This completes the implementation of arm64 backend for SIMD instructions.
Notably, now the arm64 compiler passes 100% of WebAssemby 2.0 draft
specification tests.
Combined with the completion of the interpreter and amd64 backend (#624),
this finally resolves#484. Therefore, this also documents that wazero is
100% compatible with WebAssembly 1.0 and 2.0.
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This implements various SIMD instructions related to
load, store, and lane manipulations for all engines.
Notablely, now our engines pass the following specification tests:
* simd_address.wast
* simd_const.wast
* simd_align.wast
* simd_laod16_lane.wast
* simd_laod32_lane.wast
* simd_laod64_lane.wast
* simd_laod8_lane.wast
* simd_lane.wast
* simd_load_extend.wast
* simd_load_splat.wast
* simd_load_zero.wast
* simd_store.wast
* simd_store16_lane.wast
* simd_store32_lane.wast
* simd_store64_lane.wast
* simd_store8_lane.wast
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Adrian Cole <adrian@tetrate.io>
This notably changes NewRuntimeJIT to NewRuntimeCompiler as well renames
packages from jit to compiler.
This clarifies the implementation is AOT, not JIT, at least when
clarified to where it occurs (Runtime.CompileModule). In doing so, we
reduce any concern that compilation will happen during function
execution. We also free ourselves to create a JIT option without
confusion in the future via CompileConfig or otherwise.
Fixes#560
Signed-off-by: Adrian Cole <adrian@tetrate.io>