Files
wazero/internal/descriptor/table.go
Crypt Keeper 40341af448 fs: returns EBADF on negative file descriptor (#1391)
This changes file descriptors from uint32 to int32 and the
corresponding file table to reject negative values. This ensures
invalid values aren't mistaken for very large descriptor entries, which
can use a lot of memory as the table implementation isn't designed to
be sparse.

See https://pubs.opengroup.org/onlinepubs/9699919799/functions/dirfd.html#tag_16_90

Signed-off-by: Adrian Cole <adrian@tetrate.io>
2023-04-21 16:08:35 +02:00

165 lines
4.6 KiB
Go

package descriptor
import "math/bits"
// Table is a data structure mapping 32 bit descriptor to items.
//
// # Negative keys are invalid.
//
// Negative keys (e.g. -1) are invalid inputs and will return a corresponding
// not-found value. This matches POSIX behavior of file descriptors.
// See https://pubs.opengroup.org/onlinepubs/9699919799/functions/dirfd.html#tag_16_90
//
// # Data structure design
//
// The data structure optimizes for memory density and lookup performance,
// trading off compute at insertion time. This is a useful compromise for the
// use cases we employ it with: items are usually accessed a lot more often
// than they are inserted, each operation requires a table lookup, so we are
// better off spending extra compute to insert items in the table in order to
// get cheaper lookups. Memory efficiency is also crucial to support scaling
// with programs that maintain thousands of items: having a high or non-linear
// memory-to-item ratio could otherwise be used as an attack vector by
// malicious applications attempting to damage performance of the host.
type Table[Key ~int32, Item any] struct {
masks []uint64
items []Item
}
// Len returns the number of items stored in the table.
func (t *Table[Key, Item]) Len() (n int) {
// We could make this a O(1) operation if we cached the number of items in
// the table. More state usually means more problems, so until we have a
// clear need for this, the simple implementation may be a better trade off.
for _, mask := range t.masks {
n += bits.OnesCount64(mask)
}
return n
}
// grow ensures that t has enough room for n items, potentially reallocating the
// internal buffers if their capacity was too small to hold this many items.
func (t *Table[Key, Item]) grow(n int) {
// Round up to a multiple of 64 since this is the smallest increment due to
// using 64 bits masks.
n = (n*64 + 63) / 64
if n > len(t.masks) {
masks := make([]uint64, n)
copy(masks, t.masks)
items := make([]Item, n*64)
copy(items, t.items)
t.masks = masks
t.items = items
}
}
// Insert inserts the given item to the table, returning the key that it is
// mapped to or false if the table was full.
//
// The method does not perform deduplication, it is possible for the same item
// to be inserted multiple times, each insertion will return a different key.
func (t *Table[Key, Item]) Insert(item Item) (key Key, ok bool) {
offset := 0
insert:
// Note: this loop could be made a lot more efficient using vectorized
// operations: 256 bits vector registers would yield a theoretical 4x
// speed up (e.g. using AVX2).
for index, mask := range t.masks[offset:] {
if ^mask != 0 { // not full?
shift := bits.TrailingZeros64(^mask)
index += offset
key = Key(index)*64 + Key(shift)
t.items[key] = item
t.masks[index] = mask | uint64(1<<shift)
return key, key >= 0
}
}
offset = len(t.masks)
n := 2 * len(t.masks)
if n == 0 {
n = 1
}
t.grow(n)
goto insert
}
// Lookup returns the item associated with the given key (may be nil).
func (t *Table[Key, Item]) Lookup(key Key) (item Item, found bool) {
if key < 0 { // invalid key
return
}
if i := int(key); i >= 0 && i < len(t.items) {
index := uint(key) / 64
shift := uint(key) % 64
if (t.masks[index] & (1 << shift)) != 0 {
item, found = t.items[i], true
}
}
return
}
// InsertAt inserts the given `item` at the item descriptor `key`. This returns
// false if the insert was impossible due to negative key.
func (t *Table[Key, Item]) InsertAt(item Item, key Key) bool {
if key < 0 {
return false
}
if diff := int(key) - t.Len(); diff > 0 {
t.grow(diff)
}
index := uint(key) / 64
shift := uint(key) % 64
t.masks[index] |= 1 << shift
t.items[key] = item
return true
}
// Delete deletes the item stored at the given key from the table.
func (t *Table[Key, Item]) Delete(key Key) {
if key < 0 { // invalid key
return
}
if index, shift := key/64, key%64; int(index) < len(t.masks) {
mask := t.masks[index]
if (mask & (1 << shift)) != 0 {
var zero Item
t.items[key] = zero
t.masks[index] = mask & ^uint64(1<<shift)
}
}
}
// Range calls f for each item and its associated key in the table. The function
// f might return false to interupt the iteration.
func (t *Table[Key, Item]) Range(f func(Key, Item) bool) {
for i, mask := range t.masks {
if mask == 0 {
continue
}
for j := Key(0); j < 64; j++ {
if (mask & (1 << j)) == 0 {
continue
}
if key := Key(i)*64 + j; !f(key, t.items[key]) {
return
}
}
}
}
// Reset clears the content of the table.
func (t *Table[Key, Item]) Reset() {
for i := range t.masks {
t.masks[i] = 0
}
var zero Item
for i := range t.items {
t.items[i] = zero
}
}