remove 32 bit limbs

This commit is contained in:
2025-11-01 17:57:52 +00:00
parent 77f747f360
commit 93989d07be
17 changed files with 2 additions and 2909 deletions

View File

@@ -13,7 +13,7 @@
* objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
*
* The actual definition of the secp256k1_fe type depends on the chosen field
* implementation; see the field_5x52.h and field_10x26.h files for details.
* implementation; see the field_5x52.h file for details.
*
* All secp256k1_fe objects have implicit properties that determine what
* operations are permitted on it. These are purely a function of what
@@ -39,8 +39,6 @@
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26.h"
#else
#error "Please select wide multiplication implementation"
#endif

View File

@@ -1,57 +0,0 @@
/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
/** This field implementation represents the value as 10 uint32_t limbs in base
* 2^26. */
typedef struct {
/* A field element f represents the sum(i=0..9, f.n[i] << (i*26)) mod p,
* where p is the field modulus, 2^256 - 2^32 - 977.
*
* The individual limbs f.n[i] can exceed 2^26; the field's magnitude roughly
* corresponds to how much excess is allowed. The value
* sum(i=0..9, f.n[i] << (i*26)) may exceed p, unless the field element is
* normalized. */
uint32_t n[10];
/*
* Magnitude m requires:
* n[i] <= 2 * m * (2^26 - 1) for i=0..8
* n[9] <= 2 * m * (2^22 - 1)
*
* Normalized requires:
* n[i] <= (2^26 - 1) for i=0..8
* sum(i=0..9, n[i] << (i*26)) < p
* (together these imply n[9] <= 2^22 - 1)
*/
SECP256K1_FE_VERIFY_FIELDS
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

File diff suppressed because it is too large Load Diff

View File

@@ -12,8 +12,6 @@
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif

View File

@@ -1,43 +0,0 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_H
#define SECP256K1_MODINV32_H
#include "util.h"
/* A signed 30-bit limb representation of integers.
*
* Its value is sum(v[i] * 2^(30*i), i=0..8). */
typedef struct {
int32_t v[9];
} secp256k1_modinv32_signed30;
typedef struct {
/* The modulus in signed30 notation, must be odd and in [3, 2^256]. */
secp256k1_modinv32_signed30 modulus;
/* modulus^{-1} mod 2^30 */
uint32_t modulus_inv30;
} secp256k1_modinv32_modinfo;
/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
* If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
* x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
*
* On output, all of x's limbs will be in [0, 2^30).
*/
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
* cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
* cannot be computed. */
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
#endif /* SECP256K1_MODINV32_H */

View File

@@ -1,725 +0,0 @@
/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV32_IMPL_H
#define SECP256K1_MODINV32_IMPL_H
#include "modinv32.h"
#include "util.h"
#include <stdlib.h>
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
*
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
* implementation for N=30, using 30-bit signed limbs represented as int32_t.
*/
#ifdef VERIFY
static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}};
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */
static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
int64_t c = 0;
int i;
for (i = 0; i < 8; ++i) {
if (i < alen) c += (int64_t)a->v[i] * factor;
r->v[i] = (int32_t)c & M30; c >>= 30;
}
if (8 < alen) c += (int64_t)a->v[8] * factor;
VERIFY_CHECK(c == (int32_t)c);
r->v[8] = (int32_t)c;
}
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A consists of alen limbs; b has 9. */
static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) {
int i;
secp256k1_modinv32_signed30 am, bm;
secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */
secp256k1_modinv32_mul_30(&bm, b, 9, factor);
for (i = 0; i < 8; ++i) {
/* Verify that all but the top limb of a and b are normalized. */
VERIFY_CHECK(am.v[i] >> 30 == 0);
VERIFY_CHECK(bm.v[i] >> 30 == 0);
}
for (i = 8; i >= 0; --i) {
if (am.v[i] < bm.v[i]) return -1;
if (am.v[i] > bm.v[i]) return 1;
}
return 0;
}
#endif
/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
* process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range
* [0,2^30). */
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
volatile int32_t cond_add, cond_negate;
#ifdef VERIFY
/* Verify that all limbs are in range (-2^30,2^30). */
int i;
for (i = 0; i < 9; ++i) {
VERIFY_CHECK(r->v[i] >= -M30);
VERIFY_CHECK(r->v[i] <= M30);
}
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
/* In a first step, add the modulus if the input is negative, and then negate if requested.
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
* limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
* indeed the behavior of the right shift operator). */
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
cond_negate = sign >> 31;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
r5 = (r5 ^ cond_negate) - cond_negate;
r6 = (r6 ^ cond_negate) - cond_negate;
r7 = (r7 ^ cond_negate) - cond_negate;
r8 = (r8 ^ cond_negate) - cond_negate;
/* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
/* In a second step add the modulus again if the result is still negative, bringing r to range
* [0,modulus). */
cond_add = r8 >> 31;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
r5 += modinfo->modulus.v[5] & cond_add;
r6 += modinfo->modulus.v[6] & cond_add;
r7 += modinfo->modulus.v[7] & cond_add;
r8 += modinfo->modulus.v[8] & cond_add;
/* And propagate again. */
r1 += r0 >> 30; r0 &= M30;
r2 += r1 >> 30; r1 &= M30;
r3 += r2 >> 30; r2 &= M30;
r4 += r3 >> 30; r3 &= M30;
r5 += r4 >> 30; r4 &= M30;
r6 += r5 >> 30; r5 &= M30;
r7 += r6 >> 30; r6 &= M30;
r8 += r7 >> 30; r7 &= M30;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
r->v[5] = r5;
r->v[6] = r6;
r->v[7] = r7;
r->v[8] = r8;
VERIFY_CHECK(r0 >> 30 == 0);
VERIFY_CHECK(r1 >> 30 == 0);
VERIFY_CHECK(r2 >> 30 == 0);
VERIFY_CHECK(r3 >> 30 == 0);
VERIFY_CHECK(r4 >> 30 == 0);
VERIFY_CHECK(r5 >> 30 == 0);
VERIFY_CHECK(r6 >> 30 == 0);
VERIFY_CHECK(r7 >> 30 == 0);
VERIFY_CHECK(r8 >> 30 == 0);
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
}
/* Data type for transition matrices (see section 3 of explanation).
*
* t = [ u v ]
* [ q r ]
*/
typedef struct {
int32_t u, v, q, r;
} secp256k1_modinv32_trans2x2;
/* Compute the transition matrix and zeta for 30 divsteps.
*
* Input: zeta: initial zeta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final zeta
*
* Implements the divsteps_n_matrix function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
/* u,v,q,r are the elements of the transformation matrix being built up,
* starting with the identity matrix. Semantically they are signed integers
* in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
* permits left shifting (which is UB for negative numbers). The range
* being inside [-2^31,2^31) means that casting to signed works correctly.
*/
uint32_t u = 1, v = 0, q = 0, r = 1;
volatile uint32_t c1, c2;
uint32_t mask1, mask2, f = f0, g = g0, x, y, z;
int i;
for (i = 0; i < 30; ++i) {
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
c1 = zeta >> 31;
mask1 = c1;
c2 = g & 1;
mask2 = -c2;
/* Compute x,y,z, conditionally negated versions of f,u,v. */
x = (f ^ mask1) - mask1;
y = (u ^ mask1) - mask1;
z = (v ^ mask1) - mask1;
/* Conditionally add x,y,z to g,q,r. */
g += x & mask2;
q += y & mask2;
r += z & mask2;
/* In what follows, mask1 is a condition mask for (zeta < 0) and (g & 1). */
mask1 &= mask2;
/* Conditionally change zeta into -zeta-2 or zeta-1. */
zeta = (zeta ^ mask1) - 1;
/* Conditionally add g,q,r to f,u,v. */
f += g & mask1;
u += q & mask1;
v += r & mask1;
/* Shifts */
g >>= 1;
u <<= 1;
v <<= 1;
/* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */
VERIFY_CHECK(zeta >= -601 && zeta <= 601);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 30 of them will have determinant 2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
return zeta;
}
/* secp256k1_modinv32_inv256[i] = -(2*i+1)^-1 (mod 256) */
static const uint8_t secp256k1_modinv32_inv256[128] = {
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};
/* Compute the transition matrix and eta for 30 divsteps (variable time).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final eta
*
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
uint16_t w;
int i = 30, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* We're done once we've done 30 divsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
VERIFY_CHECK(eta >= -751 && eta <= 751);
/* If eta is negative, negate it and replace f,g with g,-f. */
if (eta < 0) {
uint32_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
}
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
* can be done as its sign will flip once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 30 of them will have determinant 2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
return eta;
}
/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
* of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
* Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
* by applying the returned transformation matrix to it. The other bits of *jacp may
* change, but are meaningless.
* Return: final eta
*/
static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
/* Transformation matrix. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
uint16_t w;
int i = 30, limit, zeros;
int jac = *jacp;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* Update the bottom bit of jac: when dividing g by an odd power of 2,
* if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
/* We're done once we've done 30 posdivsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
/* If eta is negative, negate it and replace f,g with g,f. */
if (eta < 0) {
uint32_t tmp;
eta = -eta;
/* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
* if both f and g are 3 mod 4. */
jac ^= ((f & g) >> 1);
tmp = f; f = g; g = tmp;
tmp = u; u = q; q = tmp;
tmp = v; v = r; r = tmp;
}
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
* can be done as its sign will flip once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int32_t)u;
t->v = (int32_t)v;
t->q = (int32_t)q;
t->r = (int32_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
* the aggregate of 30 of them will have determinant 2^30 or -2^30. */
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
(int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
*jacp = jac;
return eta;
}
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
* (-2^30,2^30).
*
* This implements the update_de function from the explanation.
*/
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t di, ei, md, me, sd, se;
int64_t cd, ce;
int i;
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK(labs(u) <= (M30 + 1 - labs(v))); /* |u|+|v| <= 2^30 */
VERIFY_CHECK(labs(q) <= (M30 + 1 - labs(r))); /* |q|+|r| <= 2^30 */
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d->v[8] >> 31;
se = e->v[8] >> 31;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
di = d->v[0];
ei = e->v[0];
cd = (int64_t)u * di + (int64_t)v * ei;
ce = (int64_t)q * di + (int64_t)r * ei;
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
cd += (int64_t)modinfo->modulus.v[0] * md;
ce += (int64_t)modinfo->modulus.v[0] * me;
/* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
/* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
* limb i-1 (shifting down by 30 bits). */
for (i = 1; i < 9; ++i) {
di = d->v[i];
ei = e->v[i];
cd += (int64_t)u * di + (int64_t)v * ei;
ce += (int64_t)q * di + (int64_t)r * ei;
cd += (int64_t)modinfo->modulus.v[i] * md;
ce += (int64_t)modinfo->modulus.v[i] * me;
d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
}
/* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
d->v[8] = (int32_t)cd;
e->v[8] = (int32_t)ce;
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
}
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
*
* This implements the update_fg function from the explanation.
*/
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < 9; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
}
/* What remains is limb 9 of t*[f,g]; store it as output limb 8. */
f->v[8] = (int32_t)cf;
g->v[8] = (int32_t)cg;
}
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
*
* Version that operates on a variable number of limbs in f and g.
*
* This implements the update_fg function from the explanation in modinv64_impl.h.
*/
static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
int32_t fi, gi;
int64_t cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int64_t)u * fi + (int64_t)v * gi;
cg = (int64_t)q * fi + (int64_t)r * gi;
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 30 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int64_t)u * fi + (int64_t)v * gi;
cg += (int64_t)q * fi + (int64_t)r * gi;
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
}
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
f->v[len - 1] = (int32_t)cf;
g->v[len - 1] = (int32_t)cg;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
secp256k1_modinv32_signed30 d = {{0}};
secp256k1_modinv32_signed30 e = {{1}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int i;
int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */
/* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */
for (i = 0; i < 20; ++i) {
/* Compute transition matrix and new zeta after 30 divsteps. */
secp256k1_modinv32_trans2x2 t;
zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
secp256k1_modinv32_update_fg_30(&f, &g, &t);
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and f == modulus) */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0));
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
*x = d;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
#ifdef VERIFY
int i = 0;
#endif
int j, len = 9;
int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */
int32_t cond, fn, gn;
/* Do iterations of 30 divsteps each until g=0. */
while (1) {
/* Compute transition matrix and new eta after 30 divsteps. */
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of g is 0, there is a chance g=0. */
if (g.v[0] == 0) {
cond = 0;
/* Check if all other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= g.v[j];
}
/* If so, we're done. */
if (cond == 0) break;
}
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int32_t)len - 2) >> 31;
cond |= fn ^ (fn >> 31);
cond |= gn ^ (gn >> 31);
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
if (cond == 0) {
f.v[len - 2] |= (uint32_t)fn << 30;
g.v[len - 2] |= (uint32_t)gn << 30;
--len;
}
VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
/* g == 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and f == modulus) */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0));
/* Optionally negate d, normalize to [0,modulus), and return it. */
secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
*x = d;
}
/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
* In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
#ifdef VERIFY
#define JACOBI32_ITERATIONS 25
#else
#define JACOBI32_ITERATIONS 50
#endif
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
/* Start with f=modulus, g=x, eta=-1. */
secp256k1_modinv32_signed30 f = modinfo->modulus;
secp256k1_modinv32_signed30 g = *x;
int j, len = 9;
int32_t eta = -1; /* eta = -delta; delta is initially 1 */
int32_t cond, fn, gn;
int jac = 0;
int count;
/* The input limbs must all be non-negative. */
VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);
/* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
* require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
* time out). */
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) != 0);
for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
/* Compute transition matrix and new eta after 30 posdivsteps. */
secp256k1_modinv32_trans2x2 t;
eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
/* Update f,g using that transition matrix. */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
/* If the bottom limb of f is 1, there is a chance that f=1. */
if (f.v[0] == 1) {
cond = 0;
/* Check if the other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= f.v[j];
}
/* If so, we're done. If f=1, the Jacobi symbol (g | f)=1. */
if (cond == 0) return 1 - 2*(jac & 1);
}
/* Determine if len>1 and limb (len-1) of both f and g is 0. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int32_t)len - 2) >> 31;
cond |= fn;
cond |= gn;
/* If so, reduce length. */
if (cond == 0) --len;
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
}
/* The loop failed to converge to f=g after 1500 iterations. Return 0, indicating unknown result. */
return 0;
}
#endif /* SECP256K1_MODINV32_IMPL_H */

Binary file not shown.

Binary file not shown.

View File

@@ -13,8 +13,6 @@
#include "scalar_low.h"
#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32.h"
#else
#error "Please select wide multiplication implementation"
#endif

View File

@@ -1,19 +0,0 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint32_t d[8];
} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
#endif /* SECP256K1_SCALAR_REPR_H */

View File

@@ -1,816 +0,0 @@
/***********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
#include "checkmem.h"
#include "modinv32_impl.h"
#include "util.h"
/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (~SECP256K1_N_2)
#define SECP256K1_N_C_3 (~SECP256K1_N_3)
#define SECP256K1_N_C_4 (1)
/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count > 0 && count <= 32);
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
return (a->d[offset >> 5] >> (offset & 0x1F)) & (0xFFFFFFFF >> (32 - count));
}
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
SECP256K1_SCALAR_VERIFY(a);
VERIFY_CHECK(count > 0 && count <= 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 5 == offset >> 5) {
return secp256k1_scalar_get_bits_limb32(a, offset, count);
} else {
VERIFY_CHECK((offset >> 5) + 1 < 8);
return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & (0xFFFFFFFF >> (32 - count));
}
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_4);
yes |= (a->d[4] > SECP256K1_N_4) & ~no;
no |= (a->d[3] < SECP256K1_N_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_3) & ~no;
no |= (a->d[2] < SECP256K1_N_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
no |= (a->d[1] < SECP256K1_N_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
return yes;
}
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
uint64_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[5];
r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[6];
r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[7];
r->d[7] = t & 0xFFFFFFFFUL;
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint64_t t = (uint64_t)a->d[0] + b->d[0];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[1] + b->d[1];
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[2] + b->d[2];
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[3] + b->d[3];
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[4] + b->d[4];
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[5] + b->d[5];
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[6] + b->d[6];
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[7] + b->d[7];
r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
overflow = t + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
SECP256K1_SCALAR_VERIFY(r);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint64_t t;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
r->d[7] = t & 0xFFFFFFFFULL;
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK((t >> 32) == 0);
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = secp256k1_read_be32(&b32[28]);
r->d[1] = secp256k1_read_be32(&b32[24]);
r->d[2] = secp256k1_read_be32(&b32[20]);
r->d[3] = secp256k1_read_be32(&b32[16]);
r->d[4] = secp256k1_read_be32(&b32[12]);
r->d[5] = secp256k1_read_be32(&b32[8]);
r->d[6] = secp256k1_read_be32(&b32[4]);
r->d[7] = secp256k1_read_be32(&b32[0]);
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
SECP256K1_SCALAR_VERIFY(a);
secp256k1_write_be32(&bin[0], a->d[7]);
secp256k1_write_be32(&bin[4], a->d[6]);
secp256k1_write_be32(&bin[8], a->d[5]);
secp256k1_write_be32(&bin[12], a->d[4]);
secp256k1_write_be32(&bin[16], a->d[3]);
secp256k1_write_be32(&bin[20], a->d[2]);
secp256k1_write_be32(&bin[24], a->d[1]);
secp256k1_write_be32(&bin[28], a->d[0]);
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
SECP256K1_SCALAR_VERIFY(a);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
r->d[7] = t & nonzero;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
/* Writing `/` for field division and `//` for integer division, we compute
*
* a/2 = (a - (a&1))/2 + (a&1)/2
* = (a >> 1) + (a&1 ? 1/2 : 0)
* = (a >> 1) + (a&1 ? n//2+1 : 0),
*
* where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
* For n//2, we have the constants SECP256K1_N_H_0, ...
*
* This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
* - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
* - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
* Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
*/
uint32_t mask = -(uint32_t)(a->d[0] & 1U);
uint64_t t = (uint32_t)((a->d[0] >> 1) | (a->d[1] << 31));
SECP256K1_SCALAR_VERIFY(a);
t += (SECP256K1_N_H_0 + 1U) & mask;
r->d[0] = t; t >>= 32;
t += (uint32_t)((a->d[1] >> 1) | (a->d[2] << 31));
t += SECP256K1_N_H_1 & mask;
r->d[1] = t; t >>= 32;
t += (uint32_t)((a->d[2] >> 1) | (a->d[3] << 31));
t += SECP256K1_N_H_2 & mask;
r->d[2] = t; t >>= 32;
t += (uint32_t)((a->d[3] >> 1) | (a->d[4] << 31));
t += SECP256K1_N_H_3 & mask;
r->d[3] = t; t >>= 32;
t += (uint32_t)((a->d[4] >> 1) | (a->d[5] << 31));
t += SECP256K1_N_H_4 & mask;
r->d[4] = t; t >>= 32;
t += (uint32_t)((a->d[5] >> 1) | (a->d[6] << 31));
t += SECP256K1_N_H_5 & mask;
r->d[5] = t; t >>= 32;
t += (uint32_t)((a->d[6] >> 1) | (a->d[7] << 31));
t += SECP256K1_N_H_6 & mask;
r->d[6] = t; t >>= 32;
r->d[7] = (uint32_t)t + (uint32_t)(a->d[7] >> 1) + (SECP256K1_N_H_7 & mask);
/* The line above only computed the bottom 32 bits of r->d[7]. Redo the computation
* in full 64 bits to make sure the top 32 bits are indeed zero. */
VERIFY_CHECK((t + (a->d[7] >> 1) + (SECP256K1_N_H_7 & mask)) >> 32 == 0);
SECP256K1_SCALAR_VERIFY(r);
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
SECP256K1_SCALAR_VERIFY(a);
no |= (a->d[7] < SECP256K1_N_H_7);
yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
return yes;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
/* If we are flag = 0, mask = 00...00 and this is a no-op;
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
volatile int vflag = flag;
uint32_t mask = -vflag;
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
SECP256K1_SCALAR_VERIFY(r);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
r->d[7] = t & nonzero;
SECP256K1_SCALAR_VERIFY(r);
return 2 * (mask == 0) - 1;
}
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl); /* at most 0xFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl); /* at most 0xFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
over = (c0 < (a)); \
c1 += over; /* overflow is handled on the next line */ \
c2 += (c1 < over); /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
#define extract(n) { \
(n) = c0; \
c0 = c1; \
c1 = c2; \
c2 = 0; \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
#define extract_fast(n) { \
(n) = c0; \
c0 = c1; \
c1 = 0; \
VERIFY_CHECK(c2 == 0); \
}
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
uint64_t c;
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
/* 96 bit accumulator. */
uint32_t c0, c1, c2;
/* Reduce 512 bits into 385. */
/* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
c0 = l[0]; c1 = 0; c2 = 0;
muladd_fast(n0, SECP256K1_N_C_0);
extract_fast(m0);
sumadd_fast(l[1]);
muladd(n1, SECP256K1_N_C_0);
muladd(n0, SECP256K1_N_C_1);
extract(m1);
sumadd(l[2]);
muladd(n2, SECP256K1_N_C_0);
muladd(n1, SECP256K1_N_C_1);
muladd(n0, SECP256K1_N_C_2);
extract(m2);
sumadd(l[3]);
muladd(n3, SECP256K1_N_C_0);
muladd(n2, SECP256K1_N_C_1);
muladd(n1, SECP256K1_N_C_2);
muladd(n0, SECP256K1_N_C_3);
extract(m3);
sumadd(l[4]);
muladd(n4, SECP256K1_N_C_0);
muladd(n3, SECP256K1_N_C_1);
muladd(n2, SECP256K1_N_C_2);
muladd(n1, SECP256K1_N_C_3);
sumadd(n0);
extract(m4);
sumadd(l[5]);
muladd(n5, SECP256K1_N_C_0);
muladd(n4, SECP256K1_N_C_1);
muladd(n3, SECP256K1_N_C_2);
muladd(n2, SECP256K1_N_C_3);
sumadd(n1);
extract(m5);
sumadd(l[6]);
muladd(n6, SECP256K1_N_C_0);
muladd(n5, SECP256K1_N_C_1);
muladd(n4, SECP256K1_N_C_2);
muladd(n3, SECP256K1_N_C_3);
sumadd(n2);
extract(m6);
sumadd(l[7]);
muladd(n7, SECP256K1_N_C_0);
muladd(n6, SECP256K1_N_C_1);
muladd(n5, SECP256K1_N_C_2);
muladd(n4, SECP256K1_N_C_3);
sumadd(n3);
extract(m7);
muladd(n7, SECP256K1_N_C_1);
muladd(n6, SECP256K1_N_C_2);
muladd(n5, SECP256K1_N_C_3);
sumadd(n4);
extract(m8);
muladd(n7, SECP256K1_N_C_2);
muladd(n6, SECP256K1_N_C_3);
sumadd(n5);
extract(m9);
muladd(n7, SECP256K1_N_C_3);
sumadd(n6);
extract(m10);
sumadd_fast(n7);
extract_fast(m11);
VERIFY_CHECK(c0 <= 1);
m12 = c0;
/* Reduce 385 bits into 258. */
/* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
c0 = m0; c1 = 0; c2 = 0;
muladd_fast(m8, SECP256K1_N_C_0);
extract_fast(p0);
sumadd_fast(m1);
muladd(m9, SECP256K1_N_C_0);
muladd(m8, SECP256K1_N_C_1);
extract(p1);
sumadd(m2);
muladd(m10, SECP256K1_N_C_0);
muladd(m9, SECP256K1_N_C_1);
muladd(m8, SECP256K1_N_C_2);
extract(p2);
sumadd(m3);
muladd(m11, SECP256K1_N_C_0);
muladd(m10, SECP256K1_N_C_1);
muladd(m9, SECP256K1_N_C_2);
muladd(m8, SECP256K1_N_C_3);
extract(p3);
sumadd(m4);
muladd(m12, SECP256K1_N_C_0);
muladd(m11, SECP256K1_N_C_1);
muladd(m10, SECP256K1_N_C_2);
muladd(m9, SECP256K1_N_C_3);
sumadd(m8);
extract(p4);
sumadd(m5);
muladd(m12, SECP256K1_N_C_1);
muladd(m11, SECP256K1_N_C_2);
muladd(m10, SECP256K1_N_C_3);
sumadd(m9);
extract(p5);
sumadd(m6);
muladd(m12, SECP256K1_N_C_2);
muladd(m11, SECP256K1_N_C_3);
sumadd(m10);
extract(p6);
sumadd_fast(m7);
muladd_fast(m12, SECP256K1_N_C_3);
sumadd_fast(m11);
extract_fast(p7);
p8 = c0 + m12;
VERIFY_CHECK(p8 <= 2);
/* Reduce 258 bits into 256. */
/* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
c += p4 + (uint64_t)p8;
r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
c += p5;
r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
c += p6;
r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
c += p7;
r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
/* Final reduction of r. */
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
/* l[0..15] = a[0..7] * b[0..7]. */
muladd_fast(a->d[0], b->d[0]);
extract_fast(l[0]);
muladd(a->d[0], b->d[1]);
muladd(a->d[1], b->d[0]);
extract(l[1]);
muladd(a->d[0], b->d[2]);
muladd(a->d[1], b->d[1]);
muladd(a->d[2], b->d[0]);
extract(l[2]);
muladd(a->d[0], b->d[3]);
muladd(a->d[1], b->d[2]);
muladd(a->d[2], b->d[1]);
muladd(a->d[3], b->d[0]);
extract(l[3]);
muladd(a->d[0], b->d[4]);
muladd(a->d[1], b->d[3]);
muladd(a->d[2], b->d[2]);
muladd(a->d[3], b->d[1]);
muladd(a->d[4], b->d[0]);
extract(l[4]);
muladd(a->d[0], b->d[5]);
muladd(a->d[1], b->d[4]);
muladd(a->d[2], b->d[3]);
muladd(a->d[3], b->d[2]);
muladd(a->d[4], b->d[1]);
muladd(a->d[5], b->d[0]);
extract(l[5]);
muladd(a->d[0], b->d[6]);
muladd(a->d[1], b->d[5]);
muladd(a->d[2], b->d[4]);
muladd(a->d[3], b->d[3]);
muladd(a->d[4], b->d[2]);
muladd(a->d[5], b->d[1]);
muladd(a->d[6], b->d[0]);
extract(l[6]);
muladd(a->d[0], b->d[7]);
muladd(a->d[1], b->d[6]);
muladd(a->d[2], b->d[5]);
muladd(a->d[3], b->d[4]);
muladd(a->d[4], b->d[3]);
muladd(a->d[5], b->d[2]);
muladd(a->d[6], b->d[1]);
muladd(a->d[7], b->d[0]);
extract(l[7]);
muladd(a->d[1], b->d[7]);
muladd(a->d[2], b->d[6]);
muladd(a->d[3], b->d[5]);
muladd(a->d[4], b->d[4]);
muladd(a->d[5], b->d[3]);
muladd(a->d[6], b->d[2]);
muladd(a->d[7], b->d[1]);
extract(l[8]);
muladd(a->d[2], b->d[7]);
muladd(a->d[3], b->d[6]);
muladd(a->d[4], b->d[5]);
muladd(a->d[5], b->d[4]);
muladd(a->d[6], b->d[3]);
muladd(a->d[7], b->d[2]);
extract(l[9]);
muladd(a->d[3], b->d[7]);
muladd(a->d[4], b->d[6]);
muladd(a->d[5], b->d[5]);
muladd(a->d[6], b->d[4]);
muladd(a->d[7], b->d[3]);
extract(l[10]);
muladd(a->d[4], b->d[7]);
muladd(a->d[5], b->d[6]);
muladd(a->d[6], b->d[5]);
muladd(a->d[7], b->d[4]);
extract(l[11]);
muladd(a->d[5], b->d[7]);
muladd(a->d[6], b->d[6]);
muladd(a->d[7], b->d[5]);
extract(l[12]);
muladd(a->d[6], b->d[7]);
muladd(a->d[7], b->d[6]);
extract(l[13]);
muladd_fast(a->d[7], b->d[7]);
extract_fast(l[14]);
VERIFY_CHECK(c1 == 0);
l[15] = c0;
}
#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef extract
#undef extract_fast
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint32_t l[16];
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
SECP256K1_SCALAR_VERIFY(k);
r1->d[0] = k->d[0];
r1->d[1] = k->d[1];
r1->d[2] = k->d[2];
r1->d[3] = k->d[3];
r1->d[4] = 0;
r1->d[5] = 0;
r1->d[6] = 0;
r1->d[7] = 0;
r2->d[0] = k->d[4];
r2->d[1] = k->d[5];
r2->d[2] = k->d[6];
r2->d[3] = k->d[7];
r2->d[4] = 0;
r2->d[5] = 0;
r2->d[6] = 0;
r2->d[7] = 0;
SECP256K1_SCALAR_VERIFY(r1);
SECP256K1_SCALAR_VERIFY(r2);
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint32_t l[16];
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_SCALAR_VERIFY(b);
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 5;
shiftlow = shift & 0x1F;
shifthigh = 32 - shiftlow;
r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
SECP256K1_SCALAR_VERIFY(r);
}
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
uint32_t mask0, mask1;
volatile int vflag = flag;
SECP256K1_SCALAR_VERIFY(a);
SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
mask0 = vflag + ~((uint32_t)0);
mask1 = ~mask0;
r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
r->d[4] = (r->d[4] & mask0) | (a->d[4] & mask1);
r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1);
r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1);
r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1);
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) {
const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4],
a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8];
/* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and
* have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8).
*/
VERIFY_CHECK(a0 >> 30 == 0);
VERIFY_CHECK(a1 >> 30 == 0);
VERIFY_CHECK(a2 >> 30 == 0);
VERIFY_CHECK(a3 >> 30 == 0);
VERIFY_CHECK(a4 >> 30 == 0);
VERIFY_CHECK(a5 >> 30 == 0);
VERIFY_CHECK(a6 >> 30 == 0);
VERIFY_CHECK(a7 >> 30 == 0);
VERIFY_CHECK(a8 >> 16 == 0);
r->d[0] = a0 | a1 << 30;
r->d[1] = a1 >> 2 | a2 << 28;
r->d[2] = a2 >> 4 | a3 << 26;
r->d[3] = a3 >> 6 | a4 << 24;
r->d[4] = a4 >> 8 | a5 << 22;
r->d[5] = a5 >> 10 | a6 << 20;
r->d[6] = a6 >> 12 | a7 << 18;
r->d[7] = a7 >> 14 | a8 << 16;
SECP256K1_SCALAR_VERIFY(r);
}
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) {
const uint32_t M30 = UINT32_MAX >> 2;
const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3],
a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7];
SECP256K1_SCALAR_VERIFY(a);
r->v[0] = a0 & M30;
r->v[1] = (a0 >> 30 | a1 << 2) & M30;
r->v[2] = (a1 >> 28 | a2 << 4) & M30;
r->v[3] = (a2 >> 26 | a3 << 6) & M30;
r->v[4] = (a3 >> 24 | a4 << 8) & M30;
r->v[5] = (a4 >> 22 | a5 << 10) & M30;
r->v[6] = (a5 >> 20 | a6 << 12) & M30;
r->v[7] = (a6 >> 18 | a7 << 14) & M30;
r->v[8] = a7 >> 16;
}
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar = {
{{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}},
0x2A774EC1L
};
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
secp256k1_modinv32_signed30 s;
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed30(&s, x);
secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed30(r, &s);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
}
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
secp256k1_modinv32_signed30 s;
#ifdef VERIFY
int zero_in = secp256k1_scalar_is_zero(x);
#endif
SECP256K1_SCALAR_VERIFY(x);
secp256k1_scalar_to_signed30(&s, x);
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar);
secp256k1_scalar_from_signed30(r, &s);
SECP256K1_SCALAR_VERIFY(r);
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
SECP256K1_SCALAR_VERIFY(a);
return !(a->d[0] & 1);
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */

View File

@@ -18,8 +18,6 @@
#include "scalar_low_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT128)
#include "scalar_4x64_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "scalar_8x32_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif

Binary file not shown.

View File

@@ -321,9 +321,6 @@ static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag)
/* If USE_FORCE_WIDEMUL_INT128 is set, use int128. */
# define SECP256K1_WIDEMUL_INT128 1
# define SECP256K1_INT128_NATIVE 1
#elif defined(USE_FORCE_WIDEMUL_INT64)
/* If USE_FORCE_WIDEMUL_INT64 is set, use int64. */
# define SECP256K1_WIDEMUL_INT64 1
#elif defined(UINT128_MAX) || defined(__SIZEOF_INT128__)
/* If a native 128-bit integer type exists, use int128. */
# define SECP256K1_WIDEMUL_INT128 1
@@ -340,8 +337,7 @@ static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag)
# define SECP256K1_WIDEMUL_INT128 1
# define SECP256K1_INT128_STRUCT 1
#else
/* Lastly, fall back to int64 based arithmetic. */
# define SECP256K1_WIDEMUL_INT64 1
#error "No suitable wide multiplication implementation found. 32-bit limb support has been removed."
#endif
#ifndef __has_builtin