This commit introduces a new test file for context management, covering various scenarios for context creation, destruction, and capabilities. Additionally, it implements the generator multiplication context, enhancing the secp256k1 elliptic curve operations. The changes ensure comprehensive testing and improved functionality for context handling, contributing to the overall robustness of the implementation.
635 lines
14 KiB
Go
635 lines
14 KiB
Go
package p256k1
|
|
|
|
import (
|
|
"crypto/subtle"
|
|
"math/bits"
|
|
"unsafe"
|
|
)
|
|
|
|
// Scalar represents a scalar value modulo the secp256k1 group order.
|
|
// Uses 4 uint64 limbs to represent a 256-bit scalar.
|
|
type Scalar struct {
|
|
d [4]uint64
|
|
}
|
|
|
|
// Scalar constants from the C implementation
|
|
const (
|
|
// Limbs of the secp256k1 order n
|
|
scalarN0 = 0xBFD25E8CD0364141
|
|
scalarN1 = 0xBAAEDCE6AF48A03B
|
|
scalarN2 = 0xFFFFFFFFFFFFFFFE
|
|
scalarN3 = 0xFFFFFFFFFFFFFFFF
|
|
|
|
// Limbs of 2^256 minus the secp256k1 order (complement constants)
|
|
scalarNC0 = 0x402DA1732FC9BEBF // ~scalarN0 + 1
|
|
scalarNC1 = 0x4551231950B75FC4 // ~scalarN1
|
|
scalarNC2 = 0x0000000000000001 // 1
|
|
|
|
// Limbs of half the secp256k1 order
|
|
scalarNH0 = 0xDFE92F46681B20A0
|
|
scalarNH1 = 0x5D576E7357A4501D
|
|
scalarNH2 = 0xFFFFFFFFFFFFFFFF
|
|
scalarNH3 = 0x7FFFFFFFFFFFFFFF
|
|
)
|
|
|
|
// Scalar element constants
|
|
var (
|
|
// ScalarZero represents the scalar 0
|
|
ScalarZero = Scalar{d: [4]uint64{0, 0, 0, 0}}
|
|
|
|
// ScalarOne represents the scalar 1
|
|
ScalarOne = Scalar{d: [4]uint64{1, 0, 0, 0}}
|
|
)
|
|
|
|
// setInt sets a scalar to a small integer value
|
|
func (r *Scalar) setInt(v uint) {
|
|
r.d[0] = uint64(v)
|
|
r.d[1] = 0
|
|
r.d[2] = 0
|
|
r.d[3] = 0
|
|
}
|
|
|
|
// setB32 sets a scalar from a 32-byte big-endian array
|
|
func (r *Scalar) setB32(b []byte) bool {
|
|
if len(b) != 32 {
|
|
panic("scalar byte array must be 32 bytes")
|
|
}
|
|
|
|
// Convert from big-endian bytes to uint64 limbs
|
|
r.d[0] = uint64(b[31]) | uint64(b[30])<<8 | uint64(b[29])<<16 | uint64(b[28])<<24 |
|
|
uint64(b[27])<<32 | uint64(b[26])<<40 | uint64(b[25])<<48 | uint64(b[24])<<56
|
|
r.d[1] = uint64(b[23]) | uint64(b[22])<<8 | uint64(b[21])<<16 | uint64(b[20])<<24 |
|
|
uint64(b[19])<<32 | uint64(b[18])<<40 | uint64(b[17])<<48 | uint64(b[16])<<56
|
|
r.d[2] = uint64(b[15]) | uint64(b[14])<<8 | uint64(b[13])<<16 | uint64(b[12])<<24 |
|
|
uint64(b[11])<<32 | uint64(b[10])<<40 | uint64(b[9])<<48 | uint64(b[8])<<56
|
|
r.d[3] = uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
|
|
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
|
|
|
|
// Check if the scalar overflows the group order
|
|
overflow := r.checkOverflow()
|
|
if overflow {
|
|
r.reduce(1)
|
|
}
|
|
|
|
return overflow
|
|
}
|
|
|
|
// setB32Seckey sets a scalar from a 32-byte secret key, returns true if valid
|
|
func (r *Scalar) setB32Seckey(b []byte) bool {
|
|
overflow := r.setB32(b)
|
|
return !r.isZero() && !overflow
|
|
}
|
|
|
|
// getB32 converts a scalar to a 32-byte big-endian array
|
|
func (r *Scalar) getB32(b []byte) {
|
|
if len(b) != 32 {
|
|
panic("scalar byte array must be 32 bytes")
|
|
}
|
|
|
|
// Convert from uint64 limbs to big-endian bytes
|
|
b[31] = byte(r.d[0])
|
|
b[30] = byte(r.d[0] >> 8)
|
|
b[29] = byte(r.d[0] >> 16)
|
|
b[28] = byte(r.d[0] >> 24)
|
|
b[27] = byte(r.d[0] >> 32)
|
|
b[26] = byte(r.d[0] >> 40)
|
|
b[25] = byte(r.d[0] >> 48)
|
|
b[24] = byte(r.d[0] >> 56)
|
|
|
|
b[23] = byte(r.d[1])
|
|
b[22] = byte(r.d[1] >> 8)
|
|
b[21] = byte(r.d[1] >> 16)
|
|
b[20] = byte(r.d[1] >> 24)
|
|
b[19] = byte(r.d[1] >> 32)
|
|
b[18] = byte(r.d[1] >> 40)
|
|
b[17] = byte(r.d[1] >> 48)
|
|
b[16] = byte(r.d[1] >> 56)
|
|
|
|
b[15] = byte(r.d[2])
|
|
b[14] = byte(r.d[2] >> 8)
|
|
b[13] = byte(r.d[2] >> 16)
|
|
b[12] = byte(r.d[2] >> 24)
|
|
b[11] = byte(r.d[2] >> 32)
|
|
b[10] = byte(r.d[2] >> 40)
|
|
b[9] = byte(r.d[2] >> 48)
|
|
b[8] = byte(r.d[2] >> 56)
|
|
|
|
b[7] = byte(r.d[3])
|
|
b[6] = byte(r.d[3] >> 8)
|
|
b[5] = byte(r.d[3] >> 16)
|
|
b[4] = byte(r.d[3] >> 24)
|
|
b[3] = byte(r.d[3] >> 32)
|
|
b[2] = byte(r.d[3] >> 40)
|
|
b[1] = byte(r.d[3] >> 48)
|
|
b[0] = byte(r.d[3] >> 56)
|
|
}
|
|
|
|
// checkOverflow checks if the scalar is >= the group order
|
|
func (r *Scalar) checkOverflow() bool {
|
|
yes := 0
|
|
no := 0
|
|
|
|
// Check each limb from most significant to least significant
|
|
if r.d[3] < scalarN3 {
|
|
no = 1
|
|
}
|
|
if r.d[3] > scalarN3 {
|
|
yes = 1
|
|
}
|
|
|
|
if r.d[2] < scalarN2 {
|
|
no |= (yes ^ 1)
|
|
}
|
|
if r.d[2] > scalarN2 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
if r.d[1] < scalarN1 {
|
|
no |= (yes ^ 1)
|
|
}
|
|
if r.d[1] > scalarN1 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
if r.d[0] >= scalarN0 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
return yes != 0
|
|
}
|
|
|
|
// reduce reduces the scalar modulo the group order
|
|
func (r *Scalar) reduce(overflow int) {
|
|
if overflow < 0 || overflow > 1 {
|
|
panic("overflow must be 0 or 1")
|
|
}
|
|
|
|
// Use 128-bit arithmetic for the reduction
|
|
var t uint128
|
|
|
|
// d[0] += overflow * scalarNC0
|
|
t = uint128FromU64(r.d[0])
|
|
t = t.addU64(uint64(overflow) * scalarNC0)
|
|
r.d[0] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
// d[1] += overflow * scalarNC1 + carry
|
|
t = t.addU64(r.d[1])
|
|
t = t.addU64(uint64(overflow) * scalarNC1)
|
|
r.d[1] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
// d[2] += overflow * scalarNC2 + carry
|
|
t = t.addU64(r.d[2])
|
|
t = t.addU64(uint64(overflow) * scalarNC2)
|
|
r.d[2] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
// d[3] += carry (scalarNC3 = 0)
|
|
t = t.addU64(r.d[3])
|
|
r.d[3] = t.lo()
|
|
}
|
|
|
|
// add adds two scalars: r = a + b, returns overflow
|
|
func (r *Scalar) add(a, b *Scalar) bool {
|
|
var carry uint64
|
|
|
|
r.d[0], carry = bits.Add64(a.d[0], b.d[0], 0)
|
|
r.d[1], carry = bits.Add64(a.d[1], b.d[1], carry)
|
|
r.d[2], carry = bits.Add64(a.d[2], b.d[2], carry)
|
|
r.d[3], carry = bits.Add64(a.d[3], b.d[3], carry)
|
|
|
|
overflow := carry != 0 || r.checkOverflow()
|
|
if overflow {
|
|
r.reduce(1)
|
|
}
|
|
|
|
return overflow
|
|
}
|
|
|
|
// sub subtracts two scalars: r = a - b
|
|
func (r *Scalar) sub(a, b *Scalar) {
|
|
// Compute a - b = a + (-b)
|
|
var negB Scalar
|
|
negB.negate(b)
|
|
*r = *a
|
|
r.add(r, &negB)
|
|
}
|
|
|
|
// mul multiplies two scalars: r = a * b
|
|
func (r *Scalar) mul(a, b *Scalar) {
|
|
// Compute full 512-bit product using all 16 cross products
|
|
var l [8]uint64
|
|
r.mul512(l[:], a, b)
|
|
r.reduce512(l[:])
|
|
}
|
|
|
|
// mul512 computes the 512-bit product of two scalars (from C implementation)
|
|
func (r *Scalar) mul512(l8 []uint64, a, b *Scalar) {
|
|
// 160-bit accumulator (c0, c1, c2)
|
|
var c0, c1 uint64
|
|
var c2 uint32
|
|
|
|
// Helper macros translated from C
|
|
muladd := func(ai, bi uint64) {
|
|
hi, lo := bits.Mul64(ai, bi)
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, lo, 0)
|
|
c1, carry = bits.Add64(c1, hi, carry)
|
|
c2 += uint32(carry)
|
|
}
|
|
|
|
muladdFast := func(ai, bi uint64) {
|
|
hi, lo := bits.Mul64(ai, bi)
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, lo, 0)
|
|
c1 += hi + carry
|
|
}
|
|
|
|
extract := func() uint64 {
|
|
result := c0
|
|
c0 = c1
|
|
c1 = uint64(c2)
|
|
c2 = 0
|
|
return result
|
|
}
|
|
|
|
extractFast := func() uint64 {
|
|
result := c0
|
|
c0 = c1
|
|
c1 = 0
|
|
return result
|
|
}
|
|
|
|
// l8[0..7] = a[0..3] * b[0..3] (following C implementation exactly)
|
|
muladdFast(a.d[0], b.d[0])
|
|
l8[0] = extractFast()
|
|
|
|
muladd(a.d[0], b.d[1])
|
|
muladd(a.d[1], b.d[0])
|
|
l8[1] = extract()
|
|
|
|
muladd(a.d[0], b.d[2])
|
|
muladd(a.d[1], b.d[1])
|
|
muladd(a.d[2], b.d[0])
|
|
l8[2] = extract()
|
|
|
|
muladd(a.d[0], b.d[3])
|
|
muladd(a.d[1], b.d[2])
|
|
muladd(a.d[2], b.d[1])
|
|
muladd(a.d[3], b.d[0])
|
|
l8[3] = extract()
|
|
|
|
muladd(a.d[1], b.d[3])
|
|
muladd(a.d[2], b.d[2])
|
|
muladd(a.d[3], b.d[1])
|
|
l8[4] = extract()
|
|
|
|
muladd(a.d[2], b.d[3])
|
|
muladd(a.d[3], b.d[2])
|
|
l8[5] = extract()
|
|
|
|
muladdFast(a.d[3], b.d[3])
|
|
l8[6] = extractFast()
|
|
l8[7] = c0
|
|
}
|
|
|
|
// reduce512 reduces a 512-bit value to 256-bit (from C implementation)
|
|
func (r *Scalar) reduce512(l []uint64) {
|
|
// 160-bit accumulator
|
|
var c0, c1 uint64
|
|
var c2 uint32
|
|
|
|
// Extract upper 256 bits
|
|
n0, n1, n2, n3 := l[4], l[5], l[6], l[7]
|
|
|
|
// Helper macros
|
|
muladd := func(ai, bi uint64) {
|
|
hi, lo := bits.Mul64(ai, bi)
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, lo, 0)
|
|
c1, carry = bits.Add64(c1, hi, carry)
|
|
c2 += uint32(carry)
|
|
}
|
|
|
|
muladdFast := func(ai, bi uint64) {
|
|
hi, lo := bits.Mul64(ai, bi)
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, lo, 0)
|
|
c1 += hi + carry
|
|
}
|
|
|
|
sumadd := func(a uint64) {
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, a, 0)
|
|
c1, carry = bits.Add64(c1, 0, carry)
|
|
c2 += uint32(carry)
|
|
}
|
|
|
|
sumaddFast := func(a uint64) {
|
|
var carry uint64
|
|
c0, carry = bits.Add64(c0, a, 0)
|
|
c1 += carry
|
|
}
|
|
|
|
extract := func() uint64 {
|
|
result := c0
|
|
c0 = c1
|
|
c1 = uint64(c2)
|
|
c2 = 0
|
|
return result
|
|
}
|
|
|
|
extractFast := func() uint64 {
|
|
result := c0
|
|
c0 = c1
|
|
c1 = 0
|
|
return result
|
|
}
|
|
|
|
// Reduce 512 bits into 385 bits
|
|
// m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C
|
|
c0 = l[0]
|
|
c1 = 0
|
|
c2 = 0
|
|
muladdFast(n0, scalarNC0)
|
|
m0 := extractFast()
|
|
|
|
sumaddFast(l[1])
|
|
muladd(n1, scalarNC0)
|
|
muladd(n0, scalarNC1)
|
|
m1 := extract()
|
|
|
|
sumadd(l[2])
|
|
muladd(n2, scalarNC0)
|
|
muladd(n1, scalarNC1)
|
|
sumadd(n0)
|
|
m2 := extract()
|
|
|
|
sumadd(l[3])
|
|
muladd(n3, scalarNC0)
|
|
muladd(n2, scalarNC1)
|
|
sumadd(n1)
|
|
m3 := extract()
|
|
|
|
muladd(n3, scalarNC1)
|
|
sumadd(n2)
|
|
m4 := extract()
|
|
|
|
sumaddFast(n3)
|
|
m5 := extractFast()
|
|
m6 := uint32(c0)
|
|
|
|
// Reduce 385 bits into 258 bits
|
|
// p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C
|
|
c0 = m0
|
|
c1 = 0
|
|
c2 = 0
|
|
muladdFast(m4, scalarNC0)
|
|
p0 := extractFast()
|
|
|
|
sumaddFast(m1)
|
|
muladd(m5, scalarNC0)
|
|
muladd(m4, scalarNC1)
|
|
p1 := extract()
|
|
|
|
sumadd(m2)
|
|
muladd(uint64(m6), scalarNC0)
|
|
muladd(m5, scalarNC1)
|
|
sumadd(m4)
|
|
p2 := extract()
|
|
|
|
sumaddFast(m3)
|
|
muladdFast(uint64(m6), scalarNC1)
|
|
sumaddFast(m5)
|
|
p3 := extractFast()
|
|
p4 := uint32(c0 + uint64(m6))
|
|
|
|
// Reduce 258 bits into 256 bits
|
|
// r[0..3] = p[0..3] + p[4] * SECP256K1_N_C
|
|
var t uint128
|
|
|
|
t = uint128FromU64(p0)
|
|
t = t.addMul(scalarNC0, uint64(p4))
|
|
r.d[0] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
t = t.addU64(p1)
|
|
t = t.addMul(scalarNC1, uint64(p4))
|
|
r.d[1] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
t = t.addU64(p2)
|
|
t = t.addU64(uint64(p4))
|
|
r.d[2] = t.lo()
|
|
t = t.rshift(64)
|
|
|
|
t = t.addU64(p3)
|
|
r.d[3] = t.lo()
|
|
c := t.hi()
|
|
|
|
// Final reduction
|
|
r.reduce(int(c) + boolToInt(r.checkOverflow()))
|
|
}
|
|
|
|
// negate negates a scalar: r = -a
|
|
func (r *Scalar) negate(a *Scalar) {
|
|
// r = n - a where n is the group order
|
|
var borrow uint64
|
|
|
|
r.d[0], borrow = bits.Sub64(scalarN0, a.d[0], 0)
|
|
r.d[1], borrow = bits.Sub64(scalarN1, a.d[1], borrow)
|
|
r.d[2], borrow = bits.Sub64(scalarN2, a.d[2], borrow)
|
|
r.d[3], _ = bits.Sub64(scalarN3, a.d[3], borrow)
|
|
}
|
|
|
|
// inverse computes the modular inverse of a scalar
|
|
func (r *Scalar) inverse(a *Scalar) {
|
|
// Use Fermat's little theorem: a^(-1) = a^(n-2) mod n
|
|
// where n is the group order (which is prime)
|
|
|
|
// Use binary exponentiation with n-2
|
|
var exp Scalar
|
|
var borrow uint64
|
|
exp.d[0], borrow = bits.Sub64(scalarN0, 2, 0)
|
|
exp.d[1], borrow = bits.Sub64(scalarN1, 0, borrow)
|
|
exp.d[2], borrow = bits.Sub64(scalarN2, 0, borrow)
|
|
exp.d[3], _ = bits.Sub64(scalarN3, 0, borrow)
|
|
|
|
r.exp(a, &exp)
|
|
}
|
|
|
|
// exp computes r = a^b mod n using binary exponentiation
|
|
func (r *Scalar) exp(a, b *Scalar) {
|
|
*r = ScalarOne
|
|
base := *a
|
|
|
|
for i := 0; i < 4; i++ {
|
|
limb := b.d[i]
|
|
for j := 0; j < 64; j++ {
|
|
if limb&1 != 0 {
|
|
r.mul(r, &base)
|
|
}
|
|
base.mul(&base, &base)
|
|
limb >>= 1
|
|
}
|
|
}
|
|
}
|
|
|
|
// half computes r = a/2 mod n
|
|
func (r *Scalar) half(a *Scalar) {
|
|
*r = *a
|
|
|
|
if r.d[0]&1 == 0 {
|
|
// Even case: simple right shift
|
|
r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63)
|
|
r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63)
|
|
r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63)
|
|
r.d[3] = r.d[3] >> 1
|
|
} else {
|
|
// Odd case: add n then divide by 2
|
|
var carry uint64
|
|
r.d[0], carry = bits.Add64(r.d[0], scalarN0, 0)
|
|
r.d[1], carry = bits.Add64(r.d[1], scalarN1, carry)
|
|
r.d[2], carry = bits.Add64(r.d[2], scalarN2, carry)
|
|
r.d[3], _ = bits.Add64(r.d[3], scalarN3, carry)
|
|
|
|
// Now divide by 2
|
|
r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63)
|
|
r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63)
|
|
r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63)
|
|
r.d[3] = r.d[3] >> 1
|
|
}
|
|
}
|
|
|
|
// isZero returns true if the scalar is zero
|
|
func (r *Scalar) isZero() bool {
|
|
return (r.d[0] | r.d[1] | r.d[2] | r.d[3]) == 0
|
|
}
|
|
|
|
// isOne returns true if the scalar is one
|
|
func (r *Scalar) isOne() bool {
|
|
return r.d[0] == 1 && r.d[1] == 0 && r.d[2] == 0 && r.d[3] == 0
|
|
}
|
|
|
|
// isEven returns true if the scalar is even
|
|
func (r *Scalar) isEven() bool {
|
|
return r.d[0]&1 == 0
|
|
}
|
|
|
|
// isHigh returns true if the scalar is > n/2
|
|
func (r *Scalar) isHigh() bool {
|
|
var yes, no int
|
|
|
|
if r.d[3] < scalarNH3 {
|
|
no = 1
|
|
}
|
|
if r.d[3] > scalarNH3 {
|
|
yes = 1
|
|
}
|
|
|
|
if r.d[2] < scalarNH2 {
|
|
no |= (yes ^ 1)
|
|
}
|
|
if r.d[2] > scalarNH2 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
if r.d[1] < scalarNH1 {
|
|
no |= (yes ^ 1)
|
|
}
|
|
if r.d[1] > scalarNH1 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
if r.d[0] > scalarNH0 {
|
|
yes |= (no ^ 1)
|
|
}
|
|
|
|
return yes != 0
|
|
}
|
|
|
|
// condNegate conditionally negates the scalar if flag is true
|
|
func (r *Scalar) condNegate(flag int) {
|
|
if flag != 0 {
|
|
var neg Scalar
|
|
neg.negate(r)
|
|
*r = neg
|
|
}
|
|
}
|
|
|
|
// equal returns true if two scalars are equal
|
|
func (r *Scalar) equal(a *Scalar) bool {
|
|
return subtle.ConstantTimeCompare(
|
|
(*[32]byte)(unsafe.Pointer(&r.d[0]))[:32],
|
|
(*[32]byte)(unsafe.Pointer(&a.d[0]))[:32],
|
|
) == 1
|
|
}
|
|
|
|
// getBits extracts count bits starting at offset
|
|
func (r *Scalar) getBits(offset, count uint) uint32 {
|
|
if count == 0 || count > 32 {
|
|
panic("count must be 1-32")
|
|
}
|
|
if offset+count > 256 {
|
|
panic("offset + count must be <= 256")
|
|
}
|
|
|
|
limbIdx := offset / 64
|
|
bitIdx := offset % 64
|
|
|
|
if bitIdx+count <= 64 {
|
|
// Bits are within a single limb
|
|
return uint32((r.d[limbIdx] >> bitIdx) & ((1 << count) - 1))
|
|
} else {
|
|
// Bits span two limbs
|
|
lowBits := 64 - bitIdx
|
|
highBits := count - lowBits
|
|
low := uint32((r.d[limbIdx] >> bitIdx) & ((1 << lowBits) - 1))
|
|
high := uint32(r.d[limbIdx+1] & ((1 << highBits) - 1))
|
|
return low | (high << lowBits)
|
|
}
|
|
}
|
|
|
|
// cmov conditionally moves a scalar. If flag is true, r = a; otherwise r is unchanged.
|
|
func (r *Scalar) cmov(a *Scalar, flag int) {
|
|
mask := uint64(-(int64(flag) & 1))
|
|
r.d[0] ^= mask & (r.d[0] ^ a.d[0])
|
|
r.d[1] ^= mask & (r.d[1] ^ a.d[1])
|
|
r.d[2] ^= mask & (r.d[2] ^ a.d[2])
|
|
r.d[3] ^= mask & (r.d[3] ^ a.d[3])
|
|
}
|
|
|
|
// clear clears a scalar to prevent leaking sensitive information
|
|
func (r *Scalar) clear() {
|
|
memclear(unsafe.Pointer(&r.d[0]), unsafe.Sizeof(r.d))
|
|
}
|
|
|
|
// Helper functions for 128-bit arithmetic (using uint128 from field_mul.go)
|
|
|
|
func uint128FromU64(x uint64) uint128 {
|
|
return uint128{low: x, high: 0}
|
|
}
|
|
|
|
func (x uint128) addU64(y uint64) uint128 {
|
|
low, carry := bits.Add64(x.low, y, 0)
|
|
high := x.high + carry
|
|
return uint128{low: low, high: high}
|
|
}
|
|
|
|
func (x uint128) addMul(a, b uint64) uint128 {
|
|
hi, lo := bits.Mul64(a, b)
|
|
low, carry := bits.Add64(x.low, lo, 0)
|
|
high, _ := bits.Add64(x.high, hi, carry)
|
|
return uint128{low: low, high: high}
|
|
}
|
|
|
|
// Helper function to convert bool to int
|
|
func boolToInt(b bool) int {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|