadMemInstPtr.Return()
loadBufSizePtr := builder.AllocateInstruction()
loadBufSizePtr.AsLoad(memInstPtr, memoryInstanceBufSizeOffset, ssa.TypeI64)
builder.InsertInstruction(loadBufSizePtr)
ret = loadBufSizePtr.Return()
} else {
load := builder.AllocateInstruction()
load.AsExtLoad(ssa.OpcodeUload32, c.moduleCtxPtrValue, c.offset.LocalMemoryLen().U32(), true)
builder.InsertInstruction(load)
ret = load.Return()
}
builder.DefineVariableInCurrentBB(variable, ret)
return ret
}
func (c *Compiler) insertIcmp(cond ssa.IntegerCmpCond) {
state, builder := c.state(), c.ssaBuilder
y, x := state.pop(), state.pop()
cmp := builder.AllocateInstruction()
cmp.AsIcmp(x, y, cond)
builder.InsertInstruction(cmp)
value := cmp.Return()
state.push(value)
}
func (c *Compiler) insertFcmp(cond ssa.FloatCmpCond) {
state, builder := c.state(), c.ssaBuilder
y, x := state.pop(), state.pop()
cmp := builder.AllocateInstruction()
cmp.AsFcmp(x, y, cond)
builder.InsertInstruction(cmp)
value := cmp.Return()
state.push(value)
}
// storeCallerModuleContext stores the current module's moduleContextPtr into execContext.callerModuleContextPtr.
func (c *Compiler) storeCallerModuleContext() {
builder := c.ssaBuilder
execCtx := c.execCtxPtrValue
store := builder.AllocateInstruction()
store.AsStore(ssa.OpcodeStore,
c.moduleCtxPtrValue, execCtx, wazevoapi.ExecutionContextOffsetCallerModuleContextPtr.U32())
builder.InsertInstruction(store)
}
func (c *Compiler) readI32u() uint32 {
v, n, err := leb128.LoadUint32(c.wasmFunctionBody[c.loweringState.pc+1:])
if err != nil {
panic(err) // shouldn't be reached since compilation comes after validation.
}
c.loweringState.pc += int(n)
return v
}
func (c *Compiler) readI32s() int32 {
v, n, err := leb128.LoadInt32(c.wasmFunctionBody[c.loweringState.pc+1:])
if err != nil {
panic(err) // shouldn't be reached since compilation comes after validation.
}
c.loweringState.pc += int(n)
return v
}
func (c *Compiler) readI64s() int64 {
v, n, err := leb128.LoadInt64(c.wasmFunctionBody[c.loweringState.pc+1:])
if err != nil {
panic(err) // shouldn't be reached since compilation comes after validation.
}
c.loweringState.pc += int(n)
return v
}
func (c *Compiler) readF32() float32 {
v := math.Float32frombits(binary.LittleEndian.Uint32(c.wasmFunctionBody[c.loweringState.pc+1:]))
c.loweringState.pc += 4
return v
}
func (c *Compiler) readF64() float64 {
v := math.Float64frombits(binary.LittleEndian.Uint64(c.wasmFunctionBody[c.loweringState.pc+1:]))
c.loweringState.pc += 8
return v
}
// readBlockType reads the block type from the current position of the bytecode reader.
func (c *Compiler) readBlockType() *wasm.FunctionType {
state := c.state()
c.br.Reset(c.wasmFunctionBody[state.pc+1:])
bt, num, err := wasm.DecodeBlockType(c.m.TypeSection, c.br, api.CoreFeaturesV2)
if err != nil {
panic(err) // shouldn't be reached since compilation comes after validation.
}
state.pc += int(num)
return bt
}
func (c *Compiler) readMemArg() (align, offset uint32) {
state := c.state()
align, num, err := leb128.LoadUint32(c.wasmFunctionBody[state.pc+1:])
if err != nil {
panic(fmt.Errorf("read memory align: %v", err))
}
state.pc += int(num)
offset, num, err = leb128.LoadUint32(c.wasmFunctionBody[state.pc+1:])
if err != nil {
panic(fmt.Errorf("read memory offset: %v", err))
}
state.pc += int(num)
return align, offset
}
// insertJumpToBlock inserts a jump instruction to the given block in the current block.
func (c *Compiler) insertJumpToBlock(args []ssa.Value, targetBlk ssa.BasicBlock) {
if targetBlk.ReturnBlock() {
if c.needListener {
c.callListenerAfter()
}
}
builder := c.ssaBuilder
jmp := builder.AllocateInstruction()
jmp.AsJump(args, targetBlk)
builder.InsertInstruction(jmp)
}
func (c *Compiler) insertIntegerExtend(signed bool, from, to byte) {
state := c.state()
builder := c.ssaBuilder
v := state.pop()
extend := builder.AllocateInstruction()
if signed {
extend.AsSExtend(v, from, to)
} else {
extend.AsUExtend(v, from, to)
}
builder.InsertInstruction(extend)
value := extend.Return()
state.push(value)
}
func (c *Compiler) switchTo(originalStackLen int, targetBlk ssa.BasicBlock) {
if targetBlk.Preds() == 0 {
c.loweringState.unreachable = true
}
// Now we should adjust the stack and start translating the continuation block.
c.loweringState.values = c.loweringState.values[:originalStackLen]
c.ssaBuilder.SetCurrentBlock(targetBlk)
// At this point, blocks params consist only of the Wasm-level parameters,
// (since it's added only when we are trying to resolve variable *inside* this block).
for i := 0; i < targetBlk.Params(); i++ {
value := targetBlk.Param(i)
c.loweringState.push(value)
}
}
// cloneValuesList clones the given values list.
func cloneValuesList(in []ssa.Value) (ret []ssa.Value) {
ret = make([]ssa.Value, len(in))
for i := range ret {
ret[i] = in[i]
}
return
}
// results returns the number of results of the current function.
func (c *Compiler) results() int {
return len(c.wasmFunctionTyp.Results)
}
func (c *Compiler) lowerBrTable(labels []uint32, index ssa.Value) {
state := c.state()
builder := c.ssaBuilder
f := state.ctrlPeekAt(int(labels[0]))
var numArgs int
if f.isLoop() {
numArgs = len(f.blockType.Params)
} else {
numArgs = len(f.blockType.Results)
}
targets := make([]ssa.BasicBlock, len(labels))
// We need trampoline blocks since depending on the target block structure, we might end up inserting moves before jumps,
// which cannot be done with br_table. Instead, we can do such per-block moves in the trampoline blocks.
// At the linking phase (very end of the backend), we can remove the unnecessary jumps, and therefore no runtime overhead.
currentBlk := builder.CurrentBlock()
for i, l := range labels {
// Args are always on the top of the stack. Note that we should not share the args slice
// among the jump instructions since the args are modified during passes (e.g. redundant phi elimination).
args := c.loweringState.nPeekDup(numArgs)
targetBlk, _ := state.brTargetArgNumFor(l)
trampoline := builder.AllocateBasicBlock()
builder.SetCurrentBlock(trampoline)
c.insertJumpToBlock(args, targetBlk)
targets[i] = trampoline
}
builder.SetCurrentBlock(currentBlk)
// If the target block has no arguments, we can just jump to the target block.
brTable := builder.AllocateInstruction()
brTable.AsBrTable(index, targets)
builder.InsertInstruction(brTable)
for _, trampoline := range targets {
builder.Seal(trampoline)
}
}
func (l *loweringState) brTargetArgNumFor(labelIndex uint32) (targetBlk ssa.BasicBlock, argNum int) {
targetFrame := l.ctrlPeekAt(int(labelIndex))
if targetFrame.isLoop() {
targetBlk, argNum = targetFrame.blk, len(targetFrame.blockType.Params)
} else {
targetBlk, argNum = targetFrame.followingBlock, len(targetFrame.blockType.Results)
}
return
}
func (c *Compiler) callListenerBefore() {
c.storeCallerModuleContext()
builder := c.ssaBuilder
beforeListeners1stElement := builder.AllocateInstruction().
AsLoad(c.moduleCtxPtrValue,
c.offset.BeforeListenerTrampolines1stElement.U32(),
ssa.TypeI64,
).Insert(builder).Return()
beforeListenerPtr := builder.AllocateInstruction().
AsLoad(beforeListeners1stElement, uint32(c.wasmFunctionTypeIndex)*8 /* 8 bytes per index */, ssa.TypeI64).Insert(builder).Return()
entry := builder.EntryBlock()
ps := entry.Params()
// TODO: reuse!
args := make([]ssa.Value, ps)
args[0] = c.execCtxPtrValue
args[1] = builder.AllocateInstruction().AsIconst32(c.wasmLocalFunctionIndex).Insert(builder).Return()
for i := 2; i < ps; i++ {
args[i] = entry.Param(i)
}
beforeSig := c.listenerSignatures[c.wasmFunctionTyp][0]
builder.AllocateInstruction().
AsCallIndirect(beforeListenerPtr, beforeSig, args).
Insert(builder)
}
func (c *Compiler) callListenerAfter() {
c.storeCallerModuleContext()
builder := c.ssaBuilder
afterListeners1stElement := builder.AllocateInstruction().
AsLoad(c.moduleCtxPtrValue,
c.offset.AfterListenerTrampolines1stElement.U32(),
ssa.TypeI64,
).Insert(builder).Return()
afterListenerPtr := builder.AllocateInstruction().
AsLoad(afterListeners1stElement,
uint32(c.wasmFunctionTypeIndex)*8 /* 8 bytes per index */, ssa.TypeI64).
Insert(builder).
Return()
afterSig := c.listenerSignatures[c.wasmFunctionTyp][1]
results := c.loweringState.nPeekDup(c.results())
// TODO: reuse!
args := make([]ssa.Value, len(results)+2)
args[0] = c.execCtxPtrValue
args[1] = builder.AllocateInstruction().AsIconst32(c.wasmLocalFunctionIndex).Insert(builder).Return()
for i, r := range results {
args[i+2] = r
}
builder.AllocateInstruction().
AsCallIndirect(afterListenerPtr, afterSig, args).
Insert(builder)
}
const (
elementOrDataInstanceLenOffset = 8
elementOrDataInstanceSize = 24
)
// dropInstance inserts instructions to drop the element/data instance specified by the given index.
func (c *Compiler) dropDataOrElementInstance(index uint32, firstItemOffset wazevoapi.Offset) {
builder := c.ssaBuilder
instPtr := c.dataOrElementInstanceAddr(index, firstItemOffset)
zero := builder.AllocateInstruction().AsIconst64(0).Insert(builder).Return()
// Clear the instance.
builder.AllocateInstruction().AsStore(ssa.OpcodeStore, zero, instPtr, 0).Insert(builder)
builder.AllocateInstruction().AsStore(ssa.OpcodeStore, zero, instPtr, elementOrDataInstanceLenOffset).Insert(builder)
builder.AllocateInstruction().AsStore(ssa.OpcodeStore, zero, instPtr, elementOrDataInstanceLenOffset+8).Insert(builder)
}
func (c *Compiler) dataOrElementInstanceAddr(index uint32, firstItemOffset wazevoapi.Offset) ssa.Value {
builder := c.ssaBuilder
_1stItemPtr := builder.
AllocateInstruction().
AsLoad(c.moduleCtxPtrValue, firstItemOffset.U32(), ssa.TypeI64).
Insert(builder).Return()
// Each data/element instance is a slice, so we need to multiply index by 16 to get the offset of the target instance.
index = index * elementOrDataInstanceSize
indexExt := builder.AllocateInstruction().AsIconst64(uint64(index)).Insert(builder).Return()
// Then, add the offset to the address of the instance.
instPtr := builder.AllocateInstruction().AsIadd(_1stItemPtr, indexExt).Insert(builder).Return()
return instPtr
}
func (c *Compiler) boundsCheckInDataOrElementInstance(instPtr, offsetInInstance, copySize ssa.Value, exitCode wazevoapi.ExitCode) {
builder := c.ssaBuilder
dataInstLen := builder.AllocateInstruction().
AsLoad(instPtr, elementOrDataInstanceLenOffset, ssa.TypeI64).
Insert(builder).Return()
ceil := builder.AllocateInstruction().AsIadd(offsetInInstance, copySize).Insert(builder).Return()
cmp := builder.AllocateInstruction().
AsIcmp(dataInstLen, ceil, ssa.IntegerCmpCondUnsignedLessThan).
Insert(builder).
Return()
builder.AllocateInstruction().
AsExitIfTrueWithCode(c.execCtxPtrValue, cmp, exitCode).
Insert(builder)
}
func (c *Compiler) boundsCheckInTable(tableIndex uint32, offset, size ssa.Value) (tableInstancePtr ssa.Value) {
builder := c.ssaBuilder
dstCeil := builder.AllocateInstruction().AsIadd(offset, size).Insert(builder).Return()
// Load the table.
tableInstancePtr = builder.AllocateInstruction().
AsLoad(c.moduleCtxPtrValue, c.offset.TableOffset(int(tableIndex)).U32(), ssa.TypeI64).
Insert(builder).Return()
// Load the table's length.
tableLen := builder.AllocateInstruction().
AsLoad(tableInstancePtr, tableInstanceLenOffset, ssa.TypeI32).Insert(builder).Return()
tableLenExt := builder.AllocateInstruction().AsUExtend(tableLen, 32, 64).Insert(builder).Return()
// Compare the length and the target, and trap if out of bounds.
checkOOB := builder.AllocateInstruction()
checkOOB.AsIcmp(tableLenExt, dstCeil, ssa.IntegerCmpCondUnsignedLessThan)
builder.InsertInstruction(checkOOB)
exitIfOOB := builder.AllocateInstruction()
exitIfOOB.AsExitIfTrueWithCode(c.execCtxPtrValue, checkOOB.Return(), wazevoapi.ExitCodeTableOutOfBounds)
builder.InsertInstruction(exitIfOOB)
return
}
func (c *Compiler) loadTableBaseAddr(tableInstancePtr ssa.Value) ssa.Value {
builder := c.ssaBuilder
loadTableBaseAddress := builder.
AllocateInstruction().
AsLoad(tableInstancePtr, tableInstanceBaseAddressOffset, ssa.TypeI64).
Insert(builder)
return loadTableBaseAddress.Return()
}
func (c *Compiler) boundsCheckInMemory(memLen, offset, size ssa.Value) {
builder := c.ssaBuilder
ceil := builder.AllocateInstruction().AsIadd(offset, size).Insert(builder).Return()
cmp := builder.AllocateInstruction().
AsIcmp(memLen, ceil, ssa.IntegerCmpCondUnsignedLessThan).
Insert(builder).
Return()
builder.AllocateInstruction().
AsExitIfTrueWithCode(c.execCtxPtrValue, cmp, wazevoapi.ExitCodeMemoryOutOfBounds).
Insert(builder)
}