# secp256k1 Go Implementation - Optimization Summary ## Overview This document summarizes the optimizations implemented in the Go port of secp256k1, focusing on performance-critical cryptographic operations. ## Implemented Optimizations ### 1. SHA-256 SIMD Implementation - **Library**: `github.com/minio/sha256-simd` - **Performance**: ~61.56 ns/op for basic SHA-256 operations - **Features**: - Hardware-accelerated SHA-256 when available - Tagged SHA-256 for BIP-340 compatibility - HMAC-SHA256 for RFC 6979 nonce generation ### 2. Optimized Scalar Multiplication #### Generator Multiplication (`ecmultGen`) - **Method**: Precomputed windowed tables - **Window Size**: 4 bits (16 precomputed points per window) - **Table Size**: 64 windows × 16 points = 1,024 precomputed points - **Performance**: ~720.2 ns/op (significant improvement over naive methods) - **Memory**: ~65KB for precomputed table #### Constant-Time Multiplication (`EcmultConst`) - **Method**: Windowed method with odd multiples - **Window Size**: 4 bits - **Performance**: ~8,636 ns/op - **Security**: Constant-time execution to prevent side-channel attacks #### Multi-Scalar Multiplication - **Methods**: - `EcmultMulti`: Simple approach for multiple point multiplications - `EcmultStrauss`: Interleaved binary method for better efficiency - **Use Case**: Batch verification and complex cryptographic protocols ### 3. RFC 6979 Deterministic Nonce Generation - **Standard**: RFC 6979 compliant - **Implementation**: HMAC-SHA256 based - **Performance**: ~3,092 ns/op - **Security**: Deterministic, no random number generator dependency - **Features**: - Proper HMAC key derivation - Support for additional entropy - Algorithm identifier support ### 4. Side-Channel Protection #### Context Blinding - **Purpose**: Protection against side-channel attacks - **Method**: Random blinding of precomputed tables - **Implementation**: Blinding points added to computation results - **Security**: Makes timing attacks significantly harder #### Constant-Time Operations - **Field Operations**: Magnitude tracking and normalization - **Scalar Operations**: Constant-time conditional operations - **Group Operations**: Unified addition formulas where possible ## Performance Benchmarks ``` BenchmarkOptimizedEcmultGen-12 1671268 720.2 ns/op BenchmarkEcmultConst-12 139990 8636 ns/op BenchmarkSHA256-12 19563603 61.56 ns/op BenchmarkTaggedSHA256-12 4350244 275.7 ns/op BenchmarkRFC6979Nonce-12 367168 3092 ns/op BenchmarkFieldAddition-12 518004895 2.358 ns/op BenchmarkScalarMultiplication-12 124707854 9.791 ns/op ``` ## Memory Usage ### Precomputed Tables - **Generator Table**: ~65KB (64 windows × 16 points × ~64 bytes per point) - **General Multiplication**: Dynamic table generation as needed - **Total Context Size**: ~66KB including blinding and metadata ### Optimization Trade-offs - **Memory vs Speed**: Precomputed tables use significant memory for speed gains - **Security vs Performance**: Constant-time operations are slower but secure - **Determinism vs Randomness**: RFC 6979 provides determinism without entropy requirements ## Advanced Features ### Endomorphism Optimization (Prepared) - **secp256k1 Specific**: Efficiently computable endomorphism - **Method**: Split scalar multiplication into two half-size operations - **Status**: Framework implemented, full optimization pending - **Potential Gain**: ~40% speedup for scalar multiplication ### Precomputed Point Tables - **Structure**: Hierarchical windowed tables - **Flexibility**: Configurable window sizes for memory/speed trade-offs - **Scalability**: Supports both small embedded and high-performance scenarios ## Security Considerations ### Constant-Time Guarantees - **Field Arithmetic**: Magnitude-based normalization prevents timing leaks - **Scalar Operations**: Conditional moves instead of branches - **Point Operations**: Unified addition formulas ### Side-Channel Resistance - **Blinding**: Random blinding of intermediate values - **Table Access**: Constant-time table lookups where possible - **Memory Access**: Predictable access patterns ### Cryptographic Correctness - **Field Reduction**: Proper modular arithmetic - **Group Law**: Correct elliptic curve point operations - **Scalar Arithmetic**: Proper modular arithmetic modulo curve order ## Future Optimizations ### Potential Improvements 1. **Assembly Optimizations**: Hand-optimized assembly for critical paths 2. **SIMD Field Arithmetic**: Vectorized field operations 3. **Batch Operations**: Optimized batch verification 4. **Memory Layout**: Cache-friendly data structures 5. **Endomorphism**: Full GLV/GLS endomorphism implementation ### Platform-Specific Optimizations - **x86_64**: AVX2/AVX-512 vectorization - **ARM64**: NEON vectorization - **Hardware Acceleration**: Dedicated crypto instructions where available ## Conclusion The Go implementation now includes significant performance optimizations while maintaining security and correctness. The precomputed table approach provides substantial speedups for the most common operations (generator multiplication), while constant-time implementations ensure security against side-channel attacks. Key achievements: - ✅ 720ns generator multiplication (vs. several microseconds for naive implementation) - ✅ Hardware-accelerated SHA-256 - ✅ RFC 6979 compliant nonce generation - ✅ Side-channel resistant implementations - ✅ Comprehensive test coverage - ✅ Benchmark suite for performance monitoring The implementation is now suitable for production use in performance-critical applications while maintaining the security properties required for cryptographic operations.