Files
wazero/internal/engine/wazevo/ssa/builder.go
Takeshi Yoneda 2ca59ecee8 wazevo: pass reset func to NewPool (#1796)
Signed-off-by: Takeshi Yoneda <t.y.mathetake@gmail.com>
2023-10-18 16:09:54 +09:00

1037 lines
34 KiB
Go

package ssa
import (
"fmt"
"sort"
"strings"
"github.com/tetratelabs/wazero/internal/engine/wazevo/wazevoapi"
)
// Builder is used to builds SSA consisting of Basic Blocks per function.
type Builder interface {
// Init must be called to reuse this builder for the next function.
Init(typ *Signature)
// Signature returns the Signature of the currently-compiled function.
Signature() *Signature
// BlockIDMax returns the maximum value of BasicBlocksID existing in the currently-compiled function.
BlockIDMax() BasicBlockID
// AllocateBasicBlock creates a basic block in SSA function.
AllocateBasicBlock() BasicBlock
// CurrentBlock returns the currently handled BasicBlock which is set by the latest call to SetCurrentBlock.
CurrentBlock() BasicBlock
// EntryBlock returns the entry BasicBlock of the currently-compiled function.
EntryBlock() BasicBlock
// SetCurrentBlock sets the instruction insertion target to the BasicBlock `b`.
SetCurrentBlock(b BasicBlock)
// DeclareVariable declares a Variable of the given Type.
DeclareVariable(Type) Variable
// DefineVariable defines a variable in the `block` with value.
// The defining instruction will be inserted into the `block`.
DefineVariable(variable Variable, value Value, block BasicBlock)
// DefineVariableInCurrentBB is the same as DefineVariable except the definition is
// inserted into the current BasicBlock. Alias to DefineVariable(x, y, CurrentBlock()).
DefineVariableInCurrentBB(variable Variable, value Value)
// AllocateInstruction returns a new Instruction.
AllocateInstruction() *Instruction
// InsertInstruction executes BasicBlock.InsertInstruction for the currently handled basic block.
InsertInstruction(raw *Instruction)
// allocateValue allocates an unused Value.
allocateValue(typ Type) Value
// MustFindValue searches the latest definition of the given Variable and returns the result.
MustFindValue(variable Variable) Value
// FindValueInLinearPath tries to find the latest definition of the given Variable in the linear path to the current BasicBlock.
// If it cannot find the definition, or it's not sealed yet, it returns ValueInvalid.
FindValueInLinearPath(variable Variable) Value
// Seal declares that we've known all the predecessors to this block and were added via AddPred.
// After calling this, AddPred will be forbidden.
Seal(blk BasicBlock)
// AnnotateValue is for debugging purpose.
AnnotateValue(value Value, annotation string)
// DeclareSignature appends the *Signature to be referenced by various instructions (e.g. OpcodeCall).
DeclareSignature(signature *Signature)
// Signatures returns the slice of declared Signatures.
Signatures() []*Signature
// ResolveSignature returns the Signature which corresponds to SignatureID.
ResolveSignature(id SignatureID) *Signature
// RunPasses runs various passes on the constructed SSA function.
RunPasses()
// Format returns the debugging string of the SSA function.
Format() string
// BlockIteratorBegin initializes the state to iterate over all the valid BasicBlock(s) compiled.
// Combined with BlockIteratorNext, we can use this like:
//
// for blk := builder.BlockIteratorBegin(); blk != nil; blk = builder.BlockIteratorNext() {
// // ...
// }
//
// The returned blocks are ordered in the order of AllocateBasicBlock being called.
BlockIteratorBegin() BasicBlock
// BlockIteratorNext advances the state for iteration initialized by BlockIteratorBegin.
// Returns nil if there's no unseen BasicBlock.
BlockIteratorNext() BasicBlock
// ValueRefCounts returns the map of ValueID to its reference count.
// The returned slice must not be modified.
ValueRefCounts() []int
// LayoutBlocks layouts the BasicBlock(s) so that backend can easily generate the code.
// During its process, it splits the critical edges in the function.
// This must be called after RunPasses. Otherwise, it panics.
//
// The resulting order is available via BlockIteratorReversePostOrderBegin and BlockIteratorReversePostOrderNext.
LayoutBlocks()
// BlockIteratorReversePostOrderBegin is almost the same as BlockIteratorBegin except it returns the BasicBlock in the reverse post-order.
// This is available after RunPasses is run.
BlockIteratorReversePostOrderBegin() BasicBlock
// BlockIteratorReversePostOrderNext is almost the same as BlockIteratorPostOrderNext except it returns the BasicBlock in the reverse post-order.
// This is available after RunPasses is run.
BlockIteratorReversePostOrderNext() BasicBlock
// ReturnBlock returns the BasicBlock which is used to return from the function.
ReturnBlock() BasicBlock
// InsertUndefined inserts an undefined instruction at the current position.
InsertUndefined()
// SetCurrentSourceOffset sets the current source offset. The incoming instruction will be annotated with this offset.
SetCurrentSourceOffset(line SourceOffset)
}
// NewBuilder returns a new Builder implementation.
func NewBuilder() Builder {
return &builder{
instructionsPool: wazevoapi.NewPool[Instruction](resetInstruction),
basicBlocksPool: wazevoapi.NewPool[basicBlock](resetBasicBlock),
valueAnnotations: make(map[ValueID]string),
signatures: make(map[SignatureID]*Signature),
blkVisited: make(map[*basicBlock]int),
valueIDAliases: make(map[ValueID]Value),
redundantParameterIndexToValue: make(map[int]Value),
returnBlk: &basicBlock{id: basicBlockIDReturnBlock},
}
}
// builder implements Builder interface.
type builder struct {
basicBlocksPool wazevoapi.Pool[basicBlock]
instructionsPool wazevoapi.Pool[Instruction]
signatures map[SignatureID]*Signature
currentSignature *Signature
// reversePostOrderedBasicBlocks are the BasicBlock(s) ordered in the reverse post-order after passCalculateImmediateDominators.
reversePostOrderedBasicBlocks []*basicBlock
currentBB *basicBlock
returnBlk *basicBlock
// variables track the types for Variable with the index regarded Variable.
variables []Type
// nextValueID is used by builder.AllocateValue.
nextValueID ValueID
// nextVariable is used by builder.AllocateVariable.
nextVariable Variable
valueIDAliases map[ValueID]Value
valueAnnotations map[ValueID]string
// valueRefCounts is used to lower the SSA in backend, and will be calculated
// by the last SSA-level optimization pass.
valueRefCounts []int
// dominators stores the immediate dominator of each BasicBlock.
// The index is blockID of the BasicBlock.
dominators []*basicBlock
// The followings are used for optimization passes/deterministic compilation.
instStack []*Instruction
blkVisited map[*basicBlock]int
valueIDToInstruction []*Instruction
blkStack []*basicBlock
blkStack2 []*basicBlock
ints []int
redundantParameterIndexToValue map[int]Value
vars []Variable
// blockIterCur is used to implement blockIteratorBegin and blockIteratorNext.
blockIterCur int
// donePasses is true if RunPasses is called.
donePasses bool
// doneBlockLayout is true if LayoutBlocks is called.
doneBlockLayout bool
currentSourceOffset SourceOffset
}
// ReturnBlock implements Builder.ReturnBlock.
func (b *builder) ReturnBlock() BasicBlock {
return b.returnBlk
}
// Init implements Builder.Reset.
func (b *builder) Init(s *Signature) {
b.currentSignature = s
resetBasicBlock(b.returnBlk)
b.instructionsPool.Reset()
b.basicBlocksPool.Reset()
b.donePasses = false
for _, sig := range b.signatures {
sig.used = false
}
b.ints = b.ints[:0]
b.blkStack = b.blkStack[:0]
b.blkStack2 = b.blkStack2[:0]
b.dominators = b.dominators[:0]
for i := 0; i < b.basicBlocksPool.Allocated(); i++ {
blk := b.basicBlocksPool.View(i)
delete(b.blkVisited, blk)
}
b.basicBlocksPool.Reset()
for i := Variable(0); i < b.nextVariable; i++ {
b.variables[i] = typeInvalid
}
for v := ValueID(0); v < b.nextValueID; v++ {
delete(b.valueAnnotations, v)
delete(b.valueIDAliases, v)
b.valueRefCounts[v] = 0
b.valueIDToInstruction[v] = nil
}
b.nextValueID = 0
b.reversePostOrderedBasicBlocks = b.reversePostOrderedBasicBlocks[:0]
b.donePasses = false
b.doneBlockLayout = false
for i := range b.valueRefCounts {
b.valueRefCounts[i] = 0
}
b.currentSourceOffset = sourceOffsetUnknown
}
// Signature implements Builder.Signature.
func (b *builder) Signature() *Signature {
return b.currentSignature
}
// AnnotateValue implements Builder.AnnotateValue.
func (b *builder) AnnotateValue(value Value, a string) {
b.valueAnnotations[value.ID()] = a
}
// AllocateInstruction implements Builder.AllocateInstruction.
func (b *builder) AllocateInstruction() *Instruction {
instr := b.instructionsPool.Allocate()
return instr
}
// DeclareSignature implements Builder.AnnotateValue.
func (b *builder) DeclareSignature(s *Signature) {
b.signatures[s.ID] = s
s.used = false
}
// Signatures implements Builder.Signatures.
func (b *builder) Signatures() (ret []*Signature) {
for _, sig := range b.signatures {
ret = append(ret, sig)
}
sort.Slice(ret, func(i, j int) bool {
return ret[i].ID < ret[j].ID
})
return
}
// SetCurrentSourceOffset implements Builder.SetCurrentSourceOffset.
func (b *builder) SetCurrentSourceOffset(l SourceOffset) {
b.currentSourceOffset = l
}
func (b *builder) usedSignatures() (ret []*Signature) {
for _, sig := range b.signatures {
if sig.used {
ret = append(ret, sig)
}
}
sort.Slice(ret, func(i, j int) bool {
return ret[i].ID < ret[j].ID
})
return
}
// ResolveSignature implements Builder.ResolveSignature.
func (b *builder) ResolveSignature(id SignatureID) *Signature {
return b.signatures[id]
}
// AllocateBasicBlock implements Builder.AllocateBasicBlock.
func (b *builder) AllocateBasicBlock() BasicBlock {
return b.allocateBasicBlock()
}
// allocateBasicBlock allocates a new basicBlock.
func (b *builder) allocateBasicBlock() *basicBlock {
id := BasicBlockID(b.basicBlocksPool.Allocated())
blk := b.basicBlocksPool.Allocate()
blk.id = id
blk.lastDefinitions = make(map[Variable]Value)
blk.unknownValues = make(map[Variable]Value)
return blk
}
// InsertInstruction implements Builder.InsertInstruction.
func (b *builder) InsertInstruction(instr *Instruction) {
b.currentBB.InsertInstruction(instr)
if l := b.currentSourceOffset; l.Valid() {
// Emit the source offset info only when the instruction has side effect because
// these are the only instructions that are accessed by stack unwinding.
// This reduces the significant amount of the offset info in the binary.
if instr.sideEffect() != sideEffectNone {
instr.annotateSourceOffset(l)
}
}
resultTypesFn := instructionReturnTypes[instr.opcode]
if resultTypesFn == nil {
panic("TODO: " + instr.Format(b))
}
t1, ts := resultTypesFn(b, instr)
if t1.invalid() {
return
}
r1 := b.allocateValue(t1)
instr.rValue = r1
tsl := len(ts)
if tsl == 0 {
return
}
// TODO: reuse slices, though this seems not to be common.
instr.rValues = make([]Value, tsl)
for i := 0; i < tsl; i++ {
instr.rValues[i] = b.allocateValue(ts[i])
}
}
// DefineVariable implements Builder.DefineVariable.
func (b *builder) DefineVariable(variable Variable, value Value, block BasicBlock) {
if b.variables[variable].invalid() {
panic("BUG: trying to define variable " + variable.String() + " but is not declared yet")
}
if b.variables[variable] != value.Type() {
panic(fmt.Sprintf("BUG: inconsistent type for variable %d: expected %s but got %s", variable, b.variables[variable], value.Type()))
}
bb := block.(*basicBlock)
bb.lastDefinitions[variable] = value
}
// DefineVariableInCurrentBB implements Builder.DefineVariableInCurrentBB.
func (b *builder) DefineVariableInCurrentBB(variable Variable, value Value) {
b.DefineVariable(variable, value, b.currentBB)
}
// SetCurrentBlock implements Builder.SetCurrentBlock.
func (b *builder) SetCurrentBlock(bb BasicBlock) {
b.currentBB = bb.(*basicBlock)
}
// CurrentBlock implements Builder.CurrentBlock.
func (b *builder) CurrentBlock() BasicBlock {
return b.currentBB
}
// EntryBlock implements Builder.EntryBlock.
func (b *builder) EntryBlock() BasicBlock {
return b.entryBlk()
}
// DeclareVariable implements Builder.DeclareVariable.
func (b *builder) DeclareVariable(typ Type) Variable {
v := b.allocateVariable()
iv := int(v)
if l := len(b.variables); l <= iv {
b.variables = append(b.variables, make([]Type, 2*(l+1))...)
}
b.variables[v] = typ
return v
}
// allocateVariable allocates a new variable.
func (b *builder) allocateVariable() (ret Variable) {
ret = b.nextVariable
b.nextVariable++
return
}
// allocateValue implements Builder.AllocateValue.
func (b *builder) allocateValue(typ Type) (v Value) {
v = Value(b.nextValueID)
v = v.setType(typ)
b.nextValueID++
return
}
// FindValueInLinearPath implements Builder.FindValueInLinearPath.
func (b *builder) FindValueInLinearPath(variable Variable) Value {
return b.findValueInLinearPath(variable, b.currentBB)
}
func (b *builder) findValueInLinearPath(variable Variable, blk *basicBlock) Value {
if val, ok := blk.lastDefinitions[variable]; ok {
return val
} else if !blk.sealed {
return ValueInvalid
}
if pred := blk.singlePred; pred != nil {
// If this block is sealed and have only one predecessor,
// we can use the value in that block without ambiguity on definition.
return b.findValueInLinearPath(variable, pred)
}
if len(blk.preds) == 1 {
panic("BUG")
}
return ValueInvalid
}
// MustFindValue implements Builder.MustFindValue.
func (b *builder) MustFindValue(variable Variable) Value {
typ := b.definedVariableType(variable)
return b.findValue(typ, variable, b.currentBB)
}
// findValue recursively tries to find the latest definition of a `variable`. The algorithm is described in
// the section 2 of the paper https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.
//
// TODO: reimplement this in iterative, not recursive, to avoid stack overflow.
func (b *builder) findValue(typ Type, variable Variable, blk *basicBlock) Value {
if val, ok := blk.lastDefinitions[variable]; ok {
// The value is already defined in this block!
return val
} else if !blk.sealed { // Incomplete CFG as in the paper.
// If this is not sealed, that means it might have additional unknown predecessor later on.
// So we temporarily define the placeholder value here (not add as a parameter yet!),
// and record it as unknown.
// The unknown values are resolved when we call seal this block via BasicBlock.Seal().
value := b.allocateValue(typ)
if wazevoapi.SSALoggingEnabled {
fmt.Printf("adding unknown value placeholder for %s at %d\n", variable, blk.id)
}
blk.lastDefinitions[variable] = value
blk.unknownValues[variable] = value
return value
}
if pred := blk.singlePred; pred != nil {
// If this block is sealed and have only one predecessor,
// we can use the value in that block without ambiguity on definition.
return b.findValue(typ, variable, pred)
} else if len(blk.preds) == 0 {
panic("BUG: value is not defined for " + variable.String())
}
// If this block has multiple predecessors, we have to gather the definitions,
// and treat them as an argument to this block.
//
// The first thing is to define a new parameter to this block which may or may not be redundant, but
// later we eliminate trivial params in an optimization pass. This must be done before finding the
// definitions in the predecessors so that we can break the cycle.
paramValue := blk.AddParam(b, typ)
b.DefineVariable(variable, paramValue, blk)
// After the new param is added, we have to manipulate the original branching instructions
// in predecessors so that they would pass the definition of `variable` as the argument to
// the newly added PHI.
for i := range blk.preds {
pred := &blk.preds[i]
value := b.findValue(typ, variable, pred.blk)
pred.branch.addArgumentBranchInst(value)
}
return paramValue
}
// Seal implements Builder.Seal.
func (b *builder) Seal(raw BasicBlock) {
blk := raw.(*basicBlock)
if len(blk.preds) == 1 {
blk.singlePred = blk.preds[0].blk
}
blk.sealed = true
// To get the deterministic compilation,
// we need to sort the parameters in the order of the variable index.
b.vars = b.vars[:0]
for v := range blk.unknownValues {
b.vars = append(b.vars, v)
}
sort.Slice(b.vars, func(i, j int) bool {
return b.vars[i] < b.vars[j]
})
for _, variable := range b.vars {
phiValue := blk.unknownValues[variable]
typ := b.definedVariableType(variable)
blk.addParamOn(typ, phiValue)
for i := range blk.preds {
pred := &blk.preds[i]
predValue := b.findValue(typ, variable, pred.blk)
if !predValue.Valid() {
panic("BUG: value is not defined anywhere in the predecessors in the CFG")
}
pred.branch.addArgumentBranchInst(predValue)
}
}
}
// definedVariableType returns the type of the given variable. If the variable is not defined yet, it panics.
func (b *builder) definedVariableType(variable Variable) Type {
typ := b.variables[variable]
if typ.invalid() {
panic(fmt.Sprintf("%s is not defined yet", variable))
}
return typ
}
// Format implements Builder.Format.
func (b *builder) Format() string {
str := strings.Builder{}
usedSigs := b.usedSignatures()
if len(usedSigs) > 0 {
str.WriteByte('\n')
str.WriteString("signatures:\n")
for _, sig := range usedSigs {
str.WriteByte('\t')
str.WriteString(sig.String())
str.WriteByte('\n')
}
}
var iterBegin, iterNext func() *basicBlock
if b.doneBlockLayout {
iterBegin, iterNext = b.blockIteratorReversePostOrderBegin, b.blockIteratorReversePostOrderNext
} else {
iterBegin, iterNext = b.blockIteratorBegin, b.blockIteratorNext
}
for bb := iterBegin(); bb != nil; bb = iterNext() {
str.WriteByte('\n')
str.WriteString(bb.FormatHeader(b))
str.WriteByte('\n')
for cur := bb.Root(); cur != nil; cur = cur.Next() {
str.WriteByte('\t')
str.WriteString(cur.Format(b))
str.WriteByte('\n')
}
}
return str.String()
}
// BlockIteratorNext implements Builder.BlockIteratorNext.
func (b *builder) BlockIteratorNext() BasicBlock {
if blk := b.blockIteratorNext(); blk == nil {
return nil // BasicBlock((*basicBlock)(nil)) != BasicBlock(nil)
} else {
return blk
}
}
// BlockIteratorNext implements Builder.BlockIteratorNext.
func (b *builder) blockIteratorNext() *basicBlock {
index := b.blockIterCur
for {
if index == b.basicBlocksPool.Allocated() {
return nil
}
ret := b.basicBlocksPool.View(index)
index++
if !ret.invalid {
b.blockIterCur = index
return ret
}
}
}
// BlockIteratorBegin implements Builder.BlockIteratorBegin.
func (b *builder) BlockIteratorBegin() BasicBlock {
return b.blockIteratorBegin()
}
// BlockIteratorBegin implements Builder.BlockIteratorBegin.
func (b *builder) blockIteratorBegin() *basicBlock {
b.blockIterCur = 0
return b.blockIteratorNext()
}
// BlockIteratorReversePostOrderBegin implements Builder.BlockIteratorReversePostOrderBegin.
func (b *builder) BlockIteratorReversePostOrderBegin() BasicBlock {
return b.blockIteratorReversePostOrderBegin()
}
// BlockIteratorBegin implements Builder.BlockIteratorBegin.
func (b *builder) blockIteratorReversePostOrderBegin() *basicBlock {
b.blockIterCur = 0
return b.blockIteratorReversePostOrderNext()
}
// BlockIteratorReversePostOrderNext implements Builder.BlockIteratorReversePostOrderNext.
func (b *builder) BlockIteratorReversePostOrderNext() BasicBlock {
if blk := b.blockIteratorReversePostOrderNext(); blk == nil {
return nil // BasicBlock((*basicBlock)(nil)) != BasicBlock(nil)
} else {
return blk
}
}
// BlockIteratorNext implements Builder.BlockIteratorNext.
func (b *builder) blockIteratorReversePostOrderNext() *basicBlock {
if b.blockIterCur >= len(b.reversePostOrderedBasicBlocks) {
return nil
} else {
ret := b.reversePostOrderedBasicBlocks[b.blockIterCur]
b.blockIterCur++
return ret
}
}
// ValueRefCounts implements Builder.ValueRefCounts.
func (b *builder) ValueRefCounts() []int {
return b.valueRefCounts
}
// alias records the alias of the given values. The alias(es) will be
// eliminated in the optimization pass via resolveArgumentAlias.
func (b *builder) alias(dst, src Value) {
b.valueIDAliases[dst.ID()] = src
}
// resolveArgumentAlias resolves the alias of the arguments of the given instruction.
func (b *builder) resolveArgumentAlias(instr *Instruction) {
if instr.v.Valid() {
instr.v = b.resolveAlias(instr.v)
}
if instr.v2.Valid() {
instr.v2 = b.resolveAlias(instr.v2)
}
if instr.v3.Valid() {
instr.v3 = b.resolveAlias(instr.v3)
}
for i, v := range instr.vs {
instr.vs[i] = b.resolveAlias(v)
}
}
// resolveAlias resolves the alias of the given value.
func (b *builder) resolveAlias(v Value) Value {
// Some aliases are chained, so we need to resolve them recursively.
for {
if src, ok := b.valueIDAliases[v.ID()]; ok {
v = src
} else {
break
}
}
return v
}
// entryBlk returns the entry block of the function.
func (b *builder) entryBlk() *basicBlock {
return b.basicBlocksPool.View(0)
}
// isDominatedBy returns true if the given block `n` is dominated by the given block `d`.
// Before calling this, the builder must pass by passCalculateImmediateDominators.
func (b *builder) isDominatedBy(n *basicBlock, d *basicBlock) bool {
if len(b.dominators) == 0 {
panic("BUG: passCalculateImmediateDominators must be called before calling isDominatedBy")
}
ent := b.entryBlk()
doms := b.dominators
for n != d && n != ent {
n = doms[n.id]
}
return n == d
}
// BlockIDMax implements Builder.BlockIDMax.
func (b *builder) BlockIDMax() BasicBlockID {
return BasicBlockID(b.basicBlocksPool.Allocated())
}
// LayoutBlocks implements Builder.LayoutBlocks. This re-organizes builder.reversePostOrderedBasicBlocks.
//
// TODO: there are tons of room for improvement here. e.g. LLVM has BlockPlacementPass using BlockFrequencyInfo,
// BranchProbabilityInfo, and LoopInfo to do a much better job. Also, if we have the profiling instrumentation
// like ball-larus algorithm, then we could do profile-guided optimization. Basically all of them are trying
// to maximize the fall-through opportunities which is most efficient.
//
// Here, fallthrough happens when a block ends with jump instruction whose target is the right next block in the
// builder.reversePostOrderedBasicBlocks.
//
// Currently, we just place blocks using the DFS reverse post-order of the dominator tree with the heuristics:
// 1. a split edge trampoline towards a loop header will be placed as a fallthrough.
// 2. we invert the brz and brnz if it makes the fallthrough more likely.
//
// This heuristic is done in maybeInvertBranches function.
func (b *builder) LayoutBlocks() {
if !b.donePasses {
panic("LayoutBlocks must be called after all passes are done")
}
b.clearBlkVisited()
// We might end up splitting critical edges which adds more basic blocks,
// so we store the currently existing basic blocks in nonSplitBlocks temporarily.
// That way we can iterate over the original basic blocks while appending new ones into reversePostOrderedBasicBlocks.
nonSplitBlocks := b.blkStack[:0]
for i, blk := range b.reversePostOrderedBasicBlocks {
if !blk.Valid() {
continue
}
nonSplitBlocks = append(nonSplitBlocks, blk)
if i != len(b.reversePostOrderedBasicBlocks)-1 {
_ = maybeInvertBranches(blk, b.reversePostOrderedBasicBlocks[i+1])
}
}
var trampolines []*basicBlock
// Reset the order slice since we update on the fly by splitting critical edges.
b.reversePostOrderedBasicBlocks = b.reversePostOrderedBasicBlocks[:0]
uninsertedTrampolines := b.blkStack2[:0]
for _, blk := range nonSplitBlocks {
for i := range blk.preds {
pred := blk.preds[i].blk
if _, ok := b.blkVisited[pred]; ok || !pred.Valid() {
continue
} else if pred.reversePostOrder < blk.reversePostOrder {
// This means the edge is critical, and this pred is the trampoline and yet to be inserted.
// Split edge trampolines must come before the destination in reverse post-order.
b.reversePostOrderedBasicBlocks = append(b.reversePostOrderedBasicBlocks, pred)
b.blkVisited[pred] = 0 // mark as inserted, the value is not used.
}
}
// Now that we've already added all the potential trampoline blocks incoming to this block,
// we can add this block itself.
b.reversePostOrderedBasicBlocks = append(b.reversePostOrderedBasicBlocks, blk)
b.blkVisited[blk] = 0 // mark as inserted, the value is not used.
if len(blk.success) < 2 {
// There won't be critical edge originating from this block.
continue
} else if blk.currentInstr.opcode == OpcodeBrTable {
// We don't split critical edges here, because at the construction site of BrTable, we already split the edges.
continue
}
for sidx, succ := range blk.success {
if !succ.ReturnBlock() && // If the successor is a return block, we need to split the edge any way because we need "epilogue" to be inserted.
// Plus if there's no multiple incoming edges to this successor, (pred, succ) is not critical.
len(succ.preds) < 2 {
continue
}
// Otherwise, we are sure this is a critical edge. To modify the CFG, we need to find the predecessor info
// from the successor.
var predInfo *basicBlockPredecessorInfo
for i := range succ.preds { // This linear search should not be a problem since the number of predecessors should almost always small.
pred := &succ.preds[i]
if pred.blk == blk {
predInfo = pred
break
}
}
if predInfo == nil {
// This must be a bug in somewhere around branch manipulation.
panic("BUG: predecessor info not found while the successor exists in successors list")
}
if wazevoapi.SSALoggingEnabled {
fmt.Printf("trying to split edge from %d->%d at %s\n",
blk.ID(), succ.ID(), predInfo.branch.Format(b))
}
trampoline := b.splitCriticalEdge(blk, succ, predInfo)
// Update the successors slice because the target is no longer the original `succ`.
blk.success[sidx] = trampoline
if wazevoapi.SSAValidationEnabled {
trampolines = append(trampolines, trampoline)
}
if wazevoapi.SSALoggingEnabled {
fmt.Printf("edge split from %d->%d at %s as %d->%d->%d \n",
blk.ID(), succ.ID(), predInfo.branch.Format(b),
blk.ID(), trampoline.ID(), succ.ID())
}
fallthroughBranch := blk.currentInstr
if fallthroughBranch.opcode == OpcodeJump && fallthroughBranch.blk == trampoline {
// This can be lowered as fallthrough at the end of the block.
b.reversePostOrderedBasicBlocks = append(b.reversePostOrderedBasicBlocks, trampoline)
b.blkVisited[trampoline] = 0 // mark as inserted, the value is not used.
} else {
uninsertedTrampolines = append(uninsertedTrampolines, trampoline)
}
}
for _, trampoline := range uninsertedTrampolines {
if trampoline.success[0].reversePostOrder <= trampoline.reversePostOrder { // "<=", not "<" because the target might be itself.
// This means the critical edge was backward, so we insert after the current block immediately.
b.reversePostOrderedBasicBlocks = append(b.reversePostOrderedBasicBlocks, trampoline)
b.blkVisited[trampoline] = 0 // mark as inserted, the value is not used.
} // If the target is forward, we can wait to insert until the target is inserted.
}
uninsertedTrampolines = uninsertedTrampolines[:0] // Reuse the stack for the next block.
}
if wazevoapi.SSALoggingEnabled {
var bs []string
for _, blk := range b.reversePostOrderedBasicBlocks {
bs = append(bs, blk.Name())
}
fmt.Println("ordered blocks: ", strings.Join(bs, ", "))
bs = bs[:0]
for visited := range b.blkVisited {
bs = append(bs, visited.Name())
}
sort.Slice(bs, func(i, j int) bool { return bs[i] < bs[j] })
fmt.Println("visited blocks: ", strings.Join(bs, ", "))
}
if wazevoapi.SSAValidationEnabled {
for _, trampoline := range trampolines {
if _, ok := b.blkVisited[trampoline]; !ok {
panic("BUG: trampoline block not inserted: " + trampoline.FormatHeader(b))
}
trampoline.validate(b)
}
}
// Reuse the stack for the next iteration.
b.blkStack2 = uninsertedTrampolines[:0]
// Now that we know the final placement of the blocks, we can explicitly mark the fallthrough jumps.
b.markFallthroughJumps()
b.doneBlockLayout = true
}
// markFallthroughJumps finds the fallthrough jumps and marks them as such.
func (b *builder) markFallthroughJumps() {
l := len(b.reversePostOrderedBasicBlocks) - 1
for i, blk := range b.reversePostOrderedBasicBlocks {
if i < l {
cur := blk.currentInstr
if cur.opcode == OpcodeJump && cur.blk == b.reversePostOrderedBasicBlocks[i+1] {
cur.AsFallthroughJump()
}
}
}
}
// maybeInvertBranches inverts the branch instructions if it is likely possible to the fallthrough more likely with simple heuristics.
// nextInRPO is the next block in the reverse post-order.
//
// Returns true if the branch is inverted for testing purpose.
func maybeInvertBranches(now *basicBlock, nextInRPO *basicBlock) bool {
fallthroughBranch := now.currentInstr
if fallthroughBranch.opcode == OpcodeBrTable {
return false
}
condBranch := fallthroughBranch.prev
if condBranch == nil || (condBranch.opcode != OpcodeBrnz && condBranch.opcode != OpcodeBrz) {
return false
}
if len(fallthroughBranch.vs) != 0 || len(condBranch.vs) != 0 {
// If either one of them has arguments, we don't invert the branches.
return false
}
// So this block has two branches (a conditional branch followed by an unconditional branch) at the end.
// We can invert the condition of the branch if it makes the fallthrough more likely.
fallthroughTarget, condTarget := fallthroughBranch.blk.(*basicBlock), condBranch.blk.(*basicBlock)
if fallthroughTarget.loopHeader {
// First, if the tail's target is loopHeader, we don't need to do anything here,
// because the edge is likely to be critical edge for complex loops (e.g. loop with branches inside it).
// That means, we will split the edge in the end of LayoutBlocks function, and insert the trampoline block
// right after this block, which will be fallthrough in any way.
return false
} else if condTarget.loopHeader {
// On the other hand, if the condBranch's target is loopHeader, we invert the condition of the branch
// so that we could get the fallthrough to the trampoline block.
goto invert
}
if fallthroughTarget == nextInRPO {
// Also, if the tail's target is the next block in the reverse post-order, we don't need to do anything here,
// because if this is not critical edge, we would end up placing these two blocks adjacent to each other.
// Even if it is the critical edge, we place the trampoline block right after this block, which will be fallthrough in any way.
return false
} else if condTarget == nextInRPO {
// If the condBranch's target is the next block in the reverse post-order, we invert the condition of the branch
// so that we could get the fallthrough to the block.
goto invert
} else {
return false
}
invert:
for i := range fallthroughTarget.preds {
pred := &fallthroughTarget.preds[i]
if pred.branch == fallthroughBranch {
pred.branch = condBranch
break
}
}
for i := range condTarget.preds {
pred := &condTarget.preds[i]
if pred.branch == condBranch {
pred.branch = fallthroughBranch
break
}
}
condBranch.InvertBrx()
condBranch.blk = fallthroughTarget
fallthroughBranch.blk = condTarget
if wazevoapi.SSALoggingEnabled {
fmt.Printf("inverting branches at %d->%d and %d->%d\n",
now.ID(), fallthroughTarget.ID(), now.ID(), condTarget.ID())
}
return true
}
// splitCriticalEdge splits the critical edge between the given predecessor (`pred`) and successor (owning `predInfo`).
//
// - `pred` is the source of the critical edge,
// - `succ` is the destination of the critical edge,
// - `predInfo` is the predecessor info in the succ.preds slice which represents the critical edge.
//
// Why splitting critical edges is important? See following links:
//
// - https://en.wikipedia.org/wiki/Control-flow_graph
// - https://nickdesaulniers.github.io/blog/2023/01/27/critical-edge-splitting/
//
// The returned basic block is the trampoline block which is inserted to split the critical edge.
func (b *builder) splitCriticalEdge(pred, succ *basicBlock, predInfo *basicBlockPredecessorInfo) *basicBlock {
// In the following, we convert the following CFG:
//
// pred --(originalBranch)--> succ
//
// to the following CFG:
//
// pred --(newBranch)--> trampoline --(originalBranch)-> succ
//
// where trampoline is a new basic block which is created to split the critical edge.
trampoline := b.allocateBasicBlock()
originalBranch := predInfo.branch
// Replace originalBranch with the newBranch.
newBranch := b.AllocateInstruction()
newBranch.opcode = originalBranch.opcode
newBranch.blk = trampoline
switch originalBranch.opcode {
case OpcodeJump:
case OpcodeBrz, OpcodeBrnz:
originalBranch.opcode = OpcodeJump // Trampoline consists of one unconditional branch.
newBranch.v = originalBranch.v
originalBranch.v = ValueInvalid
default:
panic("BUG: critical edge shouldn't be originated from br_table")
}
swapInstruction(pred, originalBranch, newBranch)
// Replace the original branch with the new branch.
trampoline.rootInstr = originalBranch
trampoline.currentInstr = originalBranch
trampoline.success = append(trampoline.success, succ) // Do not use []*basicBlock{pred} because we might have already allocated the slice.
trampoline.preds = append(trampoline.preds, // same as ^.
basicBlockPredecessorInfo{blk: pred, branch: newBranch})
b.Seal(trampoline)
// Update the original branch to point to the trampoline.
predInfo.blk = trampoline
predInfo.branch = originalBranch
if wazevoapi.SSAValidationEnabled {
trampoline.validate(b)
}
if len(trampoline.params) > 0 {
panic("trampoline should not have params")
}
// Assign the same order as the original block so that this will be placed before the actual destination.
trampoline.reversePostOrder = pred.reversePostOrder
return trampoline
}
// swapInstruction replaces `old` in the block `blk` with `New`.
func swapInstruction(blk *basicBlock, old, New *Instruction) {
if blk.rootInstr == old {
blk.rootInstr = New
next := old.next
New.next = next
next.prev = New
} else {
if blk.currentInstr == old {
blk.currentInstr = New
}
prev := old.prev
prev.next, New.prev = New, prev
if next := old.next; next != nil {
New.next, next.prev = next, New
}
}
old.prev, old.next = nil, nil
}
// InsertUndefined implements Builder.InsertUndefined.
func (b *builder) InsertUndefined() {
instr := b.AllocateInstruction()
instr.opcode = OpcodeUndefined
b.InsertInstruction(instr)
}