This adds ExportedFunctionDefinitions and ExportedMemoryDefinitions to
api.Module so that those who can't access CompileModule can see them.
Fixes#839
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This switches to gofumpt and applies changes, as I've noticed working
in dapr (who uses this) that it finds some things that are annoying,
such as inconsistent block formatting in test tables.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
It is more often the case that projects are enabling a freestanding
target, and that may or may not have an exporting memory depending on
how that's interpreted. This adds the ability to inspect memories
similar to how you can already inspect compiled code prior to
instantiation. For example, you can enforce an ABI constraint that
"memory" must be exported even if WASI is not in use.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
We formerly introduced `MemorySizer` as a way to control capacity independently of size. This was the first and only feature in `CompileConfig`. While possibly used privately, `MemorySizer` has never been used in public GitHub code.
These APIs interfere with how we do caching of compiled modules. Notably, they can change the min or max defined in wasm, which invalidates some constants. This has also had a bad experience, forcing everyone to boilerplate`wazero.NewCompileConfig()` despite that API never being used in open source.
This addresses the use cases in a different way, by moving configuration to `RuntimeConfig` instead. This allows us to remove `MemorySizer` and `CompileConfig`, and the problems with them, yet still retaining functionality in case someone uses it.
* `RuntimeConfig.WithMemoryLimitPages(uint32)`: Prevents memory from growing to 4GB (spec limit) per instance.
* This works regardless of whether the wasm encodes max or not. If there is no max, it becomes effectively this value.
* `RuntimeConfig.WithMemoryCapacityFromMax(bool)`: Prevents reallocations (when growing).
* Wasm that never sets max will grow from min to the limit above.
Note: Those who want to change their wasm (ex insert a max where there was none), have to do that externally, ex via compiler settings or post-build transformations such as [wabin](https://github.com/tetratelabs/wabin)
Signed-off-by: Adrian Cole <adrian@tetrate.io>
While compilers should be conservative when targeting WebAssembly Core
features, runtimes should be lenient as otherwise people need to
constantly turn on all features. Currently, most examples have to turn
on 2.0 features because compilers such as AssemblyScript and TinyGo use
them by default. This matches the policy with the reality, and should
make first time use easier.
This top-levels an internal type as `api.CoreFeatures` and defaults to
2.0 as opposed to 1.0, our previous default. This is less cluttered than
the excess of `WithXXX` methods we had prior to implementing all
planned WebAssembly Core Specification 1.0 features.
Finally, this backfills rationale as flat config types were a distinct
decision even if feature set selection muddied the topic.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This introduces wasm.CallEngine internal type, and assign it to the api.Function
implementations. api.Function.Call now uses that CallEngine assigned to it
to make function calls.
Internally, when creating CallEngine implementation, the compiler engine allocates
call frames and values stack. Previously, we allocate these stacks for each function calls,
which was a severe overhead as we can recognize in the benchmarks. As a result,
this reduces the memory usage (== reduces the GC jobs) as long as we reuse
the same api.Function multiple times.
As a side effect, now api.Function.Call is not goroutine-safe. So this adds the comment
about it on that method.
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This removes the constraint of a module being exclusively wasm or host
functions. Later pull requests can optimize special imports to be
implemented in wasm, particularly useful for disabled logging callbacks.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This top-levels `api.FunctionDefinition` which was formerly
experimental, and also adds import metadata to it. Now, it holds all
metadata known at compile time.
Here are the public API visible changes:
* api.ExportedFunction - replaced with api.FunctionDefinition as it is
usable for all types of functions.
* api.Function - `.ParamTypes/ResultTypes()` are replaced with
`.Definition().
* api.FunctionDefinition - extracted from experimental and adds
`.Import()` to get the any imported module and function name.
* experimental.FunctionDefinition - replaced with
api.FunctionDefinition.
* experimental.FunctionListenerFactory - adds first arg of the
instantiated module name, as it can be different than compiled.
* wazero.CompiledModule - Adds `.ImportedFunctions()` and changes result
type of `.ExportedFunctions()` to api.FunctionDefinition.
Internally, logic to create function definition are consolidated between
host and wasm-defined functions, notably wasm.Module now includes
`.BuildFunctionDefinitions()` which reduces duplication in
wasm.ModuleInstance `.BuildFunctions()`,
This obviates #681 by deleting the `ExportedFunction` type which
overlaps with this information.
This fixes#637 as it includes more metadata including imports.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Co-authored-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit implements the v128.const, i32x4.add and i64x2.add in
interpreter mode and this adds support for the vector value types in the
locals and globals.
Notably, the vector type values can be passed and returned by exported functions
as well as host functions via two-uint64 encodings as described in #484 (comment).
Note: implementation of these instructions on JIT will be done in subsequent PR.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit enables WebAssembly 2.0 Core Specification tests.
In order to pass the tests, this fixes several places mostly on the
validation logic.
Note that SIMD instructions are not implemented yet.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Crypt Keeper <64215+codefromthecrypt@users.noreply.github.com>
This commit completes the reference-types proposal implementation.
Notably, this adds support for
* `ref.is_null`, `ref.func`, `ref.is_null` instructions
* `table.get`, `table.set`, `table.grow`, `table.size` and `table.fill` instructions
* `Externref` and `Funcref` types (including invocation via uint64 encoding).
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This performs several changes to allow compilation config to be
centralized and scoped properly. The immediate effects are that we can
now process external types during `Runtime.CompileModule` instead of
doing so later during `Runtime.InstantiateModule`. Another nice side
effect is memory size problems can err at a source line instead of
having to be handled in several places.
There are some API effects to this, and to pay for them, some less used
APIs were removed. The "easy APIs" are left alone. For example, the APIs
to compile and instantiate a module from Go or Wasm in one step are left
alone.
Here are the changes, some of which are only for consistency. Rationale
is summarized in each point.
* ModuleBuilder.Build -> ModuleBuilder.Compile
* The result of this is similar to `CompileModule`, and pairs better
with `ModuleBuilder.Instantiate` which is like `InstantiateModule`.
* CompiledCode -> CompiledModule
* We punted on this name, the result is more than just code. This is
better I think and more consistent as it introduces less terms.
* Adds CompileConfig param to Runtime.CompileModule.
* This holds existing features and will have future ones, such as
mapping externtypes to uint64 for wasm that doesn't yet support it.
* Merges Runtime.InstantiateModuleWithConfig with Runtime.InstantiateModule
* This allows us to explain APIs in terms of implicit or explicit
compilation and config, vs implicit, kindof implicit, and explicit.
* Removes Runtime.InstantiateModuleFromCodeWithConfig
* Similar to above, this API only saves the compilation step and also
difficult to reason with from a name POV.
* RuntimeConfig.WithMemory(CapacityPages|LimitPages) -> CompileConfig.WithMemorySizer
* This allows all error handling to be attached to the source line
* This also allows someone to reduce unbounded memory while knowing
what its minimum is.
* ModuleConfig.With(Import|ImportModule) -> CompileConfig.WithImportRenamer
* This allows more types of import manipulation, also without
conflating functions with globals.
* Adds api.ExternType
* Needed for ImportRenamer and will be needed later for ExportRenamer.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit adds support for multiple tables per module.
Notably, if the WithFeatureReferenceTypes is enabled,
call_indirect, table.init and table.copy instructions
can reference non-zero indexed tables.
part of #484
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
`Runtime.WithMemoryCapacityPages` is a function that determines memory
capacity in pages (65536 bytes per page). The inputs are the min and
possibly nil max defined by the module, and the default is to return
the min.
Ex. To set capacity to max when exists:
```golang
c.WithMemoryCapacityPages(func(minPages uint32, maxPages *uint32) uint32 {
if maxPages != nil {
return *maxPages
}
return minPages
})
```
Note: This applies at compile time, ModuleBuilder.Build or Runtime.CompileModule.
Fixes#500
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit implements the rest of the unimplemented instructions in the
bulk-memory-operations proposal.
Notably, this adds support for table.init, table.copy and elem.drop
instructions toggled by FeatureBulkMemoryOperations.
Given that, now wazero has the complete support for the bulk-memory-operations
proposal as described in https://github.com/WebAssembly/spec/blob/main/proposals/bulk-memory-operations/Overview.mdfixes#321
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This commit makes it possible for functions to be compiled before instantiation.
Notably, this adds CompileModule method on Engine interface where we pass
wasm.Module (which is the decoded module) to engines, and engines compile
all the module functions and caches them keyed on *wasm.Module.
In order to achieve that, this stops the compiled native code from embedding typeID
which is assigned for all the function types in a store.
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
This starts the process of removing all dependencies from wazero, by
isolating all assertions we use into a single file. This allows us to
port those assertions as we have time, and when twitchy is gone, the
project literally has no dependencies except go!
Signed-off-by: Adrian Cole <adrian@tetrate.io>
Global constants can be defined in wasm or in ModuleBuilder. In either
case, they end up being decoded and interpreted during instantiation.
This chooses signed encoding to avoid surprises. A more comprehensive
explanation was added to RATIONALE.md, but the motivation was a global
100 coming out negative.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adjusts towards the exiting code which used int32/64 instead of
uint32/64. The reason is that the spec indicates intepretation as signed
numbers, which affects the maximum value.
See https://www.w3.org/TR/wasm-core-1/#value-types%E2%91%A2
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This adds tests that pass without changing deferred error handling.
There are some tests that don't pass even without deferred error
handling. I'll add those in a separate PR.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
During #425, @neilalexander gave constructive feedback that the API is
both moving fast, and not good enough yet. This attempts to reduce the
incidental complexity at the cost of a little conflation.
### odd presence of `wasm` and `wasi` packages -> `api` package
We had public API packages in wasm and wasi, which helped us avoid
leaking too many internals as public. That these had names that look
like there should be implementations in them cause unnecessary
confusion. This squashes both into one package "api" which has no
package collission with anything.
We've long struggled with the poorly specified and non-uniformly
implemented WASI specification. Trying to bring visibility to its
constraints knowing they are routinely invalid taints our API for no
good reason. This removes all `WASI` commands for a default to invoke
the function `_start` if it exists. In doing so, there's only one path
to start a module.
Moreover, this puts all wasi code in a top-level package "wasi" as it
isn't re-imported by any internal types.
### Reuse of Module for pre and post instantiation to `Binary` -> `Module`
Module is defined by WebAssembly in many phases, from decoded to
instantiated. However, using the same noun in multiple packages is very
confusing. We at one point tried a name "DecodedModule" or
"InstantiatedModule", but this is a fools errand. By deviating slightly
from the spec we can make it unambiguous what a module is.
This make a result of compilation a `Binary`, retaining `Module` for an
instantiated one. In doing so, there's no longer any name conflicts
whatsoever.
### Confusion about config -> `ModuleConfig`
Also caused by splitting wasm into wasm+wasi is configuration. This
conflates both into the same type `ModuleConfig` as it is simpler than
trying to explain a "will never be finished" api of wasi snapshot-01 in
routine use of WebAssembly. In other words, this further moves WASI out
of the foreground as it has been nothing but burden.
```diff
--- a/README.md
+++ b/README.md
@@ -49,8 +49,8 @@ For example, here's how you can allow WebAssembly modules to read
-wm, err := r.InstantiateModule(wazero.WASISnapshotPreview1())
-defer wm.Close()
+wm, err := wasi.InstantiateSnapshotPreview1(r)
+defer wm.Close()
-sysConfig := wazero.NewSysConfig().WithFS(os.DirFS("/work/home"))
-module, err := wazero.StartWASICommandWithConfig(r, compiled, sysConfig)
+config := wazero.ModuleConfig().WithFS(os.DirFS("/work/home"))
+module, err := r.InstantiateModule(binary, config)
defer module.Close()
...
```
This allows users to reduce the memory limit per module below 4 Gi. This
is often needed because Wasm routinely leaves off the max, which implies
spec max (4 Gi). This uses Ki Gi etc in error messages because the spec
chooses to, though we can change to make it less awkward.
This also fixes an issue where we instantiated an engine inside config.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This flattens Memory and Table types, particularly making it a
compilation error to add multiple of either.
This also backfills binary encoding of Table.
Signed-off-by: Adrian Cole <adrian@tetrate.io>
This commit adds ModuleEngine interface which is used to
make calls and created per-module instance. Notably, this
enables us to remove the necessity for store to holds
FunctionInstances and FunctionIndex.
This is a follow-up from #342
Signed-off-by: Takeshi Yoneda <takeshi@tetrate.io>
Co-authored-by: Adrian Cole <adrian@tetrate.io>