Merge bitcoin-core/secp256k1#1551: Add ellswift usage example
31f84595c4Add ellswift usage example (Sebastian Falbesoner)fe4fbaa7f3examples: fix case typos in secret clearing paragraphs (s/, Or/, or/) (Sebastian Falbesoner) Pull request description: ACKs for top commit: real-or-random: utACK31f84595c4jonasnick: ACK31f84595c4Tree-SHA512: 5fe894b599c78db585a6d5238c17a894d020106561a625027efc4d67c870a288aad0814e77e7c3cb03e96b7cf940db95a6933d5a5e34a93aa644b3dcbfd8e938
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -10,6 +10,7 @@ ctime_tests
|
|||||||
ecdh_example
|
ecdh_example
|
||||||
ecdsa_example
|
ecdsa_example
|
||||||
schnorr_example
|
schnorr_example
|
||||||
|
ellswift_example
|
||||||
*.exe
|
*.exe
|
||||||
*.so
|
*.so
|
||||||
*.a
|
*.a
|
||||||
|
|||||||
@@ -7,6 +7,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||||||
|
|
||||||
## [Unreleased]
|
## [Unreleased]
|
||||||
|
|
||||||
|
#### Added
|
||||||
|
- Added usage example for an ElligatorSwift key exchange.
|
||||||
|
|
||||||
## [0.5.0] - 2024-05-06
|
## [0.5.0] - 2024-05-06
|
||||||
|
|
||||||
#### Added
|
#### Added
|
||||||
|
|||||||
11
Makefile.am
11
Makefile.am
@@ -184,6 +184,17 @@ schnorr_example_LDFLAGS += -lbcrypt
|
|||||||
endif
|
endif
|
||||||
TESTS += schnorr_example
|
TESTS += schnorr_example
|
||||||
endif
|
endif
|
||||||
|
if ENABLE_MODULE_ELLSWIFT
|
||||||
|
noinst_PROGRAMS += ellswift_example
|
||||||
|
ellswift_example_SOURCES = examples/ellswift.c
|
||||||
|
ellswift_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
|
||||||
|
ellswift_example_LDADD = libsecp256k1.la
|
||||||
|
ellswift_example_LDFLAGS = -static
|
||||||
|
if BUILD_WINDOWS
|
||||||
|
ellswift_example_LDFLAGS += -lbcrypt
|
||||||
|
endif
|
||||||
|
TESTS += ellswift_example
|
||||||
|
endif
|
||||||
endif
|
endif
|
||||||
|
|
||||||
### Precomputed tables
|
### Precomputed tables
|
||||||
|
|||||||
@@ -114,6 +114,7 @@ Usage examples can be found in the [examples](examples) directory. To compile th
|
|||||||
* [ECDSA example](examples/ecdsa.c)
|
* [ECDSA example](examples/ecdsa.c)
|
||||||
* [Schnorr signatures example](examples/schnorr.c)
|
* [Schnorr signatures example](examples/schnorr.c)
|
||||||
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
|
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
|
||||||
|
* [ElligatorSwift key exchange example](examples/ellswift.c)
|
||||||
|
|
||||||
To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
|
To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
|
||||||
|
|
||||||
|
|||||||
@@ -28,3 +28,7 @@ endif()
|
|||||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||||
add_example(schnorr)
|
add_example(schnorr)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
|
||||||
|
add_example(ellswift)
|
||||||
|
endif()
|
||||||
|
|||||||
@@ -108,7 +108,7 @@ int main(void) {
|
|||||||
|
|
||||||
/* It's best practice to try to clear secrets from memory after using them.
|
/* It's best practice to try to clear secrets from memory after using them.
|
||||||
* This is done because some bugs can allow an attacker to leak memory, for
|
* This is done because some bugs can allow an attacker to leak memory, for
|
||||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
* example through "out of bounds" array access (see Heartbleed), or the OS
|
||||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||||
*
|
*
|
||||||
* Here we are preventing these writes from being optimized out, as any good compiler
|
* Here we are preventing these writes from being optimized out, as any good compiler
|
||||||
|
|||||||
@@ -128,7 +128,7 @@ int main(void) {
|
|||||||
|
|
||||||
/* It's best practice to try to clear secrets from memory after using them.
|
/* It's best practice to try to clear secrets from memory after using them.
|
||||||
* This is done because some bugs can allow an attacker to leak memory, for
|
* This is done because some bugs can allow an attacker to leak memory, for
|
||||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
* example through "out of bounds" array access (see Heartbleed), or the OS
|
||||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||||
*
|
*
|
||||||
* Here we are preventing these writes from being optimized out, as any good compiler
|
* Here we are preventing these writes from being optimized out, as any good compiler
|
||||||
|
|||||||
123
examples/ellswift.c
Normal file
123
examples/ellswift.c
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
/*************************************************************************
|
||||||
|
* Written in 2024 by Sebastian Falbesoner *
|
||||||
|
* To the extent possible under law, the author(s) have dedicated all *
|
||||||
|
* copyright and related and neighboring rights to the software in this *
|
||||||
|
* file to the public domain worldwide. This software is distributed *
|
||||||
|
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||||||
|
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||||
|
*************************************************************************/
|
||||||
|
|
||||||
|
/** This file demonstrates how to use the ElligatorSwift module to perform
|
||||||
|
* a key exchange according to BIP 324. Additionally, see the documentation
|
||||||
|
* in include/secp256k1_ellswift.h and doc/ellswift.md.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <assert.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include <secp256k1.h>
|
||||||
|
#include <secp256k1_ellswift.h>
|
||||||
|
|
||||||
|
#include "examples_util.h"
|
||||||
|
|
||||||
|
int main(void) {
|
||||||
|
secp256k1_context* ctx;
|
||||||
|
unsigned char randomize[32];
|
||||||
|
unsigned char auxrand1[32];
|
||||||
|
unsigned char auxrand2[32];
|
||||||
|
unsigned char seckey1[32];
|
||||||
|
unsigned char seckey2[32];
|
||||||
|
unsigned char ellswift_pubkey1[64];
|
||||||
|
unsigned char ellswift_pubkey2[64];
|
||||||
|
unsigned char shared_secret1[32];
|
||||||
|
unsigned char shared_secret2[32];
|
||||||
|
int return_val;
|
||||||
|
|
||||||
|
/* Create a secp256k1 context */
|
||||||
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||||
|
if (!fill_random(randomize, sizeof(randomize))) {
|
||||||
|
printf("Failed to generate randomness\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
/* Randomizing the context is recommended to protect against side-channel
|
||||||
|
* leakage. See `secp256k1_context_randomize` in secp256k1.h for more
|
||||||
|
* information about it. This should never fail. */
|
||||||
|
return_val = secp256k1_context_randomize(ctx, randomize);
|
||||||
|
assert(return_val);
|
||||||
|
|
||||||
|
/*** Generate secret keys ***/
|
||||||
|
|
||||||
|
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||||||
|
* order), we try to sample a new key. Note that the probability of this
|
||||||
|
* happening is negligible. */
|
||||||
|
while (1) {
|
||||||
|
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
|
||||||
|
printf("Failed to generate randomness\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Generate ElligatorSwift public keys. This should never fail with valid context and
|
||||||
|
verified secret keys. Note that providing additional randomness (fourth parameter) is
|
||||||
|
optional, but recommended. */
|
||||||
|
if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) {
|
||||||
|
printf("Failed to generate randomness\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1);
|
||||||
|
assert(return_val);
|
||||||
|
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2);
|
||||||
|
assert(return_val);
|
||||||
|
|
||||||
|
/*** Create the shared secret on each side ***/
|
||||||
|
|
||||||
|
/* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail
|
||||||
|
* with a verified seckey and valid pubkey. Note that both parties pass both
|
||||||
|
* EllSwift pubkeys in the same order; the pubkey of the calling party is
|
||||||
|
* determined by the "party" boolean (sixth parameter). */
|
||||||
|
return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2,
|
||||||
|
seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
|
||||||
|
assert(return_val);
|
||||||
|
|
||||||
|
/* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail
|
||||||
|
* with a verified seckey and valid pubkey. */
|
||||||
|
return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2,
|
||||||
|
seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
|
||||||
|
assert(return_val);
|
||||||
|
|
||||||
|
/* Both parties should end up with the same shared secret */
|
||||||
|
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
|
||||||
|
assert(return_val == 0);
|
||||||
|
|
||||||
|
printf( " Secret Key1: ");
|
||||||
|
print_hex(seckey1, sizeof(seckey1));
|
||||||
|
printf( "EllSwift Pubkey1: ");
|
||||||
|
print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1));
|
||||||
|
printf("\n Secret Key2: ");
|
||||||
|
print_hex(seckey2, sizeof(seckey2));
|
||||||
|
printf( "EllSwift Pubkey2: ");
|
||||||
|
print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2));
|
||||||
|
printf("\n Shared Secret: ");
|
||||||
|
print_hex(shared_secret1, sizeof(shared_secret1));
|
||||||
|
|
||||||
|
/* This will clear everything from the context and free the memory */
|
||||||
|
secp256k1_context_destroy(ctx);
|
||||||
|
|
||||||
|
/* It's best practice to try to clear secrets from memory after using them.
|
||||||
|
* This is done because some bugs can allow an attacker to leak memory, for
|
||||||
|
* example through "out of bounds" array access (see Heartbleed), or the OS
|
||||||
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||||
|
*
|
||||||
|
* Here we are preventing these writes from being optimized out, as any good compiler
|
||||||
|
* will remove any writes that aren't used. */
|
||||||
|
secure_erase(seckey1, sizeof(seckey1));
|
||||||
|
secure_erase(seckey2, sizeof(seckey2));
|
||||||
|
secure_erase(shared_secret1, sizeof(shared_secret1));
|
||||||
|
secure_erase(shared_secret2, sizeof(shared_secret2));
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
@@ -146,7 +146,7 @@ int main(void) {
|
|||||||
|
|
||||||
/* It's best practice to try to clear secrets from memory after using them.
|
/* It's best practice to try to clear secrets from memory after using them.
|
||||||
* This is done because some bugs can allow an attacker to leak memory, for
|
* This is done because some bugs can allow an attacker to leak memory, for
|
||||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
* example through "out of bounds" array access (see Heartbleed), or the OS
|
||||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||||
*
|
*
|
||||||
* Here we are preventing these writes from being optimized out, as any good compiler
|
* Here we are preventing these writes from being optimized out, as any good compiler
|
||||||
|
|||||||
Reference in New Issue
Block a user