package p256k1 import ( "crypto/subtle" "math/bits" "unsafe" ) // Scalar represents a scalar value modulo the secp256k1 group order. // Uses 4 uint64 limbs to represent a 256-bit scalar. type Scalar struct { d [4]uint64 } // Scalar constants from the C implementation const ( // Limbs of the secp256k1 order n scalarN0 = 0xBFD25E8CD0364141 scalarN1 = 0xBAAEDCE6AF48A03B scalarN2 = 0xFFFFFFFFFFFFFFFE scalarN3 = 0xFFFFFFFFFFFFFFFF // Limbs of 2^256 minus the secp256k1 order (complement constants) scalarNC0 = 0x402DA1732FC9BEBF // ~scalarN0 + 1 scalarNC1 = 0x4551231950B75FC4 // ~scalarN1 scalarNC2 = 0x0000000000000001 // 1 // Limbs of half the secp256k1 order scalarNH0 = 0xDFE92F46681B20A0 scalarNH1 = 0x5D576E7357A4501D scalarNH2 = 0xFFFFFFFFFFFFFFFF scalarNH3 = 0x7FFFFFFFFFFFFFFF ) // Scalar element constants var ( // ScalarZero represents the scalar 0 ScalarZero = Scalar{d: [4]uint64{0, 0, 0, 0}} // ScalarOne represents the scalar 1 ScalarOne = Scalar{d: [4]uint64{1, 0, 0, 0}} ) // setInt sets a scalar to a small integer value func (r *Scalar) setInt(v uint) { r.d[0] = uint64(v) r.d[1] = 0 r.d[2] = 0 r.d[3] = 0 } // setB32 sets a scalar from a 32-byte big-endian array func (r *Scalar) setB32(b []byte) bool { if len(b) != 32 { panic("scalar byte array must be 32 bytes") } // Convert from big-endian bytes to uint64 limbs r.d[0] = uint64(b[31]) | uint64(b[30])<<8 | uint64(b[29])<<16 | uint64(b[28])<<24 | uint64(b[27])<<32 | uint64(b[26])<<40 | uint64(b[25])<<48 | uint64(b[24])<<56 r.d[1] = uint64(b[23]) | uint64(b[22])<<8 | uint64(b[21])<<16 | uint64(b[20])<<24 | uint64(b[19])<<32 | uint64(b[18])<<40 | uint64(b[17])<<48 | uint64(b[16])<<56 r.d[2] = uint64(b[15]) | uint64(b[14])<<8 | uint64(b[13])<<16 | uint64(b[12])<<24 | uint64(b[11])<<32 | uint64(b[10])<<40 | uint64(b[9])<<48 | uint64(b[8])<<56 r.d[3] = uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 // Check if the scalar overflows the group order overflow := r.checkOverflow() if overflow { r.reduce(1) } return overflow } // setB32Seckey sets a scalar from a 32-byte secret key, returns true if valid func (r *Scalar) setB32Seckey(b []byte) bool { overflow := r.setB32(b) return !r.isZero() && !overflow } // getB32 converts a scalar to a 32-byte big-endian array func (r *Scalar) getB32(b []byte) { if len(b) != 32 { panic("scalar byte array must be 32 bytes") } // Convert from uint64 limbs to big-endian bytes b[31] = byte(r.d[0]) b[30] = byte(r.d[0] >> 8) b[29] = byte(r.d[0] >> 16) b[28] = byte(r.d[0] >> 24) b[27] = byte(r.d[0] >> 32) b[26] = byte(r.d[0] >> 40) b[25] = byte(r.d[0] >> 48) b[24] = byte(r.d[0] >> 56) b[23] = byte(r.d[1]) b[22] = byte(r.d[1] >> 8) b[21] = byte(r.d[1] >> 16) b[20] = byte(r.d[1] >> 24) b[19] = byte(r.d[1] >> 32) b[18] = byte(r.d[1] >> 40) b[17] = byte(r.d[1] >> 48) b[16] = byte(r.d[1] >> 56) b[15] = byte(r.d[2]) b[14] = byte(r.d[2] >> 8) b[13] = byte(r.d[2] >> 16) b[12] = byte(r.d[2] >> 24) b[11] = byte(r.d[2] >> 32) b[10] = byte(r.d[2] >> 40) b[9] = byte(r.d[2] >> 48) b[8] = byte(r.d[2] >> 56) b[7] = byte(r.d[3]) b[6] = byte(r.d[3] >> 8) b[5] = byte(r.d[3] >> 16) b[4] = byte(r.d[3] >> 24) b[3] = byte(r.d[3] >> 32) b[2] = byte(r.d[3] >> 40) b[1] = byte(r.d[3] >> 48) b[0] = byte(r.d[3] >> 56) } // checkOverflow checks if the scalar is >= the group order func (r *Scalar) checkOverflow() bool { yes := 0 no := 0 // Check each limb from most significant to least significant if r.d[3] < scalarN3 { no = 1 } if r.d[3] > scalarN3 { yes = 1 } if r.d[2] < scalarN2 { no |= (yes ^ 1) } if r.d[2] > scalarN2 { yes |= (no ^ 1) } if r.d[1] < scalarN1 { no |= (yes ^ 1) } if r.d[1] > scalarN1 { yes |= (no ^ 1) } if r.d[0] >= scalarN0 { yes |= (no ^ 1) } return yes != 0 } // reduce reduces the scalar modulo the group order func (r *Scalar) reduce(overflow int) { if overflow < 0 || overflow > 1 { panic("overflow must be 0 or 1") } // Use 128-bit arithmetic for the reduction var t uint128 // d[0] += overflow * scalarNC0 t = uint128FromU64(r.d[0]) t = t.addU64(uint64(overflow) * scalarNC0) r.d[0] = t.lo() t = t.rshift(64) // d[1] += overflow * scalarNC1 + carry t = t.addU64(r.d[1]) t = t.addU64(uint64(overflow) * scalarNC1) r.d[1] = t.lo() t = t.rshift(64) // d[2] += overflow * scalarNC2 + carry t = t.addU64(r.d[2]) t = t.addU64(uint64(overflow) * scalarNC2) r.d[2] = t.lo() t = t.rshift(64) // d[3] += carry (scalarNC3 = 0) t = t.addU64(r.d[3]) r.d[3] = t.lo() } // add adds two scalars: r = a + b, returns overflow func (r *Scalar) add(a, b *Scalar) bool { var carry uint64 r.d[0], carry = bits.Add64(a.d[0], b.d[0], 0) r.d[1], carry = bits.Add64(a.d[1], b.d[1], carry) r.d[2], carry = bits.Add64(a.d[2], b.d[2], carry) r.d[3], carry = bits.Add64(a.d[3], b.d[3], carry) overflow := carry != 0 || r.checkOverflow() if overflow { r.reduce(1) } return overflow } // sub subtracts two scalars: r = a - b func (r *Scalar) sub(a, b *Scalar) { // Compute a - b = a + (-b) var negB Scalar negB.negate(b) *r = *a r.add(r, &negB) } // mul multiplies two scalars: r = a * b func (r *Scalar) mul(a, b *Scalar) { // Compute full 512-bit product using all 16 cross products var l [8]uint64 r.mul512(l[:], a, b) r.reduce512(l[:]) } // mul512 computes the 512-bit product of two scalars (from C implementation) func (r *Scalar) mul512(l8 []uint64, a, b *Scalar) { // 160-bit accumulator (c0, c1, c2) var c0, c1 uint64 var c2 uint32 // Helper macros translated from C muladd := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1, carry = bits.Add64(c1, hi, carry) c2 += uint32(carry) } muladdFast := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1 += hi + carry } extract := func() uint64 { result := c0 c0 = c1 c1 = uint64(c2) c2 = 0 return result } extractFast := func() uint64 { result := c0 c0 = c1 c1 = 0 return result } // l8[0..7] = a[0..3] * b[0..3] (following C implementation exactly) muladdFast(a.d[0], b.d[0]) l8[0] = extractFast() muladd(a.d[0], b.d[1]) muladd(a.d[1], b.d[0]) l8[1] = extract() muladd(a.d[0], b.d[2]) muladd(a.d[1], b.d[1]) muladd(a.d[2], b.d[0]) l8[2] = extract() muladd(a.d[0], b.d[3]) muladd(a.d[1], b.d[2]) muladd(a.d[2], b.d[1]) muladd(a.d[3], b.d[0]) l8[3] = extract() muladd(a.d[1], b.d[3]) muladd(a.d[2], b.d[2]) muladd(a.d[3], b.d[1]) l8[4] = extract() muladd(a.d[2], b.d[3]) muladd(a.d[3], b.d[2]) l8[5] = extract() muladdFast(a.d[3], b.d[3]) l8[6] = extractFast() l8[7] = c0 } // reduce512 reduces a 512-bit value to 256-bit (from C implementation) func (r *Scalar) reduce512(l []uint64) { // 160-bit accumulator var c0, c1 uint64 var c2 uint32 // Extract upper 256 bits n0, n1, n2, n3 := l[4], l[5], l[6], l[7] // Helper macros muladd := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1, carry = bits.Add64(c1, hi, carry) c2 += uint32(carry) } muladdFast := func(ai, bi uint64) { hi, lo := bits.Mul64(ai, bi) var carry uint64 c0, carry = bits.Add64(c0, lo, 0) c1 += hi + carry } sumadd := func(a uint64) { var carry uint64 c0, carry = bits.Add64(c0, a, 0) c1, carry = bits.Add64(c1, 0, carry) c2 += uint32(carry) } sumaddFast := func(a uint64) { var carry uint64 c0, carry = bits.Add64(c0, a, 0) c1 += carry } extract := func() uint64 { result := c0 c0 = c1 c1 = uint64(c2) c2 = 0 return result } extractFast := func() uint64 { result := c0 c0 = c1 c1 = 0 return result } // Reduce 512 bits into 385 bits // m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C c0 = l[0] c1 = 0 c2 = 0 muladdFast(n0, scalarNC0) m0 := extractFast() sumaddFast(l[1]) muladd(n1, scalarNC0) muladd(n0, scalarNC1) m1 := extract() sumadd(l[2]) muladd(n2, scalarNC0) muladd(n1, scalarNC1) sumadd(n0) m2 := extract() sumadd(l[3]) muladd(n3, scalarNC0) muladd(n2, scalarNC1) sumadd(n1) m3 := extract() muladd(n3, scalarNC1) sumadd(n2) m4 := extract() sumaddFast(n3) m5 := extractFast() m6 := uint32(c0) // Reduce 385 bits into 258 bits // p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C c0 = m0 c1 = 0 c2 = 0 muladdFast(m4, scalarNC0) p0 := extractFast() sumaddFast(m1) muladd(m5, scalarNC0) muladd(m4, scalarNC1) p1 := extract() sumadd(m2) muladd(uint64(m6), scalarNC0) muladd(m5, scalarNC1) sumadd(m4) p2 := extract() sumaddFast(m3) muladdFast(uint64(m6), scalarNC1) sumaddFast(m5) p3 := extractFast() p4 := uint32(c0 + uint64(m6)) // Reduce 258 bits into 256 bits // r[0..3] = p[0..3] + p[4] * SECP256K1_N_C var t uint128 t = uint128FromU64(p0) t = t.addMul(scalarNC0, uint64(p4)) r.d[0] = t.lo() t = t.rshift(64) t = t.addU64(p1) t = t.addMul(scalarNC1, uint64(p4)) r.d[1] = t.lo() t = t.rshift(64) t = t.addU64(p2) t = t.addU64(uint64(p4)) r.d[2] = t.lo() t = t.rshift(64) t = t.addU64(p3) r.d[3] = t.lo() c := t.hi() // Final reduction r.reduce(int(c) + boolToInt(r.checkOverflow())) } // negate negates a scalar: r = -a func (r *Scalar) negate(a *Scalar) { // r = n - a where n is the group order var borrow uint64 r.d[0], borrow = bits.Sub64(scalarN0, a.d[0], 0) r.d[1], borrow = bits.Sub64(scalarN1, a.d[1], borrow) r.d[2], borrow = bits.Sub64(scalarN2, a.d[2], borrow) r.d[3], _ = bits.Sub64(scalarN3, a.d[3], borrow) } // inverse computes the modular inverse of a scalar func (r *Scalar) inverse(a *Scalar) { // Use Fermat's little theorem: a^(-1) = a^(n-2) mod n // where n is the group order (which is prime) // Use binary exponentiation with n-2 var exp Scalar var borrow uint64 exp.d[0], borrow = bits.Sub64(scalarN0, 2, 0) exp.d[1], borrow = bits.Sub64(scalarN1, 0, borrow) exp.d[2], borrow = bits.Sub64(scalarN2, 0, borrow) exp.d[3], _ = bits.Sub64(scalarN3, 0, borrow) r.exp(a, &exp) } // exp computes r = a^b mod n using binary exponentiation func (r *Scalar) exp(a, b *Scalar) { *r = ScalarOne base := *a for i := 0; i < 4; i++ { limb := b.d[i] for j := 0; j < 64; j++ { if limb&1 != 0 { r.mul(r, &base) } base.mul(&base, &base) limb >>= 1 } } } // half computes r = a/2 mod n func (r *Scalar) half(a *Scalar) { *r = *a if r.d[0]&1 == 0 { // Even case: simple right shift r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63) r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63) r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63) r.d[3] = r.d[3] >> 1 } else { // Odd case: add n then divide by 2 var carry uint64 r.d[0], carry = bits.Add64(r.d[0], scalarN0, 0) r.d[1], carry = bits.Add64(r.d[1], scalarN1, carry) r.d[2], carry = bits.Add64(r.d[2], scalarN2, carry) r.d[3], _ = bits.Add64(r.d[3], scalarN3, carry) // Now divide by 2 r.d[0] = (r.d[0] >> 1) | ((r.d[1] & 1) << 63) r.d[1] = (r.d[1] >> 1) | ((r.d[2] & 1) << 63) r.d[2] = (r.d[2] >> 1) | ((r.d[3] & 1) << 63) r.d[3] = r.d[3] >> 1 } } // isZero returns true if the scalar is zero func (r *Scalar) isZero() bool { return (r.d[0] | r.d[1] | r.d[2] | r.d[3]) == 0 } // isOne returns true if the scalar is one func (r *Scalar) isOne() bool { return r.d[0] == 1 && r.d[1] == 0 && r.d[2] == 0 && r.d[3] == 0 } // isEven returns true if the scalar is even func (r *Scalar) isEven() bool { return r.d[0]&1 == 0 } // isHigh returns true if the scalar is > n/2 func (r *Scalar) isHigh() bool { var yes, no int if r.d[3] < scalarNH3 { no = 1 } if r.d[3] > scalarNH3 { yes = 1 } if r.d[2] < scalarNH2 { no |= (yes ^ 1) } if r.d[2] > scalarNH2 { yes |= (no ^ 1) } if r.d[1] < scalarNH1 { no |= (yes ^ 1) } if r.d[1] > scalarNH1 { yes |= (no ^ 1) } if r.d[0] > scalarNH0 { yes |= (no ^ 1) } return yes != 0 } // condNegate conditionally negates the scalar if flag is true func (r *Scalar) condNegate(flag int) { if flag != 0 { var neg Scalar neg.negate(r) *r = neg } } // equal returns true if two scalars are equal func (r *Scalar) equal(a *Scalar) bool { return subtle.ConstantTimeCompare( (*[32]byte)(unsafe.Pointer(&r.d[0]))[:32], (*[32]byte)(unsafe.Pointer(&a.d[0]))[:32], ) == 1 } // getBits extracts count bits starting at offset func (r *Scalar) getBits(offset, count uint) uint32 { if count == 0 || count > 32 { panic("count must be 1-32") } if offset+count > 256 { panic("offset + count must be <= 256") } limbIdx := offset / 64 bitIdx := offset % 64 if bitIdx+count <= 64 { // Bits are within a single limb return uint32((r.d[limbIdx] >> bitIdx) & ((1 << count) - 1)) } else { // Bits span two limbs lowBits := 64 - bitIdx highBits := count - lowBits low := uint32((r.d[limbIdx] >> bitIdx) & ((1 << lowBits) - 1)) high := uint32(r.d[limbIdx+1] & ((1 << highBits) - 1)) return low | (high << lowBits) } } // cmov conditionally moves a scalar. If flag is true, r = a; otherwise r is unchanged. func (r *Scalar) cmov(a *Scalar, flag int) { mask := uint64(-(int64(flag) & 1)) r.d[0] ^= mask & (r.d[0] ^ a.d[0]) r.d[1] ^= mask & (r.d[1] ^ a.d[1]) r.d[2] ^= mask & (r.d[2] ^ a.d[2]) r.d[3] ^= mask & (r.d[3] ^ a.d[3]) } // clear clears a scalar to prevent leaking sensitive information func (r *Scalar) clear() { memclear(unsafe.Pointer(&r.d[0]), unsafe.Sizeof(r.d)) } // Helper functions for 128-bit arithmetic (using uint128 from field_mul.go) func uint128FromU64(x uint64) uint128 { return uint128{low: x, high: 0} } func (x uint128) addU64(y uint64) uint128 { low, carry := bits.Add64(x.low, y, 0) high := x.high + carry return uint128{low: low, high: high} } func (x uint128) addMul(a, b uint64) uint128 { hi, lo := bits.Mul64(a, b) low, carry := bits.Add64(x.low, lo, 0) high, _ := bits.Add64(x.high, hi, carry) return uint128{low: low, high: high} }