Files
p256k1/avx/field.go
2025-11-28 16:35:08 +00:00

447 lines
13 KiB
Go

package avx
import "math/bits"
// Field operations modulo the secp256k1 field prime p.
// p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
// = 2^256 - 2^32 - 977
// SetBytes sets a field element from a 32-byte big-endian slice.
// Returns true if the value was >= p and was reduced.
func (f *FieldElement) SetBytes(b []byte) bool {
if len(b) != 32 {
panic("field element must be 32 bytes")
}
// Convert big-endian bytes to little-endian limbs
f.N[0].Lo = uint64(b[31]) | uint64(b[30])<<8 | uint64(b[29])<<16 | uint64(b[28])<<24 |
uint64(b[27])<<32 | uint64(b[26])<<40 | uint64(b[25])<<48 | uint64(b[24])<<56
f.N[0].Hi = uint64(b[23]) | uint64(b[22])<<8 | uint64(b[21])<<16 | uint64(b[20])<<24 |
uint64(b[19])<<32 | uint64(b[18])<<40 | uint64(b[17])<<48 | uint64(b[16])<<56
f.N[1].Lo = uint64(b[15]) | uint64(b[14])<<8 | uint64(b[13])<<16 | uint64(b[12])<<24 |
uint64(b[11])<<32 | uint64(b[10])<<40 | uint64(b[9])<<48 | uint64(b[8])<<56
f.N[1].Hi = uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
// Check overflow and reduce if necessary
overflow := f.checkOverflow()
if overflow {
f.reduce()
}
return overflow
}
// Bytes returns the field element as a 32-byte big-endian slice.
func (f *FieldElement) Bytes() [32]byte {
var b [32]byte
b[31] = byte(f.N[0].Lo)
b[30] = byte(f.N[0].Lo >> 8)
b[29] = byte(f.N[0].Lo >> 16)
b[28] = byte(f.N[0].Lo >> 24)
b[27] = byte(f.N[0].Lo >> 32)
b[26] = byte(f.N[0].Lo >> 40)
b[25] = byte(f.N[0].Lo >> 48)
b[24] = byte(f.N[0].Lo >> 56)
b[23] = byte(f.N[0].Hi)
b[22] = byte(f.N[0].Hi >> 8)
b[21] = byte(f.N[0].Hi >> 16)
b[20] = byte(f.N[0].Hi >> 24)
b[19] = byte(f.N[0].Hi >> 32)
b[18] = byte(f.N[0].Hi >> 40)
b[17] = byte(f.N[0].Hi >> 48)
b[16] = byte(f.N[0].Hi >> 56)
b[15] = byte(f.N[1].Lo)
b[14] = byte(f.N[1].Lo >> 8)
b[13] = byte(f.N[1].Lo >> 16)
b[12] = byte(f.N[1].Lo >> 24)
b[11] = byte(f.N[1].Lo >> 32)
b[10] = byte(f.N[1].Lo >> 40)
b[9] = byte(f.N[1].Lo >> 48)
b[8] = byte(f.N[1].Lo >> 56)
b[7] = byte(f.N[1].Hi)
b[6] = byte(f.N[1].Hi >> 8)
b[5] = byte(f.N[1].Hi >> 16)
b[4] = byte(f.N[1].Hi >> 24)
b[3] = byte(f.N[1].Hi >> 32)
b[2] = byte(f.N[1].Hi >> 40)
b[1] = byte(f.N[1].Hi >> 48)
b[0] = byte(f.N[1].Hi >> 56)
return b
}
// IsZero returns true if the field element is zero.
func (f *FieldElement) IsZero() bool {
return f.N[0].IsZero() && f.N[1].IsZero()
}
// IsOne returns true if the field element is one.
func (f *FieldElement) IsOne() bool {
return f.N[0].Lo == 1 && f.N[0].Hi == 0 && f.N[1].IsZero()
}
// Equal returns true if two field elements are equal.
func (f *FieldElement) Equal(other *FieldElement) bool {
return f.N[0].Lo == other.N[0].Lo && f.N[0].Hi == other.N[0].Hi &&
f.N[1].Lo == other.N[1].Lo && f.N[1].Hi == other.N[1].Hi
}
// IsOdd returns true if the field element is odd.
func (f *FieldElement) IsOdd() bool {
return f.N[0].Lo&1 == 1
}
// checkOverflow returns true if f >= p.
func (f *FieldElement) checkOverflow() bool {
// p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
// Compare high to low
if f.N[1].Hi > FieldP.N[1].Hi {
return true
}
if f.N[1].Hi < FieldP.N[1].Hi {
return false
}
if f.N[1].Lo > FieldP.N[1].Lo {
return true
}
if f.N[1].Lo < FieldP.N[1].Lo {
return false
}
if f.N[0].Hi > FieldP.N[0].Hi {
return true
}
if f.N[0].Hi < FieldP.N[0].Hi {
return false
}
return f.N[0].Lo >= FieldP.N[0].Lo
}
// reduce reduces f modulo p by adding the complement (2^256 - p = 2^32 + 977).
func (f *FieldElement) reduce() {
// f = f - p = f + (2^256 - p) mod 2^256
// 2^256 - p = 0x1000003D1
var carry uint64
f.N[0].Lo, carry = bits.Add64(f.N[0].Lo, 0x1000003D1, 0)
f.N[0].Hi, carry = bits.Add64(f.N[0].Hi, 0, carry)
f.N[1].Lo, carry = bits.Add64(f.N[1].Lo, 0, carry)
f.N[1].Hi, _ = bits.Add64(f.N[1].Hi, 0, carry)
}
// Add sets f = a + b mod p.
func (f *FieldElement) Add(a, b *FieldElement) *FieldElement {
var carry uint64
f.N[0].Lo, carry = bits.Add64(a.N[0].Lo, b.N[0].Lo, 0)
f.N[0].Hi, carry = bits.Add64(a.N[0].Hi, b.N[0].Hi, carry)
f.N[1].Lo, carry = bits.Add64(a.N[1].Lo, b.N[1].Lo, carry)
f.N[1].Hi, carry = bits.Add64(a.N[1].Hi, b.N[1].Hi, carry)
// If there was a carry or if result >= p, reduce
if carry != 0 || f.checkOverflow() {
f.reduce()
}
return f
}
// Sub sets f = a - b mod p.
func (f *FieldElement) Sub(a, b *FieldElement) *FieldElement {
var borrow uint64
f.N[0].Lo, borrow = bits.Sub64(a.N[0].Lo, b.N[0].Lo, 0)
f.N[0].Hi, borrow = bits.Sub64(a.N[0].Hi, b.N[0].Hi, borrow)
f.N[1].Lo, borrow = bits.Sub64(a.N[1].Lo, b.N[1].Lo, borrow)
f.N[1].Hi, borrow = bits.Sub64(a.N[1].Hi, b.N[1].Hi, borrow)
// If there was a borrow, add p back
if borrow != 0 {
var carry uint64
f.N[0].Lo, carry = bits.Add64(f.N[0].Lo, FieldP.N[0].Lo, 0)
f.N[0].Hi, carry = bits.Add64(f.N[0].Hi, FieldP.N[0].Hi, carry)
f.N[1].Lo, carry = bits.Add64(f.N[1].Lo, FieldP.N[1].Lo, carry)
f.N[1].Hi, _ = bits.Add64(f.N[1].Hi, FieldP.N[1].Hi, carry)
}
return f
}
// Negate sets f = -a mod p.
func (f *FieldElement) Negate(a *FieldElement) *FieldElement {
if a.IsZero() {
*f = FieldZero
return f
}
// f = p - a
var borrow uint64
f.N[0].Lo, borrow = bits.Sub64(FieldP.N[0].Lo, a.N[0].Lo, 0)
f.N[0].Hi, borrow = bits.Sub64(FieldP.N[0].Hi, a.N[0].Hi, borrow)
f.N[1].Lo, borrow = bits.Sub64(FieldP.N[1].Lo, a.N[1].Lo, borrow)
f.N[1].Hi, _ = bits.Sub64(FieldP.N[1].Hi, a.N[1].Hi, borrow)
return f
}
// Mul sets f = a * b mod p.
func (f *FieldElement) Mul(a, b *FieldElement) *FieldElement {
// Compute 512-bit product
var prod [8]uint64
fieldMul512(&prod, a, b)
// Reduce mod p using secp256k1's special structure
fieldReduce512(f, &prod)
return f
}
// fieldMul512 computes the 512-bit product of two 256-bit field elements.
func fieldMul512(prod *[8]uint64, a, b *FieldElement) {
aLimbs := [4]uint64{a.N[0].Lo, a.N[0].Hi, a.N[1].Lo, a.N[1].Hi}
bLimbs := [4]uint64{b.N[0].Lo, b.N[0].Hi, b.N[1].Lo, b.N[1].Hi}
// Clear product
for i := range prod {
prod[i] = 0
}
// Schoolbook multiplication
for i := 0; i < 4; i++ {
var carry uint64
for j := 0; j < 4; j++ {
hi, lo := bits.Mul64(aLimbs[i], bLimbs[j])
lo, c := bits.Add64(lo, prod[i+j], 0)
hi, _ = bits.Add64(hi, 0, c)
lo, c = bits.Add64(lo, carry, 0)
hi, _ = bits.Add64(hi, 0, c)
prod[i+j] = lo
carry = hi
}
prod[i+4] = carry
}
}
// fieldReduce512 reduces a 512-bit value mod p using secp256k1's special structure.
// p = 2^256 - 2^32 - 977, so 2^256 ≡ 2^32 + 977 (mod p)
func fieldReduce512(f *FieldElement, prod *[8]uint64) {
// The key insight: if we have a 512-bit number split as H*2^256 + L
// then H*2^256 + L ≡ H*(2^32 + 977) + L (mod p)
// Extract low and high 256-bit parts
low := [4]uint64{prod[0], prod[1], prod[2], prod[3]}
high := [4]uint64{prod[4], prod[5], prod[6], prod[7]}
// Compute high * (2^32 + 977) = high * 0x1000003D1
// This gives us at most a 289-bit result (256 + 33 bits)
const c = uint64(0x1000003D1)
var reduction [5]uint64
var carry uint64
for i := 0; i < 4; i++ {
hi, lo := bits.Mul64(high[i], c)
lo, cc := bits.Add64(lo, carry, 0)
hi, _ = bits.Add64(hi, 0, cc)
reduction[i] = lo
carry = hi
}
reduction[4] = carry
// Add low + reduction
var result [5]uint64
carry = 0
for i := 0; i < 4; i++ {
result[i], carry = bits.Add64(low[i], reduction[i], carry)
}
result[4] = carry + reduction[4]
// If result[4] is non-zero, we need to reduce again
// result[4] * 2^256 ≡ result[4] * (2^32 + 977) (mod p)
if result[4] != 0 {
hi, lo := bits.Mul64(result[4], c)
result[0], carry = bits.Add64(result[0], lo, 0)
result[1], carry = bits.Add64(result[1], hi, carry)
result[2], carry = bits.Add64(result[2], 0, carry)
result[3], _ = bits.Add64(result[3], 0, carry)
result[4] = 0
}
// Store result
f.N[0].Lo = result[0]
f.N[0].Hi = result[1]
f.N[1].Lo = result[2]
f.N[1].Hi = result[3]
// Final reduction if >= p
if f.checkOverflow() {
f.reduce()
}
}
// Sqr sets f = a^2 mod p.
func (f *FieldElement) Sqr(a *FieldElement) *FieldElement {
// Optimized squaring could save some multiplications, but for now use Mul
return f.Mul(a, a)
}
// Inverse sets f = a^(-1) mod p using Fermat's little theorem.
// a^(-1) = a^(p-2) mod p
func (f *FieldElement) Inverse(a *FieldElement) *FieldElement {
// p-2 in bytes (big-endian)
// p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
// p-2 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2D
pMinus2 := [32]byte{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2D,
}
var result, base FieldElement
result = FieldOne
base = *a
for i := 0; i < 32; i++ {
b := pMinus2[31-i]
for j := 0; j < 8; j++ {
if (b>>j)&1 == 1 {
result.Mul(&result, &base)
}
base.Sqr(&base)
}
}
*f = result
return f
}
// Sqrt sets f = sqrt(a) mod p if it exists, returns true if successful.
// For secp256k1, p ≡ 3 (mod 4), so sqrt(a) = a^((p+1)/4) mod p
func (f *FieldElement) Sqrt(a *FieldElement) bool {
// (p+1)/4 in bytes
// p+1 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30
// (p+1)/4 = 3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFF0C
pPlus1Div4 := [32]byte{
0x3F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xBF, 0xFF, 0xFF, 0x0C,
}
var result, base FieldElement
result = FieldOne
base = *a
for i := 0; i < 32; i++ {
b := pPlus1Div4[31-i]
for j := 0; j < 8; j++ {
if (b>>j)&1 == 1 {
result.Mul(&result, &base)
}
base.Sqr(&base)
}
}
// Verify: result^2 should equal a
var check FieldElement
check.Sqr(&result)
if check.Equal(a) {
*f = result
return true
}
return false
}
// MulInt sets f = a * n mod p where n is a small integer.
func (f *FieldElement) MulInt(a *FieldElement, n uint64) *FieldElement {
if n == 0 {
*f = FieldZero
return f
}
if n == 1 {
*f = *a
return f
}
// Multiply by small integer using proper carry chain
// We need to compute a 320-bit result (256 + 64 bits max)
var result [5]uint64
var carry uint64
// Multiply each 64-bit limb by n
var hi uint64
hi, result[0] = bits.Mul64(a.N[0].Lo, n)
carry = hi
hi, result[1] = bits.Mul64(a.N[0].Hi, n)
result[1], carry = bits.Add64(result[1], carry, 0)
carry = hi + carry // carry can be at most 1 here, so no overflow
hi, result[2] = bits.Mul64(a.N[1].Lo, n)
result[2], carry = bits.Add64(result[2], carry, 0)
carry = hi + carry
hi, result[3] = bits.Mul64(a.N[1].Hi, n)
result[3], carry = bits.Add64(result[3], carry, 0)
result[4] = hi + carry
// Store preliminary result
f.N[0].Lo = result[0]
f.N[0].Hi = result[1]
f.N[1].Lo = result[2]
f.N[1].Hi = result[3]
// Reduce overflow
if result[4] != 0 {
// overflow * 2^256 ≡ overflow * (2^32 + 977) (mod p)
hi, lo := bits.Mul64(result[4], 0x1000003D1)
f.N[0].Lo, carry = bits.Add64(f.N[0].Lo, lo, 0)
f.N[0].Hi, carry = bits.Add64(f.N[0].Hi, hi, carry)
f.N[1].Lo, carry = bits.Add64(f.N[1].Lo, 0, carry)
f.N[1].Hi, _ = bits.Add64(f.N[1].Hi, 0, carry)
}
if f.checkOverflow() {
f.reduce()
}
return f
}
// Double sets f = 2*a mod p (optimized addition).
func (f *FieldElement) Double(a *FieldElement) *FieldElement {
return f.Add(a, a)
}
// Half sets f = a/2 mod p.
func (f *FieldElement) Half(a *FieldElement) *FieldElement {
// If a is even, just shift right
// If a is odd, add p first (which makes it even), then shift right
var result FieldElement = *a
if result.N[0].Lo&1 == 1 {
// Add p
var carry uint64
result.N[0].Lo, carry = bits.Add64(result.N[0].Lo, FieldP.N[0].Lo, 0)
result.N[0].Hi, carry = bits.Add64(result.N[0].Hi, FieldP.N[0].Hi, carry)
result.N[1].Lo, carry = bits.Add64(result.N[1].Lo, FieldP.N[1].Lo, carry)
result.N[1].Hi, _ = bits.Add64(result.N[1].Hi, FieldP.N[1].Hi, carry)
}
// Shift right by 1
f.N[0].Lo = (result.N[0].Lo >> 1) | (result.N[0].Hi << 63)
f.N[0].Hi = (result.N[0].Hi >> 1) | (result.N[1].Lo << 63)
f.N[1].Lo = (result.N[1].Lo >> 1) | (result.N[1].Hi << 63)
f.N[1].Hi = result.N[1].Hi >> 1
return f
}
// CMov conditionally moves b into f if cond is true (constant-time).
func (f *FieldElement) CMov(b *FieldElement, cond bool) *FieldElement {
mask := uint64(0)
if cond {
mask = ^uint64(0)
}
f.N[0].Lo = (f.N[0].Lo &^ mask) | (b.N[0].Lo & mask)
f.N[0].Hi = (f.N[0].Hi &^ mask) | (b.N[0].Hi & mask)
f.N[1].Lo = (f.N[1].Lo &^ mask) | (b.N[1].Lo & mask)
f.N[1].Hi = (f.N[1].Hi &^ mask) | (b.N[1].Hi & mask)
return f
}