This removes WithWorkDirFS and any other attempts to resolve the current directory (".") in host functions. This is a reaction to reality of compilers who track this inside wasm (not via host functions). One nice side effect is substantially simpler internal implementation of file-systems.
This also allows experimental.WithFS to block file access via passing nil.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This implements wasi_snapshot_preview1.poll_oneoff for relative clock events,
and in doing so stubs `Nanosleep` which defaults to noop, but can be configured
to `time.Sleep`.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This completes the implementation of SIMD proposal for both
the interpreter and compiler(amd64).
This also fixes#210 by adding the complete documentation
over all the wazeroir operations.
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Crypt Keeper <64215+codefromthecrypt@users.noreply.github.com>
Memory.IndexByte is unneeded with better understanding of write-through
on Memory.Read. Removing this also helps usher folks into the myriad of
Go utilities that are compatable with []byte.
This also reduces the complexity of WASI which didn't need to re-buffer
random reads (also due to above).
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adds two clock interfaces: sys.Walltime and sys.Nanotime to
allow implementations to override readings for purposes of security or
determinism.
The default values of both are a fake timestamp, to avoid the sandbox
break we formerly had by returning the real time. This is similar to how
we don't inherit OS Env values.
This drops the text format (%.wat) and renames
InstantiateModuleFromCode to InstantiateModuleFromBinary as it is no
longer ambiguous.
We decided to stop supporting the text format as it isn't typically used
in production, yet costs a lot of work to develop. Given the resources
available and the increased work added with WebAssembly 2.0 and soon
WASI 2, we can't afford to spend the time on it.
The old parser is used only internally and will eventually be moved to
its own repository named watzero, possibly towards archival.
See #59
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This implements various SIMD instructions related to
load, store, and lane manipulations for all engines.
Notablely, now our engines pass the following specification tests:
* simd_address.wast
* simd_const.wast
* simd_align.wast
* simd_laod16_lane.wast
* simd_laod32_lane.wast
* simd_laod64_lane.wast
* simd_laod8_lane.wast
* simd_lane.wast
* simd_load_extend.wast
* simd_load_splat.wast
* simd_load_zero.wast
* simd_store.wast
* simd_store16_lane.wast
* simd_store32_lane.wast
* simd_store64_lane.wast
* simd_store8_lane.wast
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Adrian Cole <adrian@tetrate.io>
This consolidates the pattern used for context overrides, notably
replacing clock overrides via experimental.WithTimeNowUnixNano
and making all context keys internal.
This also makes sure experimental example tests are handled the same
way, notably backfilling one for WithFS
This notably changes NewRuntimeJIT to NewRuntimeCompiler as well renames
packages from jit to compiler.
This clarifies the implementation is AOT, not JIT, at least when
clarified to where it occurs (Runtime.CompileModule). In doing so, we
reduce any concern that compilation will happen during function
execution. We also free ourselves to create a JIT option without
confusion in the future via CompileConfig or otherwise.
Fixes#560
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit implements the v128.const, i32x4.add and i64x2.add in
interpreter mode and this adds support for the vector value types in the
locals and globals.
Notably, the vector type values can be passed and returned by exported functions
as well as host functions via two-uint64 encodings as described in #484 (comment).
Note: implementation of these instructions on JIT will be done in subsequent PR.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit enables WebAssembly 2.0 Core Specification tests.
In order to pass the tests, this fixes several places mostly on the
validation logic.
Note that SIMD instructions are not implemented yet.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Crypt Keeper <64215+codefromthecrypt@users.noreply.github.com>
This commit completes the reference-types proposal implementation.
Notably, this adds support for
* `ref.is_null`, `ref.func`, `ref.is_null` instructions
* `table.get`, `table.set`, `table.grow`, `table.size` and `table.fill` instructions
* `Externref` and `Funcref` types (including invocation via uint64 encoding).
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This performs several changes to allow compilation config to be
centralized and scoped properly. The immediate effects are that we can
now process external types during `Runtime.CompileModule` instead of
doing so later during `Runtime.InstantiateModule`. Another nice side
effect is memory size problems can err at a source line instead of
having to be handled in several places.
There are some API effects to this, and to pay for them, some less used
APIs were removed. The "easy APIs" are left alone. For example, the APIs
to compile and instantiate a module from Go or Wasm in one step are left
alone.
Here are the changes, some of which are only for consistency. Rationale
is summarized in each point.
* ModuleBuilder.Build -> ModuleBuilder.Compile
* The result of this is similar to `CompileModule`, and pairs better
with `ModuleBuilder.Instantiate` which is like `InstantiateModule`.
* CompiledCode -> CompiledModule
* We punted on this name, the result is more than just code. This is
better I think and more consistent as it introduces less terms.
* Adds CompileConfig param to Runtime.CompileModule.
* This holds existing features and will have future ones, such as
mapping externtypes to uint64 for wasm that doesn't yet support it.
* Merges Runtime.InstantiateModuleWithConfig with Runtime.InstantiateModule
* This allows us to explain APIs in terms of implicit or explicit
compilation and config, vs implicit, kindof implicit, and explicit.
* Removes Runtime.InstantiateModuleFromCodeWithConfig
* Similar to above, this API only saves the compilation step and also
difficult to reason with from a name POV.
* RuntimeConfig.WithMemory(CapacityPages|LimitPages) -> CompileConfig.WithMemorySizer
* This allows all error handling to be attached to the source line
* This also allows someone to reduce unbounded memory while knowing
what its minimum is.
* ModuleConfig.With(Import|ImportModule) -> CompileConfig.WithImportRenamer
* This allows more types of import manipulation, also without
conflating functions with globals.
* Adds api.ExternType
* Needed for ImportRenamer and will be needed later for ExportRenamer.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
By testing the side-effects of Memory.Read, we ensure users who control
the underlying memory capacity can use the returned slice for
write-through access to Wasm addressible memory. Notably, this allows a
shared fixed length data structure to exist with a pointer on the Go
side and a memory offset on the Wasm side.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Co-authored-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit adds support for multiple tables per module.
Notably, if the WithFeatureReferenceTypes is enabled,
call_indirect, table.init and table.copy instructions
can reference non-zero indexed tables.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
WebAssembly Core Working Draft 1 recently came out. Before that, we had
a toe-hold feature bucked called FinishedFeatures. This replaces
`RuntimeConfig.WithFinishedFeatures` with `RuntimeConfig.WithWasmCore2`.
This also adds `WithWasmCore1` for those who want to lock into 1.0
features as opposed to relying on defaults.
This also fixes some design debt where we hadn't finished migrating
public types that require constructor functions (NewXxx) to interfaces.
By using interfaces, we prevent people from accidentally initializing
key configuration directly (via &Xxx), causing nil field refs. This also
helps prevent confusion about how to use the type (ex pointer or not) as
there's only one way (as an interface).
See https://github.com/tetratelabs/wazero/issues/516
Signed-off-by: Adrian Cole <adrian@tetrate.io>
`Runtime.WithMemoryCapacityPages` is a function that determines memory
capacity in pages (65536 bytes per page). The inputs are the min and
possibly nil max defined by the module, and the default is to return
the min.
Ex. To set capacity to max when exists:
```golang
c.WithMemoryCapacityPages(func(minPages uint32, maxPages *uint32) uint32 {
if maxPages != nil {
return *maxPages
}
return minPages
})
```
Note: This applies at compile time, ModuleBuilder.Build or Runtime.CompileModule.
Fixes#500
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adds an experimental package to expose two work-in-progress
features:
* FunctionListener - for tracing etc.
* Sys - to control random number generators
Both the functionality and the names of the features above are
not stable. However, this should help those who can tolerate drift a
means to test things out.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Co-authored-by: Anuraag Agrawal <anuraaga@gmail.com>
This commit implements the rest of the unimplemented instructions in the
bulk-memory-operations proposal.
Notably, this adds support for table.init, table.copy and elem.drop
instructions toggled by FeatureBulkMemoryOperations.
Given that, now wazero has the complete support for the bulk-memory-operations
proposal as described in https://github.com/WebAssembly/spec/blob/main/proposals/bulk-memory-operations/Overview.mdfixes#321
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This prepares for exposing operations like Memory.Grow while keeping the
ability to trace what did that, by adding a `context.Context` initial
parameter. This adds this to all API methods that mutate or return
mutated data.
Before, we made a change to trace functions and general lifecycle
commands, but we missed this part. Ex. We track functions, but can't
track what closed the module, changed memory or a mutable constant.
Changing to do this now is not only more consistent, but helps us
optimize at least the interpreter to help users identify otherwise
opaque code that can cause harm. This is critical before we add more
functions that can cause harm, such as Memory.Grow.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adds Memory.IndexByte which allows efficent scanning for a
delimiter, ex NUL(0) in null-terminated strings.
This also adds an ad-hoc test to ensure we can export memory functions
such as grow. While this is implicitly in the spectests, it is easier to
find in the ad-hoc tests.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit adds the random module generator for compiler testing.
Notably, it only generates valid and (supposedly) compilable Wasm modules.
Generating such random sources/programs and using them for testing or
fuzzing compilers is the widely known way of securing and hardening them [1,2].
This commit only creates random modules where functions do not have
any meaningful body. That will be resolved in a subsequent commit
as the implementation for generating random function body could be
huge.
Note that the implementation has already found a bug #485, and can be
easily integrated with the fuzzing feature of Go 1.18:
func FuzzCompiler(f *testing.F) {
r := wazero.NewRuntimeWithConfig(wazero.NewRuntimeConfig().
WithFeatureMultiValue(true))
f.Fuzz(func(t *testing.T, seed []byte, numTypes, numFunctions, numImports, numExports, numGlobals, numElements, numData uint32, needStartSection bool) {
// Generate a random WebAssembly module.
m := Gen(seed, wasm.FeaturesFinished, numTypes, numFunctions, numImports, numExports, numGlobals, numElements, numData, needStartSection)
// Encode the generated module (*wasm.Module) as binary.
bin := binary.EncodeModule(m)
// Pass the generated binary into our compilers.
_, err := r.CompileModule(context.Background(), bin)
require.NoError(t, err)
})
}
[1] https://dl.acm.org/doi/fullHtml/10.1145/3363562
[2] https://en.wikipedia.org/wiki/Compiler_correctness
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>