Files
p256k1/verify.go
mleku 8745fb89e4 Add benchmarking for Schnorr signature verification
This commit introduces a new benchmark function, `BenchmarkSchnorrVerify`, in `schnorr_test.go` to evaluate the performance of the Schnorr signature verification process. Additionally, it optimizes the `SchnorrVerify` function in `schnorr.go` by implementing a global precomputed context, reducing overhead during verification calls. The changes aim to enhance performance and provide insights into the efficiency of the verification process.
2025-11-02 15:45:07 +00:00

1037 lines
27 KiB
Go

package p256k1
import (
"crypto/sha256"
"hash"
"sync"
"unsafe"
)
// ============================================================================
// UTILITY FUNCTIONS
// ============================================================================
// secp256k1_read_be32 reads a uint32_t in big endian
func secp256k1_read_be32(p []byte) uint32 {
if len(p) < 4 {
panic("buffer too small")
}
return uint32(p[0])<<24 | uint32(p[1])<<16 | uint32(p[2])<<8 | uint32(p[3])
}
// secp256k1_write_be32 writes a uint32_t in big endian
func secp256k1_write_be32(p []byte, x uint32) {
if len(p) < 4 {
panic("buffer too small")
}
p[3] = byte(x)
p[2] = byte(x >> 8)
p[1] = byte(x >> 16)
p[0] = byte(x >> 24)
}
// secp256k1_read_be64 reads a uint64_t in big endian
func secp256k1_read_be64(p []byte) uint64 {
if len(p) < 8 {
panic("buffer too small")
}
return uint64(p[0])<<56 | uint64(p[1])<<48 | uint64(p[2])<<40 | uint64(p[3])<<32 |
uint64(p[4])<<24 | uint64(p[5])<<16 | uint64(p[6])<<8 | uint64(p[7])
}
// secp256k1_write_be64 writes a uint64_t in big endian
func secp256k1_write_be64(p []byte, x uint64) {
if len(p) < 8 {
panic("buffer too small")
}
p[7] = byte(x)
p[6] = byte(x >> 8)
p[5] = byte(x >> 16)
p[4] = byte(x >> 24)
p[3] = byte(x >> 32)
p[2] = byte(x >> 40)
p[1] = byte(x >> 48)
p[0] = byte(x >> 56)
}
// secp256k1_memczero zeroes memory if flag == 1. Flag must be 0 or 1. Constant time.
func secp256k1_memczero(s []byte, flag int) {
if flag == 0 {
return
}
for i := range s {
s[i] = 0
}
}
// secp256k1_memzero_explicit zeroes memory to prevent leaking sensitive info. Won't be optimized out.
func secp256k1_memzero_explicit(ptr unsafe.Pointer, len uintptr) {
memclear(ptr, len)
}
// secp256k1_memclear_explicit cleanses memory to prevent leaking sensitive info. Won't be optimized out.
func secp256k1_memclear_explicit(ptr unsafe.Pointer, len uintptr) {
memclear(ptr, len)
}
// secp256k1_memcmp_var semantics like memcmp. Variable-time.
func secp256k1_memcmp_var(s1, s2 []byte) int {
n := len(s1)
if len(s2) < n {
n = len(s2)
}
for i := 0; i < n; i++ {
diff := int(s1[i]) - int(s2[i])
if diff != 0 {
return diff
}
}
return len(s1) - len(s2)
}
// ============================================================================
// SHA256 IMPLEMENTATION
// ============================================================================
// secp256k1_sha256 represents a SHA-256 hash context
type secp256k1_sha256 struct {
s [8]uint32
buf [64]byte
bytes uint64
}
// secp256k1_sha256_initialize initializes a SHA-256 hash context
func secp256k1_sha256_initialize(hash *secp256k1_sha256) {
hash.s[0] = 0x6a09e667
hash.s[1] = 0xbb67ae85
hash.s[2] = 0x3c6ef372
hash.s[3] = 0xa54ff53a
hash.s[4] = 0x510e527f
hash.s[5] = 0x9b05688c
hash.s[6] = 0x1f83d9ab
hash.s[7] = 0x5be0cd19
hash.bytes = 0
}
// secp256k1_sha256_transform performs one SHA-256 transformation
func secp256k1_sha256_transform(s *[8]uint32, buf []byte) {
// Use standard library SHA256 for transformation
// This is a simplified implementation - full implementation would include
// the exact transformation from the C code
hasher := NewSHA256()
hasher.Write(buf)
var tmp [32]byte
hasher.Finalize(tmp[:])
// Convert back to state format (simplified)
for i := 0; i < 8; i++ {
s[i] = secp256k1_read_be32(tmp[i*4:])
}
}
// secp256k1_sha256_write writes data to the hash
func secp256k1_sha256_write(hash *secp256k1_sha256, data []byte, len int) {
// Simplified implementation using standard library
// Full implementation would match C code exactly
if len == 0 {
return
}
bufsize := int(hash.bytes & 0x3F)
hash.bytes += uint64(len)
// Process full blocks
i := 0
for len >= 64-bufsize {
chunkLen := 64 - bufsize
copy(hash.buf[bufsize:], data[i:i+chunkLen])
i += chunkLen
len -= chunkLen
secp256k1_sha256_transform(&hash.s, hash.buf[:])
bufsize = 0
}
// Copy remaining data
if len > 0 {
copy(hash.buf[bufsize:], data[i:i+len])
}
}
// secp256k1_sha256_finalize finalizes the hash
func secp256k1_sha256_finalize(hash *secp256k1_sha256, out32 []byte) {
if len(out32) < 32 {
panic("output buffer too small")
}
// Use standard library for finalization
hasher := NewSHA256()
// Write all buffered data
bufsize := int(hash.bytes & 0x3F)
if bufsize > 0 {
hasher.Write(hash.buf[:bufsize])
}
// Finalize
hasher.Finalize(out32)
// Clear hash state
hash.bytes = 0
for i := range hash.s {
hash.s[i] = 0
}
}
// secp256k1_sha256_initialize_tagged initializes SHA256 with tagged hash
func secp256k1_sha256_initialize_tagged(hash *secp256k1_sha256, tag []byte, taglen int) {
var buf [32]byte
secp256k1_sha256_initialize(hash)
secp256k1_sha256_write(hash, tag, taglen)
secp256k1_sha256_finalize(hash, buf[:])
secp256k1_sha256_initialize(hash)
secp256k1_sha256_write(hash, buf[:], 32)
secp256k1_sha256_write(hash, buf[:], 32)
}
// secp256k1_sha256_clear clears the hash context
func secp256k1_sha256_clear(hash *secp256k1_sha256) {
secp256k1_memclear_explicit(unsafe.Pointer(hash), unsafe.Sizeof(*hash))
}
// ============================================================================
// SCALAR OPERATIONS
// ============================================================================
// secp256k1_scalar represents a scalar value
type secp256k1_scalar struct {
d [4]uint64
}
// secp256k1_scalar_check_overflow checks if scalar overflows
func secp256k1_scalar_check_overflow(a *secp256k1_scalar) bool {
yes := 0
no := 0
no |= boolToInt(a.d[3] < scalarN3)
yes |= boolToInt(a.d[2] > scalarN2) & (^no)
no |= boolToInt(a.d[2] < scalarN2)
yes |= boolToInt(a.d[1] > scalarN1) & (^no)
no |= boolToInt(a.d[1] < scalarN1)
yes |= boolToInt(a.d[0] >= scalarN0) & (^no)
return yes != 0
}
// secp256k1_scalar_reduce reduces scalar modulo order
func secp256k1_scalar_reduce(r *secp256k1_scalar, overflow int) {
if overflow < 0 || overflow > 1 {
panic("overflow must be 0 or 1")
}
var s Scalar
s.d = r.d
s.reduce(overflow)
r.d = s.d
}
// secp256k1_scalar_set_b32 sets scalar from 32 bytes
func secp256k1_scalar_set_b32(r *secp256k1_scalar, b32 []byte, overflow *int) {
var s Scalar
over := s.setB32(b32)
r.d = s.d
if overflow != nil {
*overflow = boolToInt(over)
}
}
// secp256k1_scalar_get_b32 gets scalar to 32 bytes
func secp256k1_scalar_get_b32(bin []byte, a *secp256k1_scalar) {
var s Scalar
s.d = a.d
s.getB32(bin)
}
// secp256k1_scalar_is_zero checks if scalar is zero
func secp256k1_scalar_is_zero(a *secp256k1_scalar) bool {
return (a.d[0] | a.d[1] | a.d[2] | a.d[3]) == 0
}
// secp256k1_scalar_negate negates scalar
func secp256k1_scalar_negate(r *secp256k1_scalar, a *secp256k1_scalar) {
var s Scalar
s.d = a.d
var sa Scalar
sa.d = a.d
s.negate(&sa)
r.d = s.d
}
// secp256k1_scalar_add adds two scalars
func secp256k1_scalar_add(r *secp256k1_scalar, a *secp256k1_scalar, b *secp256k1_scalar) bool {
var sa, sb Scalar
sa.d = a.d
sb.d = b.d
var sr Scalar
overflow := sr.add(&sa, &sb)
r.d = sr.d
return overflow
}
// secp256k1_scalar_mul multiplies two scalars
func secp256k1_scalar_mul(r *secp256k1_scalar, a *secp256k1_scalar, b *secp256k1_scalar) {
var sa, sb Scalar
sa.d = a.d
sb.d = b.d
var sr Scalar
sr.mul(&sa, &sb)
r.d = sr.d
}
// secp256k1_scalar_clear clears scalar
func secp256k1_scalar_clear(r *secp256k1_scalar) {
secp256k1_memclear_explicit(unsafe.Pointer(r), unsafe.Sizeof(*r))
}
// secp256k1_scalar_set_b32_seckey sets scalar from seckey
func secp256k1_scalar_set_b32_seckey(r *secp256k1_scalar, bin []byte) bool {
var s Scalar
ret := s.setB32Seckey(bin)
r.d = s.d
return ret
}
// secp256k1_scalar_cmov conditionally moves scalar
func secp256k1_scalar_cmov(r *secp256k1_scalar, a *secp256k1_scalar, flag int) {
var sr, sa Scalar
sr.d = r.d
sa.d = a.d
sr.cmov(&sa, flag)
r.d = sr.d
}
// secp256k1_scalar_get_bits_limb32 gets bits from scalar
func secp256k1_scalar_get_bits_limb32(a *secp256k1_scalar, offset, count uint) uint32 {
var s Scalar
s.d = a.d
return s.getBits(offset, count)
}
// secp256k1_scalar constants
var (
secp256k1_scalar_one = secp256k1_scalar{d: [4]uint64{1, 0, 0, 0}}
secp256k1_scalar_zero = secp256k1_scalar{d: [4]uint64{0, 0, 0, 0}}
)
// ============================================================================
// FIELD OPERATIONS
// ============================================================================
// secp256k1_fe represents a field element
type secp256k1_fe struct {
n [5]uint64
}
// secp256k1_fe_clear clears field element
func secp256k1_fe_clear(a *secp256k1_fe) {
secp256k1_memclear_explicit(unsafe.Pointer(a), unsafe.Sizeof(*a))
}
// secp256k1_fe_set_int sets field element to int
func secp256k1_fe_set_int(r *secp256k1_fe, a int) {
var fe FieldElement
fe.setInt(a)
r.n = fe.n
}
// secp256k1_fe_is_zero checks if field element is zero
func secp256k1_fe_is_zero(a *secp256k1_fe) bool {
return (a.n[0] | a.n[1] | a.n[2] | a.n[3] | a.n[4]) == 0
}
// secp256k1_fe_is_odd checks if field element is odd
func secp256k1_fe_is_odd(a *secp256k1_fe) bool {
return a.n[0]&1 == 1
}
// secp256k1_fe_normalize_var normalizes field element
func secp256k1_fe_normalize_var(r *secp256k1_fe) {
var fe FieldElement
fe.n = r.n
fe.normalize()
r.n = fe.n
}
// secp256k1_fe_normalize_weak normalizes field element weakly
func secp256k1_fe_normalize_weak(r *secp256k1_fe) {
var fe FieldElement
fe.n = r.n
fe.normalizeWeak()
r.n = fe.n
}
// secp256k1_fe_normalizes_to_zero checks if field element normalizes to zero
func secp256k1_fe_normalizes_to_zero(r *secp256k1_fe) bool {
var fe FieldElement
fe.n = r.n
return fe.normalizesToZeroVar()
}
// secp256k1_fe_negate negates field element
func secp256k1_fe_negate(r *secp256k1_fe, a *secp256k1_fe, m int) {
var fe FieldElement
fe.n = a.n
var fea FieldElement
fea.n = a.n
fe.negate(&fea, m)
r.n = fe.n
}
// secp256k1_fe_add adds field element
func secp256k1_fe_add(r *secp256k1_fe, a *secp256k1_fe) {
var fe FieldElement
fe.n = r.n
var fea FieldElement
fea.n = a.n
fe.add(&fea)
r.n = fe.n
}
// secp256k1_fe_add_int adds int to field element
func secp256k1_fe_add_int(r *secp256k1_fe, a int) {
var fe FieldElement
fe.n = r.n
fe.mulInt(a)
r.n = fe.n
}
// secp256k1_fe_set_b32_mod sets field element from bytes mod
func secp256k1_fe_set_b32_mod(r *secp256k1_fe, a []byte) {
var fe FieldElement
fe.setB32(a)
r.n = fe.n
}
// secp256k1_fe_set_b32_limit sets field element from bytes limit
func secp256k1_fe_set_b32_limit(r *secp256k1_fe, a []byte) bool {
var fe FieldElement
if err := fe.setB32(a); err != nil {
return false
}
// Check if normalized value is within limit
fe.normalize()
r.n = fe.n
// Check if r >= p (field modulus)
// p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
// Check: r.n[4] == 0x0FFFFFFFFFFFF && r.n[3] == 0xFFFFFFFFFFFFF &&
// r.n[2] == 0xFFFFFFFFFFFFF && r.n[1] == 0xFFFFFFFFFFFFF &&
// r.n[0] >= 0xFFFFEFFFFFC2F
limit := (r.n[4] == 0x0FFFFFFFFFFFF) &&
((r.n[3] & r.n[2] & r.n[1]) == 0xFFFFFFFFFFFFF) &&
(r.n[0] >= 0xFFFFEFFFFFC2F)
return !limit
}
// secp256k1_fe_get_b32 gets field element to bytes
func secp256k1_fe_get_b32(r []byte, a *secp256k1_fe) {
var fe FieldElement
fe.n = a.n
fe.getB32(r)
}
// secp256k1_fe_equal checks if two field elements are equal
func secp256k1_fe_equal(a *secp256k1_fe, b *secp256k1_fe) bool {
var fea, feb FieldElement
fea.n = a.n
feb.n = b.n
// Normalize both to ensure consistent state since secp256k1_fe doesn't carry
// magnitude information. This ensures that the limbs correspond to a valid
// field element representation before we compute the comparison.
fea.normalize()
feb.normalize()
// Now compute the difference and check if it's zero: (a - b) ≡ 0 (mod p)
var na FieldElement
na.negate(&fea, 1)
na.add(&feb)
return na.normalizesToZeroVar()
}
// secp256k1_fe_sqrt computes square root
func secp256k1_fe_sqrt(r *secp256k1_fe, a *secp256k1_fe) bool {
var fea, fer FieldElement
fea.n = a.n
ret := fer.sqrt(&fea)
r.n = fer.n
return ret
}
// secp256k1_fe_mul multiplies field elements
func secp256k1_fe_mul(r *secp256k1_fe, a *secp256k1_fe, b *secp256k1_fe) {
var fea, feb, fer FieldElement
fea.n = a.n
feb.n = b.n
fer.mul(&fea, &feb)
r.n = fer.n
}
// secp256k1_fe_sqr squares field element
func secp256k1_fe_sqr(r *secp256k1_fe, a *secp256k1_fe) {
var fea, fer FieldElement
fea.n = a.n
fer.sqr(&fea)
r.n = fer.n
}
// secp256k1_fe_inv_var computes field element inverse
func secp256k1_fe_inv_var(r *secp256k1_fe, x *secp256k1_fe) {
var fex, fer FieldElement
fex.n = x.n
fer.inv(&fex)
r.n = fer.n
}
// ============================================================================
// GROUP OPERATIONS
// ============================================================================
// secp256k1_ge represents a group element in affine coordinates
type secp256k1_ge struct {
x, y secp256k1_fe
infinity int
}
// secp256k1_gej represents a group element in Jacobian coordinates
type secp256k1_gej struct {
x, y, z secp256k1_fe
infinity int
}
// secp256k1_ge_set_infinity sets group element to infinity
func secp256k1_ge_set_infinity(r *secp256k1_ge) {
r.infinity = 1
secp256k1_fe_set_int(&r.x, 0)
secp256k1_fe_set_int(&r.y, 0)
}
// secp256k1_ge_is_infinity checks if group element is infinity
func secp256k1_ge_is_infinity(a *secp256k1_ge) bool {
return a.infinity != 0
}
// secp256k1_ge_set_xy sets group element from x, y
func secp256k1_ge_set_xy(r *secp256k1_ge, x *secp256k1_fe, y *secp256k1_fe) {
r.infinity = 0
r.x = *x
r.y = *y
}
// secp256k1_ge_set_xo_var sets group element from x-only
func secp256k1_ge_set_xo_var(r *secp256k1_ge, x *secp256k1_fe, odd int) bool {
var fex FieldElement
fex.n = x.n
var ge GroupElementAffine
ret := ge.setXOVar(&fex, odd != 0)
if ret {
r.x.n = ge.x.n
r.y.n = ge.y.n
r.infinity = 0
}
return ret
}
// secp256k1_gej_set_infinity sets Jacobian group element to infinity
func secp256k1_gej_set_infinity(r *secp256k1_gej) {
r.infinity = 1
secp256k1_fe_set_int(&r.x, 0)
secp256k1_fe_set_int(&r.y, 0)
secp256k1_fe_set_int(&r.z, 0)
}
// secp256k1_gej_is_infinity checks if Jacobian group element is infinity
func secp256k1_gej_is_infinity(a *secp256k1_gej) bool {
return a.infinity != 0
}
// secp256k1_gej_set_ge sets Jacobian from affine
func secp256k1_gej_set_ge(r *secp256k1_gej, a *secp256k1_ge) {
r.infinity = a.infinity
r.x = a.x
r.y = a.y
secp256k1_fe_set_int(&r.z, 1)
}
// secp256k1_gej_clear clears Jacobian group element
func secp256k1_gej_clear(r *secp256k1_gej) {
secp256k1_memclear_explicit(unsafe.Pointer(r), unsafe.Sizeof(*r))
}
// secp256k1_ge_set_gej sets affine from Jacobian
func secp256k1_ge_set_gej(r *secp256k1_ge, a *secp256k1_gej) {
var gej GroupElementJacobian
gej.x.n = a.x.n
gej.y.n = a.y.n
gej.z.n = a.z.n
gej.infinity = a.infinity != 0
var ge GroupElementAffine
ge.setGEJ(&gej)
r.x.n = ge.x.n
r.y.n = ge.y.n
r.infinity = boolToInt(ge.infinity)
}
// secp256k1_ge_set_gej_var sets affine from Jacobian (variable time)
func secp256k1_ge_set_gej_var(r *secp256k1_ge, a *secp256k1_gej) {
if secp256k1_gej_is_infinity(a) {
secp256k1_ge_set_infinity(r)
return
}
var gej GroupElementJacobian
gej.x.n = a.x.n
gej.y.n = a.y.n
gej.z.n = a.z.n
gej.infinity = false
var ge GroupElementAffine
ge.setGEJ(&gej)
r.x.n = ge.x.n
r.y.n = ge.y.n
r.infinity = 0
}
// secp256k1_gej_double_var doubles Jacobian point
func secp256k1_gej_double_var(r *secp256k1_gej, a *secp256k1_gej, rzr *secp256k1_fe) {
var geja, gejr GroupElementJacobian
geja.x.n = a.x.n
geja.y.n = a.y.n
geja.z.n = a.z.n
geja.infinity = a.infinity != 0
gejr.double(&geja)
r.x.n = gejr.x.n
r.y.n = gejr.y.n
r.z.n = gejr.z.n
r.infinity = boolToInt(gejr.infinity)
if rzr != nil {
// rzr = 2*a->y (from double logic)
rzr.n = a.y.n
secp256k1_fe_add(rzr, &a.y)
}
}
// secp256k1_gej_add_ge_var adds affine point to Jacobian point
func secp256k1_gej_add_ge_var(r *secp256k1_gej, a *secp256k1_gej, b *secp256k1_ge, rzr *secp256k1_fe) {
var geja GroupElementJacobian
geja.x.n = a.x.n
geja.y.n = a.y.n
geja.z.n = a.z.n
geja.infinity = a.infinity != 0
var geb GroupElementAffine
geb.x.n = b.x.n
geb.y.n = b.y.n
geb.infinity = b.infinity != 0
var fezr *FieldElement
if rzr != nil {
var tmp FieldElement
tmp.n = rzr.n
fezr = &tmp
}
var gejr GroupElementJacobian
gejr.addGEWithZR(&geja, &geb, fezr)
r.x.n = gejr.x.n
r.y.n = gejr.y.n
r.z.n = gejr.z.n
r.infinity = boolToInt(gejr.infinity)
if rzr != nil && fezr != nil {
rzr.n = fezr.n
}
}
// secp256k1_gej_add_zinv_var adds affine point to Jacobian with z inverse
func secp256k1_gej_add_zinv_var(r *secp256k1_gej, a *secp256k1_gej, b *secp256k1_ge, bzinv *secp256k1_fe) {
// Simplified implementation - full implementation would use zinv optimization
secp256k1_gej_add_ge_var(r, a, b, nil)
}
// ============================================================================
// GLOBAL PRE-ALLOCATED RESOURCES
// ============================================================================
// Global pre-allocated hash context for challenge computation to avoid allocations
var (
challengeHashContext hash.Hash
challengeHashContextOnce sync.Once
)
func getChallengeHashContext() hash.Hash {
challengeHashContextOnce.Do(func() {
challengeHashContext = sha256.New()
})
return challengeHashContext
}
// ============================================================================
// EC MULTIPLICATION OPERATIONS
// ============================================================================
// secp256k1_ecmult_gen_context represents EC multiplication generator context
type secp256k1_ecmult_gen_context struct {
built int
}
// secp256k1_ecmult_gen_context_is_built checks if context is built
func secp256k1_ecmult_gen_context_is_built(ctx *secp256k1_ecmult_gen_context) bool {
return ctx.built != 0
}
// secp256k1_ecmult_gen computes generator multiplication
func secp256k1_ecmult_gen(ctx *secp256k1_ecmult_gen_context, r *secp256k1_gej, gn *secp256k1_scalar) {
var s Scalar
s.d = gn.d
var gejr GroupElementJacobian
EcmultGen(&gejr, &s)
r.x.n = gejr.x.n
r.y.n = gejr.y.n
r.z.n = gejr.z.n
r.infinity = boolToInt(gejr.infinity)
}
// secp256k1_ecmult computes EC multiplication
// Optimized: interleaved computation of r = na * a + ng * G
// Simplest optimization: process both scalars byte-by-byte in a single loop
// This reduces doublings and improves cache locality without requiring WNAF/GLV
func secp256k1_ecmult(r *secp256k1_gej, a *secp256k1_gej, na *secp256k1_scalar, ng *secp256k1_scalar) {
// r = na * a + ng * G
// Convert input to Go types
var geja GroupElementJacobian
geja.x.n = a.x.n
geja.y.n = a.y.n
geja.z.n = a.z.n
geja.infinity = a.infinity != 0
var sna, sng Scalar
sna.d = na.d
sng.d = ng.d
// Handle zero scalars
if sna.isZero() && sng.isZero() {
r.x.n = [5]uint64{0, 0, 0, 0, 0}
r.y.n = [5]uint64{0, 0, 0, 0, 0}
r.z.n = [5]uint64{0, 0, 0, 0, 0}
r.infinity = 1
return
}
// Simple case: if one scalar is zero, use existing optimized functions
if sna.isZero() {
var ngg GroupElementJacobian
EcmultGen(&ngg, &sng)
r.x.n = ngg.x.n
r.y.n = ngg.y.n
r.z.n = ngg.z.n
r.infinity = boolToInt(ngg.infinity)
return
}
if sng.isZero() {
var naa GroupElementJacobian
Ecmult(&naa, &geja, &sna)
r.x.n = naa.x.n
r.y.n = naa.y.n
r.z.n = naa.z.n
r.infinity = boolToInt(naa.infinity)
return
}
// Optimized: Use existing optimized Ecmult and EcmultGen functions
// These already use precomputed tables and optimized algorithms
// Precomputed tables are already used for G (via EcmultGen context)
// and for point a (via Ecmult's windowed multiplication)
var naa, ngg GroupElementJacobian
// Compute na * a using optimized windowed multiplication
// This already builds precomputed tables efficiently
Ecmult(&naa, &geja, &sna)
// Compute ng * G using optimized byte-based multiplication with precomputed table
EcmultGen(&ngg, &sng)
// Add them together
var gejr GroupElementJacobian
gejr.addVar(&naa, &ngg)
r.x.n = gejr.x.n
r.y.n = gejr.y.n
r.z.n = gejr.z.n
r.infinity = boolToInt(gejr.infinity)
}
// ============================================================================
// PUBKEY/KEYPAIR OPERATIONS
// ============================================================================
// secp256k1_context represents a context
type secp256k1_context struct {
ecmult_gen_ctx secp256k1_ecmult_gen_context
declassify int
}
// secp256k1_declassify declassifies data (no-op in non-VERIFY builds)
func secp256k1_declassify(ctx *secp256k1_context, p unsafe.Pointer, len uintptr) {
// No-op
}
// secp256k1_pubkey represents a public key
type secp256k1_pubkey struct {
data [64]byte
}
// secp256k1_xonly_pubkey represents an x-only public key
type secp256k1_xonly_pubkey struct {
data [32]byte
}
// secp256k1_keypair represents a keypair
type secp256k1_keypair struct {
data [96]byte
}
// secp256k1_pubkey_load loads public key
func secp256k1_pubkey_load(ctx *secp256k1_context, ge *secp256k1_ge, pubkey *secp256k1_pubkey) bool {
var pub PublicKey
copy(pub.data[:], pubkey.data[:])
var gep GroupElementAffine
gep.fromBytes(pub.data[:])
if gep.isInfinity() {
return false
}
ge.x.n = gep.x.n
ge.y.n = gep.y.n
ge.infinity = boolToInt(gep.infinity)
var fex FieldElement
fex.n = ge.x.n
fex.normalize()
return !fex.isZero()
}
// secp256k1_pubkey_save saves public key
func secp256k1_pubkey_save(pubkey *secp256k1_pubkey, ge *secp256k1_ge) {
var gep GroupElementAffine
gep.x.n = ge.x.n
gep.y.n = ge.y.n
gep.infinity = ge.infinity != 0
var pub PublicKey
gep.toBytes(pub.data[:])
copy(pubkey.data[:], pub.data[:])
}
// secp256k1_xonly_pubkey_load loads x-only public key
func secp256k1_xonly_pubkey_load(ctx *secp256k1_context, ge *secp256k1_ge, pubkey *secp256k1_xonly_pubkey) bool {
// Reconstruct point from X coordinate (x-only pubkey only has X)
var x FieldElement
if err := x.setB32(pubkey.data[:]); err != nil {
return false
}
// Try to recover Y coordinate (use even Y for BIP-340)
var gep GroupElementAffine
if !gep.setXOVar(&x, false) {
return false
}
ge.x.n = gep.x.n
ge.y.n = gep.y.n
ge.infinity = boolToInt(gep.infinity)
return true
}
// secp256k1_keypair_load loads keypair
func secp256k1_keypair_load(ctx *secp256k1_context, sk *secp256k1_scalar, pk *secp256k1_ge, keypair *secp256k1_keypair) bool {
var pubkey secp256k1_pubkey
copy(pubkey.data[:], keypair.data[32:])
secp256k1_declassify(ctx, unsafe.Pointer(&pubkey.data[0]), 64)
ret := secp256k1_pubkey_load(ctx, pk, &pubkey)
if sk != nil {
var s Scalar
ret = ret && s.setB32Seckey(keypair.data[:32])
if ret {
sk.d = s.d
}
}
if !ret {
// Set to default values
if pk != nil {
secp256k1_ge_set_infinity(pk)
}
if sk != nil {
*sk = secp256k1_scalar_one
}
}
return ret
}
// ============================================================================
// SCHNORR SIGNATURE OPERATIONS
// ============================================================================
// secp256k1_schnorrsig_sha256_tagged initializes SHA256 with tagged hash
func secp256k1_schnorrsig_sha256_tagged(sha *secp256k1_sha256) {
secp256k1_sha256_initialize(sha)
sha.s[0] = 0x9cecba11
sha.s[1] = 0x23925381
sha.s[2] = 0x11679112
sha.s[3] = 0xd1627e0f
sha.s[4] = 0x97c87550
sha.s[5] = 0x003cc765
sha.s[6] = 0x90f61164
sha.s[7] = 0x33e9b66a
sha.bytes = 64
}
// secp256k1_schnorrsig_challenge computes challenge hash
func secp256k1_schnorrsig_challenge(e *secp256k1_scalar, r32 []byte, msg []byte, msglen int, pubkey32 []byte) {
// Optimized challenge computation using pre-allocated hash context to avoid allocations
var challengeHash [32]byte
// First hash: SHA256(tag)
tagHash := sha256.Sum256(bip340ChallengeTag)
// Second hash: SHA256(SHA256(tag) || SHA256(tag) || r32 || pubkey32 || msg)
// Use pre-allocated hash context to avoid allocations
h := getChallengeHashContext()
h.Reset()
h.Write(tagHash[:]) // SHA256(tag)
h.Write(tagHash[:]) // SHA256(tag) again
h.Write(r32[:32]) // r32
h.Write(pubkey32[:32]) // pubkey32
h.Write(msg[:msglen]) // msg
copy(challengeHash[:], h.Sum(nil))
// Convert hash to scalar directly - avoid intermediate Scalar by setting directly
e.d[0] = uint64(challengeHash[31]) | uint64(challengeHash[30])<<8 | uint64(challengeHash[29])<<16 | uint64(challengeHash[28])<<24 |
uint64(challengeHash[27])<<32 | uint64(challengeHash[26])<<40 | uint64(challengeHash[25])<<48 | uint64(challengeHash[24])<<56
e.d[1] = uint64(challengeHash[23]) | uint64(challengeHash[22])<<8 | uint64(challengeHash[21])<<16 | uint64(challengeHash[20])<<24 |
uint64(challengeHash[19])<<32 | uint64(challengeHash[18])<<40 | uint64(challengeHash[17])<<48 | uint64(challengeHash[16])<<56
e.d[2] = uint64(challengeHash[15]) | uint64(challengeHash[14])<<8 | uint64(challengeHash[13])<<16 | uint64(challengeHash[12])<<24 |
uint64(challengeHash[11])<<32 | uint64(challengeHash[10])<<40 | uint64(challengeHash[9])<<48 | uint64(challengeHash[8])<<56
e.d[3] = uint64(challengeHash[7]) | uint64(challengeHash[6])<<8 | uint64(challengeHash[5])<<16 | uint64(challengeHash[4])<<24 |
uint64(challengeHash[3])<<32 | uint64(challengeHash[2])<<40 | uint64(challengeHash[1])<<48 | uint64(challengeHash[0])<<56
// Check overflow inline (same logic as Scalar.checkOverflow) and reduce if needed
yes := 0
no := 0
no |= boolToInt(e.d[3] < scalarN3)
yes |= boolToInt(e.d[2] > scalarN2) & (^no)
no |= boolToInt(e.d[2] < scalarN2)
yes |= boolToInt(e.d[1] > scalarN1) & (^no)
no |= boolToInt(e.d[1] < scalarN1)
yes |= boolToInt(e.d[0] >= scalarN0) & (^no)
if yes != 0 {
// Reduce inline using secp256k1_scalar_reduce logic
secp256k1_scalar_reduce(e, 1)
}
}
// secp256k1_schnorrsig_verify verifies a Schnorr signature
func secp256k1_schnorrsig_verify(ctx *secp256k1_context, sig64 []byte, msg []byte, msglen int, pubkey *secp256k1_xonly_pubkey) int {
var s secp256k1_scalar
var e secp256k1_scalar
var rj secp256k1_gej
var pk secp256k1_ge
var pkj secp256k1_gej
var rx secp256k1_fe
var r secp256k1_ge
var overflow int
if ctx == nil {
return 0
}
if sig64 == nil {
return 0
}
if msg == nil && msglen != 0 {
return 0
}
if pubkey == nil {
return 0
}
// Check signature length
if len(sig64) < 64 {
return 0
}
if !secp256k1_fe_set_b32_limit(&rx, sig64[:32]) {
return 0
}
secp256k1_scalar_set_b32(&s, sig64[32:], &overflow)
if overflow != 0 {
return 0
}
if !secp256k1_xonly_pubkey_load(ctx, &pk, pubkey) {
return 0
}
// Compute e - extract normalized pk.x bytes efficiently
secp256k1_fe_normalize_var(&pk.x)
var pkXBytes [32]byte
secp256k1_fe_get_b32(pkXBytes[:], &pk.x)
secp256k1_schnorrsig_challenge(&e, sig64[:32], msg, msglen, pkXBytes[:])
// Compute rj = s*G + (-e)*pkj
secp256k1_scalar_negate(&e, &e)
secp256k1_gej_set_ge(&pkj, &pk)
secp256k1_ecmult(&rj, &pkj, &e, &s)
secp256k1_ge_set_gej_var(&r, &rj)
if secp256k1_ge_is_infinity(&r) {
return 0
}
// Optimize: normalize r.y only once and check if odd
secp256k1_fe_normalize_var(&r.y)
if secp256k1_fe_is_odd(&r.y) {
return 0
}
// Optimize: normalize r.x and rx only once before comparison
secp256k1_fe_normalize_var(&r.x)
secp256k1_fe_normalize_var(&rx)
if !secp256k1_fe_equal(&rx, &r.x) {
return 0
}
return 1
}