package wasm import ( "encoding/binary" "fmt" "math" "reflect" "sync" "unsafe" "github.com/tetratelabs/wazero/api" "github.com/tetratelabs/wazero/internal/internalapi" ) const ( // MemoryPageSize is the unit of memory length in WebAssembly, // and is defined as 2^16 = 65536. // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0 MemoryPageSize = uint32(65536) // MemoryLimitPages is maximum number of pages defined (2^16). // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#grow-mem MemoryLimitPages = uint32(65536) // MemoryPageSizeInBits satisfies the relation: "1 << MemoryPageSizeInBits == MemoryPageSize". MemoryPageSizeInBits = 16 ) // compile-time check to ensure MemoryInstance implements api.Memory var _ api.Memory = &MemoryInstance{} // MemoryInstance represents a memory instance in a store, and implements api.Memory. // // Note: In WebAssembly 1.0 (20191205), there may be up to one Memory per store, which means the precise memory is always // wasm.Store Memories index zero: `store.Memories[0]` // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0. type MemoryInstance struct { internalapi.WazeroOnlyType Buffer []byte Min, Cap, Max uint32 // mux is used to prevent overlapping calls to Grow. mux sync.RWMutex // definition is known at compile time. definition api.MemoryDefinition } // NewMemoryInstance creates a new instance based on the parameters in the SectionIDMemory. func NewMemoryInstance(memSec *Memory) *MemoryInstance { min := MemoryPagesToBytesNum(memSec.Min) capacity := MemoryPagesToBytesNum(memSec.Cap) return &MemoryInstance{ Buffer: make([]byte, min, capacity), Min: memSec.Min, Cap: memSec.Cap, Max: memSec.Max, } } // Definition implements the same method as documented on api.Memory. func (m *MemoryInstance) Definition() api.MemoryDefinition { return m.definition } // Size implements the same method as documented on api.Memory. func (m *MemoryInstance) Size() uint32 { return m.size() } // ReadByte implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadByte(offset uint32) (byte, bool) { if offset >= m.size() { return 0, false } return m.Buffer[offset], true } // ReadUint16Le implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadUint16Le(offset uint32) (uint16, bool) { if !m.hasSize(offset, 2) { return 0, false } return binary.LittleEndian.Uint16(m.Buffer[offset : offset+2]), true } // ReadUint32Le implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadUint32Le(offset uint32) (uint32, bool) { return m.readUint32Le(offset) } // ReadFloat32Le implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadFloat32Le(offset uint32) (float32, bool) { v, ok := m.readUint32Le(offset) if !ok { return 0, false } return math.Float32frombits(v), true } // ReadUint64Le implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadUint64Le(offset uint32) (uint64, bool) { return m.readUint64Le(offset) } // ReadFloat64Le implements the same method as documented on api.Memory. func (m *MemoryInstance) ReadFloat64Le(offset uint32) (float64, bool) { v, ok := m.readUint64Le(offset) if !ok { return 0, false } return math.Float64frombits(v), true } // Read implements the same method as documented on api.Memory. func (m *MemoryInstance) Read(offset, byteCount uint32) ([]byte, bool) { if !m.hasSize(offset, uint64(byteCount)) { return nil, false } return m.Buffer[offset : offset+byteCount : offset+byteCount], true } // WriteByte implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteByte(offset uint32, v byte) bool { if offset >= m.size() { return false } m.Buffer[offset] = v return true } // WriteUint16Le implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteUint16Le(offset uint32, v uint16) bool { if !m.hasSize(offset, 2) { return false } binary.LittleEndian.PutUint16(m.Buffer[offset:], v) return true } // WriteUint32Le implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteUint32Le(offset, v uint32) bool { return m.writeUint32Le(offset, v) } // WriteFloat32Le implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteFloat32Le(offset uint32, v float32) bool { return m.writeUint32Le(offset, math.Float32bits(v)) } // WriteUint64Le implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteUint64Le(offset uint32, v uint64) bool { return m.writeUint64Le(offset, v) } // WriteFloat64Le implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteFloat64Le(offset uint32, v float64) bool { return m.writeUint64Le(offset, math.Float64bits(v)) } // Write implements the same method as documented on api.Memory. func (m *MemoryInstance) Write(offset uint32, val []byte) bool { if !m.hasSize(offset, uint64(len(val))) { return false } copy(m.Buffer[offset:], val) return true } // WriteString implements the same method as documented on api.Memory. func (m *MemoryInstance) WriteString(offset uint32, val string) bool { if !m.hasSize(offset, uint64(len(val))) { return false } copy(m.Buffer[offset:], val) return true } // MemoryPagesToBytesNum converts the given pages into the number of bytes contained in these pages. func MemoryPagesToBytesNum(pages uint32) (bytesNum uint64) { return uint64(pages) << MemoryPageSizeInBits } // Grow implements the same method as documented on api.Memory. func (m *MemoryInstance) Grow(delta uint32) (result uint32, ok bool) { // We take write-lock here as the following might result in a new slice m.mux.Lock() defer m.mux.Unlock() currentPages := memoryBytesNumToPages(uint64(len(m.Buffer))) if delta == 0 { return currentPages, true } // If exceeds the max of memory size, we push -1 according to the spec. newPages := currentPages + delta if newPages > m.Max { return 0, false } else if newPages > m.Cap { // grow the memory. m.Buffer = append(m.Buffer, make([]byte, MemoryPagesToBytesNum(delta))...) m.Cap = newPages return currentPages, true } else { // We already have the capacity we need. sp := (*reflect.SliceHeader)(unsafe.Pointer(&m.Buffer)) sp.Len = int(MemoryPagesToBytesNum(newPages)) return currentPages, true } } // PageSize returns the current memory buffer size in pages. func (m *MemoryInstance) PageSize() (result uint32) { return memoryBytesNumToPages(uint64(len(m.Buffer))) } // PagesToUnitOfBytes converts the pages to a human-readable form similar to what's specified. e.g. 1 -> "64Ki" // // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-instances%E2%91%A0 func PagesToUnitOfBytes(pages uint32) string { k := pages * 64 if k < 1024 { return fmt.Sprintf("%d Ki", k) } m := k / 1024 if m < 1024 { return fmt.Sprintf("%d Mi", m) } g := m / 1024 if g < 1024 { return fmt.Sprintf("%d Gi", g) } return fmt.Sprintf("%d Ti", g/1024) } // Below are raw functions used to implement the api.Memory API: // memoryBytesNumToPages converts the given number of bytes into the number of pages. func memoryBytesNumToPages(bytesNum uint64) (pages uint32) { return uint32(bytesNum >> MemoryPageSizeInBits) } // size returns the size in bytes of the buffer. func (m *MemoryInstance) size() uint32 { return uint32(len(m.Buffer)) // We don't lock here because size can't become smaller. } // hasSize returns true if Len is sufficient for byteCount at the given offset. // // Note: This is always fine, because memory can grow, but never shrink. func (m *MemoryInstance) hasSize(offset uint32, byteCount uint64) bool { return uint64(offset)+byteCount <= uint64(len(m.Buffer)) // uint64 prevents overflow on add } // readUint32Le implements ReadUint32Le without using a context. This is extracted as both ints and floats are stored in // memory as uint32le. func (m *MemoryInstance) readUint32Le(offset uint32) (uint32, bool) { if !m.hasSize(offset, 4) { return 0, false } return binary.LittleEndian.Uint32(m.Buffer[offset : offset+4]), true } // readUint64Le implements ReadUint64Le without using a context. This is extracted as both ints and floats are stored in // memory as uint64le. func (m *MemoryInstance) readUint64Le(offset uint32) (uint64, bool) { if !m.hasSize(offset, 8) { return 0, false } return binary.LittleEndian.Uint64(m.Buffer[offset : offset+8]), true } // writeUint32Le implements WriteUint32Le without using a context. This is extracted as both ints and floats are stored // in memory as uint32le. func (m *MemoryInstance) writeUint32Le(offset uint32, v uint32) bool { if !m.hasSize(offset, 4) { return false } binary.LittleEndian.PutUint32(m.Buffer[offset:], v) return true } // writeUint64Le implements WriteUint64Le without using a context. This is extracted as both ints and floats are stored // in memory as uint64le. func (m *MemoryInstance) writeUint64Le(offset uint32, v uint64) bool { if !m.hasSize(offset, 8) { return false } binary.LittleEndian.PutUint64(m.Buffer[offset:], v) return true }