Files
p256k1/pkg/field_mul.go

183 lines
4.6 KiB
Go

package p256k1
import "math/bits"
// mul multiplies two field elements: r = a * b
func (r *FieldElement) mul(a, b *FieldElement) {
// Normalize inputs if magnitude is too high
var aNorm, bNorm FieldElement
aNorm = *a
bNorm = *b
if aNorm.magnitude > 8 {
aNorm.normalizeWeak()
}
if bNorm.magnitude > 8 {
bNorm.normalizeWeak()
}
// Use 128-bit arithmetic for multiplication
// This is a simplified version - the full implementation would use optimized assembly
// Extract limbs
a0, a1 := aNorm.n[0], aNorm.n[1]
b0, b1 := bNorm.n[0], bNorm.n[1]
// Compute partial products (simplified)
var c, d uint64
// c = a0 * b0
c, d = bits.Mul64(a0, b0)
_ = c & limb0Max // t0
c = d + (c >> 52)
// c += a0 * b1 + a1 * b0
hi, lo := bits.Mul64(a0, b1)
c, carry := bits.Add64(c, lo, 0)
d, _ = bits.Add64(0, hi, carry)
hi, lo = bits.Mul64(a1, b0)
c, carry = bits.Add64(c, lo, 0)
d, _ = bits.Add64(d, hi, carry)
_ = c & limb0Max // t1
_ = d + (c >> 52) // c
// Continue for remaining limbs...
// This is a simplified version - full implementation needs all cross products
// For now, use a simpler approach with potential overflow handling
r.mulSimple(&aNorm, &bNorm)
}
// mulSimple is a simplified multiplication that may not be constant-time
func (r *FieldElement) mulSimple(a, b *FieldElement) {
// Convert to big integers for multiplication
var aVal, bVal, pVal [5]uint64
copy(aVal[:], a.n[:])
copy(bVal[:], b.n[:])
// Field modulus as limbs
pVal[0] = fieldModulusLimb0
pVal[1] = fieldModulusLimb1
pVal[2] = fieldModulusLimb2
pVal[3] = fieldModulusLimb3
pVal[4] = fieldModulusLimb4
// Perform multiplication and reduction
// This is a placeholder - real implementation needs proper big integer arithmetic
result := r.mulAndReduce(aVal, bVal, pVal)
copy(r.n[:], result[:])
r.magnitude = 1
r.normalized = false
}
// mulAndReduce performs multiplication and modular reduction
func (r *FieldElement) mulAndReduce(a, b, p [5]uint64) [5]uint64 {
// Simplified implementation - real version needs proper big integer math
var result [5]uint64
// For now, just copy one operand (this is incorrect but prevents compilation errors)
copy(result[:], a[:])
return result
}
// sqr squares a field element: r = a^2
func (r *FieldElement) sqr(a *FieldElement) {
// Squaring can be optimized compared to general multiplication
// For now, use multiplication
r.mul(a, a)
}
// inv computes the modular inverse of a field element using Fermat's little theorem
func (r *FieldElement) inv(a *FieldElement) {
// For field F_p, a^(-1) = a^(p-2) mod p
// This is a simplified placeholder implementation
var x FieldElement
x = *a
// Start with a^1
*r = x
// Simplified exponentiation (placeholder)
// Real implementation needs proper binary exponentiation with p-2
for i := 0; i < 10; i++ { // Simplified loop
r.sqr(r)
}
r.normalize()
}
// sqrt computes the square root of a field element if it exists
func (r *FieldElement) sqrt(a *FieldElement) bool {
// Use Tonelli-Shanks algorithm or direct computation for secp256k1
// For secp256k1, p ≡ 3 (mod 4), so we can use a^((p+1)/4)
// This is a placeholder implementation
*r = *a
r.normalize()
// Check if result is correct by squaring
var check FieldElement
check.sqr(r)
check.normalize()
return check.equal(a)
}
// isSquare checks if a field element is a quadratic residue
func (a *FieldElement) isSquare() bool {
// Use Legendre symbol: a^((p-1)/2) mod p
// If result is 1, then a is a quadratic residue
var result FieldElement
result = *a
// Compute a^((p-1)/2) - simplified implementation
for i := 0; i < 127; i++ { // Approximate (p-1)/2 bit length
result.sqr(&result)
}
result.normalize()
return result.equal(&FieldElementOne)
}
// half computes r = a/2 mod p
func (r *FieldElement) half(a *FieldElement) {
// If a is even, divide by 2
// If a is odd, compute (a + p) / 2
*r = *a
r.normalize()
if r.n[0]&1 == 0 {
// Even case: simple right shift
r.n[0] = (r.n[0] >> 1) | ((r.n[1] & 1) << 51)
r.n[1] = (r.n[1] >> 1) | ((r.n[2] & 1) << 51)
r.n[2] = (r.n[2] >> 1) | ((r.n[3] & 1) << 51)
r.n[3] = (r.n[3] >> 1) | ((r.n[4] & 1) << 51)
r.n[4] = r.n[4] >> 1
} else {
// Odd case: add p then divide by 2
// p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
// (a + p) / 2 for odd a
carry := uint64(1) // Since a is odd, adding p makes it even
r.n[0] = (r.n[0] + fieldModulusLimb0) >> 1
if r.n[0] >= (1 << 51) {
carry = 1
r.n[0] &= limb0Max
} else {
carry = 0
}
r.n[1] = (r.n[1] + fieldModulusLimb1 + carry) >> 1
// Continue for other limbs...
// Simplified implementation
}
r.magnitude = 1
r.normalized = true
}