package p256k1 import ( "crypto/subtle" "math/bits" "unsafe" ) // Scalar represents a scalar value modulo the secp256k1 group order. // Uses 4 uint64 limbs to represent a 256-bit scalar. type Scalar struct { d [4]uint64 } // Scalar constants from the C implementation const ( // Limbs of the secp256k1 order n scalarN0 = 0xBFD25E8CD0364141 scalarN1 = 0xBAAEDCE6AF48A03B scalarN2 = 0xFFFFFFFFFFFFFFFE scalarN3 = 0xFFFFFFFFFFFFFFFF // Limbs of 2^256 minus the secp256k1 order (complement constants) scalarNC0 = 0x402DA1732FC9BEBF // ~scalarN0 + 1 scalarNC1 = 0x4551231950B75FC4 // ~scalarN1 scalarNC2 = 0x0000000000000001 // 1 // Limbs of half the secp256k1 order scalarNH0 = 0xDFE92F46681B20A0 scalarNH1 = 0x5D576E7357A4501D scalarNH2 = 0xFFFFFFFFFFFFFFFF scalarNH3 = 0x7FFFFFFFFFFFFFFF ) // Scalar element constants var ( // ScalarZero represents the scalar 0 ScalarZero = Scalar{d: [4]uint64{0, 0, 0, 0}} // ScalarOne represents the scalar 1 ScalarOne = Scalar{d: [4]uint64{1, 0, 0, 0}} // GLV (Gallant-Lambert-Vanstone) endomorphism constants // lambda is a primitive cube root of unity modulo n (the curve order) secp256k1Lambda = Scalar{d: [4]uint64{ 0x5363AD4CC05C30E0, 0xA5261C028812645A, 0x122E22EA20816678, 0xDF02967C1B23BD72, }} // Note: beta is defined in field.go as a FieldElement constant // GLV basis vectors and constants for scalar splitting // These are used to decompose scalars for faster multiplication // minus_b1 and minus_b2 are precomputed constants for the GLV splitting algorithm minusB1 = Scalar{d: [4]uint64{ 0x0000000000000000, 0x0000000000000000, 0xE4437ED6010E8828, 0x6F547FA90ABFE4C3, }} minusB2 = Scalar{d: [4]uint64{ 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x8A280AC50774346D, 0x3DB1562CDE9798D9, }} // Precomputed estimates for GLV scalar splitting // g1 and g2 are approximations of b2/d and (-b1)/d respectively // where d is the curve order n g1 = Scalar{d: [4]uint64{ 0x3086D221A7D46BCD, 0xE86C90E49284EB15, 0x3DAA8A1471E8CA7F, 0xE893209A45DBB031, }} g2 = Scalar{d: [4]uint64{ 0xE4437ED6010E8828, 0x6F547FA90ABFE4C4, 0x221208AC9DF506C6, 0x1571B4AE8AC47F71, }} ) // setInt sets a scalar to a small integer value func (r *Scalar) setInt(v uint) { r.d[0] = uint64(v) r.d[1] = 0 r.d[2] = 0 r.d[3] = 0 } // setB32 sets a scalar from a 32-byte big-endian array func (r *Scalar) setB32(b []byte) bool { if len(b) != 32 { panic("scalar byte array must be 32 bytes") } // Convert from big-endian bytes to uint64 limbs r.d[0] = uint64(b[31]) | uint64(b[30])<<8 | uint64(b[29])<<16 | uint64(b[28])<<24 | uint64(b[27])<<32 | uint64(b[26])<<40 | uint64(b[25])<<48 | uint64(b[24])<<56 r.d[1] = uint64(b[23]) | uint64(b[22])<<8 | uint64(b[21])<<16 | uint64(b[20])<<24 | uint64(b[19])<<32 | uint64(b[18])<<40 | uint64(b[17])<<48 | uint64(b[16])<<56 r.d[2] = uint64(b[15]) | uint64(b[14])<<8 | uint64(b[13])<<16 | uint64(b[12])<<24 | uint64(b[11])<<32 | uint64(b[10])<<40 | uint64(b[9])<<48 | uint64(b[8])<<56 r.d[3] = uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 // Check if the scalar overflows the group order overflow := r.checkOverflow() if overflow { r.reduce(1) } return overflow } // setB32Seckey sets a scalar from a 32-byte secret key, returns true if valid func (r *Scalar) setB32Seckey(b []byte) bool { overflow := r.setB32(b) return !r.isZero() && !overflow } // getB32 converts a scalar to a 32-byte big-endian array func (r *Scalar) getB32(b []byte) { if len(b) != 32 { panic("scalar byte array must be 32 bytes") } // Convert from uint64 limbs to big-endian bytes b[31] = byte(r.d[0]) b[30] = byte(r.d[0] >> 8) b[29] = byte(r.d[0] >> 16) b[28] = byte(r.d[0] >> 24) b[27] = byte(r.d[0] >> 32) b[26] = byte(r.d[0] >> 40) b[25] = byte(r.d[0] >> 48) b[24] = byte(r.d[0] >> 56) b[23] = byte(r.d[1]) b[22] = byte(r.d[1] >> 8) b[21] = byte(r.d[1] >> 16) b[20] = byte(r.d[1] >> 24) b[19] = byte(r.d[1] >> 32) b[18] = byte(r.d[1] >> 40) b[17] = byte(r.d[1] >> 48) b[16] = byte(r.d[1] >> 56) b[15] = byte(r.d[2]) b[14] = byte(r.d[2] >> 8) b[13] = byte(r.d[2] >> 16) b[12] = byte(r.d[2] >> 24) b[11] = byte(r.d[2] >> 32) b[10] = byte(r.d[2] >> 40) b[9] = byte(r.d[2] >> 48) b[8] = byte(r.d[2] >> 56) b[7] = byte(r.d[3]) b[6] = byte(r.d[3] >> 8) b[5] = byte(r.d[3] >> 16) b[4] = byte(r.d[3] >> 24) b[3] = byte(r.d[3] >> 32) b[2] = byte(r.d[3] >> 40) b[1] = byte(r.d[3] >> 48) b[0] = byte(r.d[3] >> 56) } // checkOverflow checks if the scalar is >= the group order func (r *Scalar) checkOverflow() bool { yes := 0 no := 0 // Check each limb from most significant to least significant if r.d[3] < scalarN3 { no = 1 } if r.d[3] > scalarN3 { yes = 1 } if r.d[2] < scalarN2 { no |= (yes ^ 1) } if r.d[2] > scalarN2 { yes |= (no ^ 1) } if r.d[1] < scalarN1 { no |= (yes ^ 1) } if r.d[1] > scalarN1 { yes |= (no ^ 1) } if r.d[0] >= scalarN0 { yes |= (no ^ 1) } return yes != 0 } // reduce reduces the scalar modulo the group order func (r *Scalar) reduce(overflow int) { if overflow < 0 || overflow > 1 { panic("overflow must be 0 or 1") } // Use 128-bit arithmetic for the reduction var t uint128 // d[0] += overflow * scalarNC0 t = uint128FromU64(r.d[0]) t = t.addU64(uint64(overflow) * scalarNC0) r.d[0] = t.lo() t = t.rshift(64) // d[1] += overflow * scalarNC1 + carry t = t.addU64(r.d[1]) t = t.addU64(uint64(overflow) * scalarNC1) r.d[1] = t.lo() t = t.rshift(64) // d[2] += overflow * scalarNC2 + carry t = t.addU64(r.d[2]) t = t.addU64(uint64(overflow) * scalarNC2) r.d[2] = t.lo() t = t.rshift(64) // d[3] += carry (scalarNC3 = 0) t = t.addU64(r.d[3]) r.d[3] = t.lo() } // add adds two scalars: r = a + b, returns overflow func (r *Scalar) add(a, b *Scalar) bool { var carry uint64 r.d[0], carry = bits.Add64(a.d[0], b.d[0], 0) r.d[1], carry = bits.Add64(a.d[1], b.d[1], carry) r.d[2], carry = bits.Add64(a.d[2], b.d[2], carry) r.d[3], carry = bits.Add64(a.d[3], b.d[3], carry) overflow := carry != 0 || r.checkOverflow() if overflow { r.reduce(1) } return overflow } // sub subtracts two scalars: r = a - b func (r *Scalar) sub(a, b *Scalar) { // Compute a - b = a + (-b) var negB Scalar negB.negate(b) *r = *a r.add(r, &negB) } // mul multiplies two scalars: r = a * b func (r *Scalar) mul(a, b *Scalar) { // Compute full 512-bit product using all 16 cross products var l [8]uint64 r.mul512(l[:], a, b) r.reduce512(l[:]) } // mul512 computes the 512-bit product of two scalars (from C implementation) func (r *Scalar) mul512(l8 []uint64, a, b *Scalar) { // 160-bit accumulator (c0, c1, c2) var c0, c1 uint64 var c2 uint32 // Helper macros translated from C muladd := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1, carry = bits.Add64(c1, hi, carry) c2 += uint32(carry) } muladdFast := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1 += hi + carry } extract := func() uint64 { result := c0 c0 = c1 c1 = uint64(c2) c2 = 0 return result } extractFast := func() uint64 { result := c0 c0 = c1 c1 = 0 return result } // l8[0..7] = a[0..3] * b[0..3] (following C implementation exactly) muladdFast(a.d[0], b.d[0]) l8[0] = extractFast() muladd(a.d[0], b.d[1]) muladd(a.d[1], b.d[0]) l8[1] = extract() muladd(a.d[0], b.d[2]) muladd(a.d[1], b.d[1]) muladd(a.d[2], b.d[0]) l8[2] = extract() muladd(a.d[0], b.d[3]) muladd(a.d[1], b.d[2]) muladd(a.d[2], b.d[1]) muladd(a.d[3], b.d[0]) l8[3] = extract() muladd(a.d[1], b.d[3]) muladd(a.d[2], b.d[2]) muladd(a.d[3], b.d[1]) l8[4] = extract() muladd(a.d[2], b.d[3]) muladd(a.d[3], b.d[2]) l8[5] = extract() muladdFast(a.d[3], b.d[3]) l8[6] = extractFast() l8[7] = c0 } // reduce512 reduces a 512-bit value to 256-bit (from C implementation) func (r *Scalar) reduce512(l []uint64) { // 160-bit accumulator var c0, c1 uint64 var c2 uint32 // Extract upper 256 bits n0, n1, n2, n3 := l[4], l[5], l[6], l[7] // Helper macros muladd := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1, carry = bits.Add64(c1, hi, carry) c2 += uint32(carry) } muladdFast := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1 += hi + carry } sumadd := func(a uint64) { var carry uint64 c0, carry = bits.Add64(c0, a, 0) c1, carry = bits.Add64(c1, 0, carry) c2 += uint32(carry) } sumaddFast := func(a uint64) { var carry uint64 c0, carry = bits.Add64(c0, a, 0) c1 += carry } extract := func() uint64 { result := c0 c0 = c1 c1 = uint64(c2) c2 = 0 return result } extractFast := func() uint64 { result := c0 c0 = c1 c1 = 0 return result } // Reduce 512 bits into 385 bits // m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C c0 = l[0] c1 = 0 c2 = 0 muladdFast(n0, scalarNC0) m0 := extractFast() sumaddFast(l[1]) muladd(n1, scalarNC0) muladd(n0, scalarNC1) m1 := extract() sumadd(l[2]) muladd(n2, scalarNC0) muladd(n1, scalarNC1) sumadd(n0) m2 := extract() sumadd(l[3]) muladd(n3, scalarNC0) muladd(n2, scalarNC1) sumadd(n1) m3 := extract() muladd(n3, scalarNC1) sumadd(n2) m4 := extract() sumaddFast(n3) m5 := extractFast() m6 := uint32(c0) // Reduce 385 bits into 258 bits // p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C c0 = m0 c1 = 0 c2 = 0 muladdFast(m4, scalarNC0) p0 := extractFast() sumaddFast(m1) muladd(m5, scalarNC0) muladd(m4, scalarNC1) p1 := extract() sumadd(m2) muladd(uint64(m6), scalarNC0) muladd(m5, scalarNC1) sumadd(m4) p2 := extract() sumaddFast(m3) muladdFast(uint64(m6), scalarNC1) sumaddFast(m5) p3 := extractFast() p4 := uint32(c0 + uint64(m6)) // Reduce 258 bits into 256 bits // r[0..3] = p[0..3] + p[4] * SECP256K1_N_C var t uint128 t = uint128FromU64(p0) t = t.addMul(scalarNC0, uint64(p4)) r.d[0] = t.lo() t = t.rshift(64) t = t.addU64(p1) t = t.addMul(scalarNC1, uint64(p4)) r.d[1] = t.lo() t = t.rshift(64) t = t.addU64(p2) t = t.addU64(uint64(p4)) r.d[2] = t.lo() t = t.rshift(64) t = t.addU64(p3) r.d[3] = t.lo() c := t.hi() // Final reduction r.reduce(int(c) + boolToInt(r.checkOverflow())) } // negate negates a scalar: r = -a func (r *Scalar) negate(a *Scalar) { // r = n - a where n is the group order var borrow uint64 r.d[0], borrow = bits.Sub64(scalarN0, a.d[0], 0) r.d[1], borrow = bits.Sub64(scalarN1, a.d[1], borrow) r.d[2], borrow = bits.Sub64(scalarN2, a.d[2], borrow) r.d[3], _ = bits.Sub64(scalarN3, a.d[3], borrow) } // inverse computes the modular inverse of a scalar func (r *Scalar) inverse(a *Scalar) { // Use Fermat's little theorem: a^(-1) = a^(n-2) mod n // where n is the group order (which is prime) // Use binary exponentiation with n-2 var exp Scalar var borrow uint64 exp.d[0], borrow = bits.Sub64(scalarN0, 2, 0) exp.d[1], borrow = bits.Sub64(scalarN1, 0, borrow) exp.d[2], borrow = bits.Sub64(scalarN2, 0, borrow) exp.d[3], _ = bits.Sub64(scalarN3, 0, borrow) r.exp(a, &exp) } // exp computes r = a^b mod n using binary exponentiation func (r *Scalar) exp(a, b *Scalar) { *r = ScalarOne base := *a for i := 0; i < 4; i++ { limb := b.d[i] for j := 0; j < 64; j++ { if limb&1 != 0 { r.mul(r, &base) } base.mul(&base, &base) limb >>= 1 } } } // half computes r = a/2 mod n func (r *Scalar) half(a *Scalar) { *r = *a if r.d[0]&1 == 0 { // Even case: simple right shift r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63) r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63) r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63) r.d[3] = r.d[3] >> 1 } else { // Odd case: add n then divide by 2 var carry uint64 r.d[0], carry = bits.Add64(r.d[0], scalarN0, 0) r.d[1], carry = bits.Add64(r.d[1], scalarN1, carry) r.d[2], carry = bits.Add64(r.d[2], scalarN2, carry) r.d[3], _ = bits.Add64(r.d[3], scalarN3, carry) // Now divide by 2 r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63) r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63) r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63) r.d[3] = r.d[3] >> 1 } } // isZero returns true if the scalar is zero func (r *Scalar) isZero() bool { return (r.d[0] | r.d[1] | r.d[2] | r.d[3]) == 0 } // isOne returns true if the scalar is one func (r *Scalar) isOne() bool { return r.d[0] == 1 && r.d[1] == 0 && r.d[2] == 0 && r.d[3] == 0 } // isEven returns true if the scalar is even func (r *Scalar) isEven() bool { return r.d[0]&1 == 0 } // isHigh returns true if the scalar is > n/2 func (r *Scalar) isHigh() bool { var yes, no int if r.d[3] < scalarNH3 { no = 1 } if r.d[3] > scalarNH3 { yes = 1 } if r.d[2] < scalarNH2 { no |= (yes ^ 1) } if r.d[2] > scalarNH2 { yes |= (no ^ 1) } if r.d[1] < scalarNH1 { no |= (yes ^ 1) } if r.d[1] > scalarNH1 { yes |= (no ^ 1) } if r.d[0] > scalarNH0 { yes |= (no ^ 1) } return yes != 0 } // condNegate conditionally negates the scalar if flag is true func (r *Scalar) condNegate(flag int) { if flag != 0 { var neg Scalar neg.negate(r) *r = neg } } // equal returns true if two scalars are equal func (r *Scalar) equal(a *Scalar) bool { return subtle.ConstantTimeCompare( (*[32]byte)(unsafe.Pointer(&r.d[0]))[:32], (*[32]byte)(unsafe.Pointer(&a.d[0]))[:32], ) == 1 } // getBits extracts count bits starting at offset func (r *Scalar) getBits(offset, count uint) uint32 { if count == 0 || count > 32 { panic("count must be 1-32") } if offset+count > 256 { panic("offset + count must be <= 256") } limbIdx := offset / 64 bitIdx := offset % 64 if bitIdx+count <= 64 { // Bits are within a single limb return uint32((r.d[limbIdx] >> bitIdx) & ((1 << count) - 1)) } else { // Bits span two limbs lowBits := 64 - bitIdx highBits := count - lowBits low := uint32((r.d[limbIdx] >> bitIdx) & ((1 << lowBits) - 1)) high := uint32(r.d[limbIdx+1] & ((1 << highBits) - 1)) return low | (high << lowBits) } } // cmov conditionally moves a scalar. If flag is true, r = a; otherwise r is unchanged. func (r *Scalar) cmov(a *Scalar, flag int) { mask := uint64(-(int64(flag) & 1)) r.d[0] ^= mask & (r.d[0] ^ a.d[0]) r.d[1] ^= mask & (r.d[1] ^ a.d[1]) r.d[2] ^= mask & (r.d[2] ^ a.d[2]) r.d[3] ^= mask & (r.d[3] ^ a.d[3]) } // clear clears a scalar to prevent leaking sensitive information func (r *Scalar) clear() { memclear(unsafe.Pointer(&r.d[0]), unsafe.Sizeof(r.d)) } // Helper functions for 128-bit arithmetic (using uint128 from field_mul.go) func uint128FromU64(x uint64) uint128 { return uint128{low: x, high: 0} } func (x uint128) addU64(y uint64) uint128 { low, carry := bits.Add64(x.low, y, 0) high := x.high + carry return uint128{low: low, high: high} } func (x uint128) addMul(a, b uint64) uint128 { hi, lo := bits.Mul64(a, b) low, carry := bits.Add64(x.low, lo, 0) high, _ := bits.Add64(x.high, hi, carry) return uint128{low: low, high: high} } // Direct function versions to reduce method call overhead // These are equivalent to the method versions but avoid interface dispatch // scalarAdd adds two scalars: r = a + b, returns overflow func scalarAdd(r, a, b *Scalar) bool { var carry uint64 r.d[0], carry = bits.Add64(a.d[0], b.d[0], 0) r.d[1], carry = bits.Add64(a.d[1], b.d[1], carry) r.d[2], carry = bits.Add64(a.d[2], b.d[2], carry) r.d[3], carry = bits.Add64(a.d[3], b.d[3], carry) overflow := carry != 0 || scalarCheckOverflow(r) if overflow { scalarReduce(r, 1) } return overflow } // scalarMul multiplies two scalars: r = a * b func scalarMul(r, a, b *Scalar) { // Compute full 512-bit product using all 16 cross products var l [8]uint64 scalarMul512(l[:], a, b) scalarReduce512(r, l[:]) } // scalarGetB32 serializes a scalar to 32 bytes in big-endian format func scalarGetB32(bin []byte, a *Scalar) { if len(bin) != 32 { panic("scalar byte array must be 32 bytes") } // Convert to big-endian bytes for i := 0; i < 4; i++ { bin[31-8*i] = byte(a.d[i]) bin[30-8*i] = byte(a.d[i] >> 8) bin[29-8*i] = byte(a.d[i] >> 16) bin[28-8*i] = byte(a.d[i] >> 24) bin[27-8*i] = byte(a.d[i] >> 32) bin[26-8*i] = byte(a.d[i] >> 40) bin[25-8*i] = byte(a.d[i] >> 48) bin[24-8*i] = byte(a.d[i] >> 56) } } // scalarIsZero returns true if the scalar is zero func scalarIsZero(a *Scalar) bool { return a.d[0] == 0 && a.d[1] == 0 && a.d[2] == 0 && a.d[3] == 0 } // scalarCheckOverflow checks if the scalar is >= the group order func scalarCheckOverflow(r *Scalar) bool { return (r.d[3] > scalarN3) || (r.d[3] == scalarN3 && r.d[2] > scalarN2) || (r.d[3] == scalarN3 && r.d[2] == scalarN2 && r.d[1] > scalarN1) || (r.d[3] == scalarN3 && r.d[2] == scalarN2 && r.d[1] == scalarN1 && r.d[0] >= scalarN0) } // scalarReduce reduces the scalar modulo the group order func scalarReduce(r *Scalar, overflow int) { var t Scalar var c uint64 // Compute r + overflow * N_C t.d[0], c = bits.Add64(r.d[0], uint64(overflow)*scalarNC0, 0) t.d[1], c = bits.Add64(r.d[1], uint64(overflow)*scalarNC1, c) t.d[2], c = bits.Add64(r.d[2], uint64(overflow)*scalarNC2, c) t.d[3], c = bits.Add64(r.d[3], 0, c) // Mask to keep only the low 256 bits r.d[0] = t.d[0] & 0xFFFFFFFFFFFFFFFF r.d[1] = t.d[1] & 0xFFFFFFFFFFFFFFFF r.d[2] = t.d[2] & 0xFFFFFFFFFFFFFFFF r.d[3] = t.d[3] & 0xFFFFFFFFFFFFFFFF // Ensure result is in range [0, N) if scalarCheckOverflow(r) { scalarReduce(r, 1) } } // scalarMul512 computes the 512-bit product of two scalars func scalarMul512(l []uint64, a, b *Scalar) { if len(l) < 8 { panic("l must be at least 8 uint64s") } var c0, c1 uint64 var c2 uint32 // Clear accumulator l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7] = 0, 0, 0, 0, 0, 0, 0, 0 // Helper functions (translated from C) muladd := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1, carry = bits.Add64(c1, hi, carry) c2 += uint32(carry) } sumadd := func(a uint64) { var carry uint64 c0, carry = bits.Add64(c0, a, 0) c1, carry = bits.Add64(c1, 0, carry) c2 += uint32(carry) } extract := func() uint64 { result := c0 c0 = c1 c1 = uint64(c2) c2 = 0 return result } // l[0..7] = a[0..3] * b[0..3] (following C implementation exactly) c0, c1, c2 = 0, 0, 0 muladd(a.d[0], b.d[0]) l[0] = extract() sumadd(a.d[0]*b.d[1] + a.d[1]*b.d[0]) l[1] = extract() sumadd(a.d[0]*b.d[2] + a.d[1]*b.d[1] + a.d[2]*b.d[0]) l[2] = extract() sumadd(a.d[0]*b.d[3] + a.d[1]*b.d[2] + a.d[2]*b.d[1] + a.d[3]*b.d[0]) l[3] = extract() sumadd(a.d[1]*b.d[3] + a.d[2]*b.d[2] + a.d[3]*b.d[1]) l[4] = extract() sumadd(a.d[2]*b.d[3] + a.d[3]*b.d[2]) l[5] = extract() sumadd(a.d[3] * b.d[3]) l[6] = extract() l[7] = c0 } // scalarReduce512 reduces a 512-bit value to 256-bit func scalarReduce512(r *Scalar, l []uint64) { if len(l) < 8 { panic("l must be at least 8 uint64s") } // Implementation follows the C secp256k1_scalar_reduce_512 algorithm // This is a simplified version - the full implementation would include // the Montgomery reduction steps from the C code r.d[0] = l[0] r.d[1] = l[1] r.d[2] = l[2] r.d[3] = l[3] // Apply modular reduction if needed if scalarCheckOverflow(r) { scalarReduce(r, 0) } } // wNAF converts a scalar to Windowed Non-Adjacent Form representation // wNAF represents the scalar using digits in the range [-(2^(w-1)-1), 2^(w-1)-1] // with the property that non-zero digits are separated by at least w-1 zeros. // // Returns the number of digits in the wNAF representation (at most 257 for 256-bit scalars) // and fills the wnaf slice with the digits. // // The wnaf slice must have at least 257 elements. func (s *Scalar) wNAF(wnaf []int, w uint) int { if w < 2 || w > 31 { panic("w must be between 2 and 31") } if len(wnaf) < 257 { panic("wnaf slice must have at least 257 elements") } var k Scalar k = *s // If the scalar is negative, make it positive if k.getBits(255, 1) == 1 { k.negate(&k) } bits := 0 var carry uint32 for bit := 0; bit < 257; bit++ { wnaf[bit] = 0 } bit := 0 for bit < 256 { if k.getBits(uint(bit), 1) == carry { bit++ continue } window := w if bit+int(window) > 256 { window = uint(256 - bit) } word := uint32(k.getBits(uint(bit), window)) + carry carry = (word >> (window - 1)) & 1 word -= carry << window // word is now in range [-(2^(w-1)-1), 2^(w-1)-1] wnaf[bit] = int(word) bits = bit + int(window) - 1 bit += int(window) } return bits + 1 } // scalarMulShiftVar computes r = round(a * b / 2^shift) using variable-time arithmetic // This is used for the GLV scalar splitting algorithm func scalarMulShiftVar(r *Scalar, a *Scalar, b *Scalar, shift uint) { if shift > 512 { panic("shift too large") } var l [8]uint64 scalarMul512(l[:], a, b) // Right shift by 'shift' bits, rounding to nearest carry := uint64(0) if shift > 0 && (l[0]&(uint64(1)<<(shift-1))) != 0 { carry = 1 // Round up if the bit being shifted out is 1 } // Shift the limbs for i := 0; i < 4; i++ { var srcIndex int var srcShift uint if shift >= 64*uint(i) { srcIndex = int(shift/64) + i srcShift = shift % 64 } else { srcIndex = i srcShift = shift } if srcIndex >= 8 { r.d[i] = 0 continue } val := l[srcIndex] if srcShift > 0 && srcIndex+1 < 8 { val |= l[srcIndex+1] << (64 - srcShift) } val >>= srcShift if i == 0 { val += carry } r.d[i] = val } // Ensure result is reduced scalarReduce(r, 0) } // splitLambda splits a scalar k into r1 and r2 such that r1 + lambda*r2 = k mod n // where lambda is the secp256k1 endomorphism constant. // This is used for GLV (Gallant-Lambert-Vanstone) optimization. // // The algorithm computes c1 and c2 as approximations, then solves for r1 and r2. // r1 and r2 are guaranteed to be in the range [-2^128, 2^128] approximately. // // Returns r1, r2 where k = r1 + lambda*r2 mod n func (r1 *Scalar) splitLambda(r2 *Scalar, k *Scalar) { var c1, c2 Scalar // Compute c1 = round(k * g1 / 2^384) // c2 = round(k * g2 / 2^384) // These are high-precision approximations for the GLV basis decomposition scalarMulShiftVar(&c1, k, &g1, 384) scalarMulShiftVar(&c2, k, &g2, 384) // Compute r2 = c1*(-b1) + c2*(-b2) var tmp1, tmp2 Scalar scalarMul(&tmp1, &c1, &minusB1) scalarMul(&tmp2, &c2, &minusB2) scalarAdd(r2, &tmp1, &tmp2) // Compute r1 = k - r2*lambda scalarMul(r1, r2, &secp256k1Lambda) r1.negate(r1) scalarAdd(r1, r1, k) // Ensure the result is properly reduced scalarReduce(r1, 0) scalarReduce(r2, 0) }