Formerly, we introduced `wazero.Namespace` to help avoid module name or import conflicts while still sharing the runtime's compilation cache. Now that we've introduced `CompilationCache` `wazero.Namespace` is no longer necessary. By removing it, we reduce the conceptual load on end users as well internal complexity. Since most users don't use namespace, the change isn't very impactful.
Users who are only trying to avoid module name conflict can generate a name like below instead of using multiple runtimes:
```go
moduleName := fmt.Sprintf("%d", atomic.AddUint64(&m.instanceCounter, 1))
module, err := runtime.InstantiateModule(ctx, compiled, config.WithName(moduleName))
```
For `HostModuleBuilder` users, we no longer take `Namespace` as the last parameter of `Instantiate` method:
```diff
// log to the console.
_, err := r.NewHostModuleBuilder("env").
NewFunctionBuilder().WithFunc(logString).Export("log").
- Instantiate(ctx, r)
+ Instantiate(ctx)
if err != nil {
log.Panicln(err)
}
```
The following is an example diff a use of namespace can use to keep compilation cache while also ensuring their modules don't conflict:
```diff
func useMultipleRuntimes(ctx context.Context, cache) {
- r := wazero.NewRuntime(ctx)
+ cache := wazero.NewCompilationCache()
for i := 0; i < N; i++ {
- // Create a new namespace to instantiate modules into.
- ns := r.NewNamespace(ctx) // Note: this is closed when the Runtime is
+ r := wazero.NewRuntimeWithConfig(ctx, wazero.NewRuntimeConfig().WithCompilationCache(cache))
// Instantiate a new "env" module which exports a stateful function.
_, err := r.NewHostModuleBuilder("env").
```
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
We originally had a `context.Context` for anything that might be
traced, but it turned out to be only useful for lifecycle and host functions.
For instruction-scoped aspects like memory updates, a context parameter is too
fine-grained and also invisible in practice. For example, most users will use
the compiler engine, and its memory, global or table access will never use go's
context.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
While compilers should be conservative when targeting WebAssembly Core
features, runtimes should be lenient as otherwise people need to
constantly turn on all features. Currently, most examples have to turn
on 2.0 features because compilers such as AssemblyScript and TinyGo use
them by default. This matches the policy with the reality, and should
make first time use easier.
This top-levels an internal type as `api.CoreFeatures` and defaults to
2.0 as opposed to 1.0, our previous default. This is less cluttered than
the excess of `WithXXX` methods we had prior to implementing all
planned WebAssembly Core Specification 1.0 features.
Finally, this backfills rationale as flat config types were a distinct
decision even if feature set selection muddied the topic.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit enables WebAssembly 2.0 Core Specification tests.
In order to pass the tests, this fixes several places mostly on the
validation logic.
Note that SIMD instructions are not implemented yet.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Crypt Keeper <64215+codefromthecrypt@users.noreply.github.com>
This commit completes the reference-types proposal implementation.
Notably, this adds support for
* `ref.is_null`, `ref.func`, `ref.is_null` instructions
* `table.get`, `table.set`, `table.grow`, `table.size` and `table.fill` instructions
* `Externref` and `Funcref` types (including invocation via uint64 encoding).
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit adds support for multiple tables per module.
Notably, if the WithFeatureReferenceTypes is enabled,
call_indirect, table.init and table.copy instructions
can reference non-zero indexed tables.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit implements the rest of the unimplemented instructions in the
bulk-memory-operations proposal.
Notably, this adds support for table.init, table.copy and elem.drop
instructions toggled by FeatureBulkMemoryOperations.
Given that, now wazero has the complete support for the bulk-memory-operations
proposal as described in https://github.com/WebAssembly/spec/blob/main/proposals/bulk-memory-operations/Overview.mdfixes#321
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Global constants can be defined in wasm or in ModuleBuilder. In either
case, they end up being decoded and interpreted during instantiation.
This chooses signed encoding to avoid surprises. A more comprehensive
explanation was added to RATIONALE.md, but the motivation was a global
100 coming out negative.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adjusts towards the exiting code which used int32/64 instead of
uint32/64. The reason is that the spec indicates intepretation as signed
numbers, which affects the maximum value.
See https://www.w3.org/TR/wasm-core-1/#value-types%E2%91%A2
Signed-off-by: Adrian Cole <adrian@tetrate.io>
During #425, @neilalexander gave constructive feedback that the API is
both moving fast, and not good enough yet. This attempts to reduce the
incidental complexity at the cost of a little conflation.
### odd presence of `wasm` and `wasi` packages -> `api` package
We had public API packages in wasm and wasi, which helped us avoid
leaking too many internals as public. That these had names that look
like there should be implementations in them cause unnecessary
confusion. This squashes both into one package "api" which has no
package collission with anything.
We've long struggled with the poorly specified and non-uniformly
implemented WASI specification. Trying to bring visibility to its
constraints knowing they are routinely invalid taints our API for no
good reason. This removes all `WASI` commands for a default to invoke
the function `_start` if it exists. In doing so, there's only one path
to start a module.
Moreover, this puts all wasi code in a top-level package "wasi" as it
isn't re-imported by any internal types.
### Reuse of Module for pre and post instantiation to `Binary` -> `Module`
Module is defined by WebAssembly in many phases, from decoded to
instantiated. However, using the same noun in multiple packages is very
confusing. We at one point tried a name "DecodedModule" or
"InstantiatedModule", but this is a fools errand. By deviating slightly
from the spec we can make it unambiguous what a module is.
This make a result of compilation a `Binary`, retaining `Module` for an
instantiated one. In doing so, there's no longer any name conflicts
whatsoever.
### Confusion about config -> `ModuleConfig`
Also caused by splitting wasm into wasm+wasi is configuration. This
conflates both into the same type `ModuleConfig` as it is simpler than
trying to explain a "will never be finished" api of wasi snapshot-01 in
routine use of WebAssembly. In other words, this further moves WASI out
of the foreground as it has been nothing but burden.
```diff
--- a/README.md
+++ b/README.md
@@ -49,8 +49,8 @@ For example, here's how you can allow WebAssembly modules to read
-wm, err := r.InstantiateModule(wazero.WASISnapshotPreview1())
-defer wm.Close()
+wm, err := wasi.InstantiateSnapshotPreview1(r)
+defer wm.Close()
-sysConfig := wazero.NewSysConfig().WithFS(os.DirFS("/work/home"))
-module, err := wazero.StartWASICommandWithConfig(r, compiled, sysConfig)
+config := wazero.ModuleConfig().WithFS(os.DirFS("/work/home"))
+module, err := r.InstantiateModule(binary, config)
defer module.Close()
...
```
This enforces all ElementSegment rules prior to creating a new module
engine. This allows flexibility and less errors inside that function.
This also uses interface as table element to pass tests with -race
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Co-authored-by: Takeshi Yoneda <takeshi@tetrate.io>
This flattens Memory and Table types, particularly making it a
compilation error to add multiple of either.
This also backfills binary encoding of Table.
Signed-off-by: Adrian Cole <adrian@tetrate.io>