Files
next.orly.dev/pkg/cashu/bdhke/bdhke_test.go
mleku ea4a54c5e7 Add Cashu blind signature access tokens (NIP-XX draft)
Implements privacy-preserving bearer tokens for relay access control using
Cashu-style blind signatures. Tokens prove whitelist membership without
linking issuance to usage.

Features:
- BDHKE crypto primitives (HashToCurve, Blind, Sign, Unblind, Verify)
- Keyset management with weekly rotation
- Token format with kind permissions and scope isolation
- Generic issuer/verifier with pluggable authorization
- HTTP endpoints: POST /cashu/mint, GET /cashu/keysets, GET /cashu/info
- ACL adapter bridging ORLY's access control to Cashu AuthzChecker
- Stateless revocation via ACL re-check on each token use
- Two-token rotation for seamless renewal (max 2 weeks after blacklist)

Configuration:
- ORLY_CASHU_ENABLED: Enable Cashu tokens
- ORLY_CASHU_TOKEN_TTL: Token validity (default: 1 week)
- ORLY_CASHU_SCOPES: Allowed scopes (relay, nip46, blossom, api)
- ORLY_CASHU_REAUTHORIZE: Re-check ACL on each verification

Files:
- pkg/cashu/bdhke/: Core blind signature cryptography
- pkg/cashu/keyset/: Keyset management and rotation
- pkg/cashu/token/: Token format with kind permissions
- pkg/cashu/issuer/: Token issuance with authorization
- pkg/cashu/verifier/: Token verification with middleware
- pkg/interfaces/cashu/: AuthzChecker, KeysetStore interfaces
- pkg/bunker/acl_adapter.go: ORLY ACL integration
- app/handle-cashu.go: HTTP endpoints
- docs/NIP-XX-CASHU-ACCESS-TOKENS.md: Full specification

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-28 11:30:11 +02:00

349 lines
7.6 KiB
Go

package bdhke
import (
"bytes"
"encoding/hex"
"testing"
"github.com/decred/dcrd/dcrec/secp256k1/v4"
)
// Test vectors from Cashu NUT-00 specification
// https://github.com/cashubtc/nuts/blob/main/00.md
func TestHashToCurve(t *testing.T) {
tests := []struct {
name string
message string
expected string // Expected compressed public key in hex
}{
{
name: "test vector 1",
message: "0000000000000000000000000000000000000000000000000000000000000000",
expected: "024cce997d3b518f739663b757deaec95bcd9473c30a14ac2fd04023a739d1a725",
},
{
name: "test vector 2",
message: "0000000000000000000000000000000000000000000000000000000000000001",
expected: "022e7158e11c9506f1aa4248bf531298daa7febd6194f003edcd9b93ade6253acf",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
msgBytes, err := hex.DecodeString(tt.message)
if err != nil {
t.Fatalf("failed to decode message: %v", err)
}
point, err := HashToCurve(msgBytes)
if err != nil {
t.Fatalf("HashToCurve failed: %v", err)
}
got := hex.EncodeToString(point.SerializeCompressed())
if got != tt.expected {
t.Errorf("HashToCurve(%s) = %s, want %s", tt.message, got, tt.expected)
}
})
}
}
func TestBlindSignUnblindVerify(t *testing.T) {
// Generate mint keypair
k, K, err := GenerateKeypair()
if err != nil {
t.Fatalf("failed to generate keypair: %v", err)
}
// Generate a secret
secret, err := GenerateSecret()
if err != nil {
t.Fatalf("failed to generate secret: %v", err)
}
// User blinds the secret
blindResult, err := Blind(secret)
if err != nil {
t.Fatalf("Blind failed: %v", err)
}
// Mint signs the blinded message
C_, err := Sign(blindResult.B, k)
if err != nil {
t.Fatalf("Sign failed: %v", err)
}
// User unblinds the signature
C, err := Unblind(C_, blindResult.R, K)
if err != nil {
t.Fatalf("Unblind failed: %v", err)
}
// Verify the token
valid, err := Verify(secret, C, k)
if err != nil {
t.Fatalf("Verify failed: %v", err)
}
if !valid {
t.Error("Verify returned false, expected true")
}
}
func TestVerifyWrongSecret(t *testing.T) {
k, K, _ := GenerateKeypair()
secret1, _ := GenerateSecret()
secret2, _ := GenerateSecret()
// Create token with secret1
blindResult, _ := Blind(secret1)
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
// Try to verify with secret2
valid, err := Verify(secret2, C, k)
if err != nil {
t.Fatalf("Verify failed: %v", err)
}
if valid {
t.Error("Verify returned true for wrong secret")
}
}
func TestVerifyWrongKey(t *testing.T) {
k1, K1, _ := GenerateKeypair()
k2, _, _ := GenerateKeypair()
secret, _ := GenerateSecret()
// Create token with k1
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k1)
C, _ := Unblind(C_, blindResult.R, K1)
// Try to verify with k2
valid, err := Verify(secret, C, k2)
if err != nil {
t.Fatalf("Verify failed: %v", err)
}
if valid {
t.Error("Verify returned true for wrong key")
}
}
func TestBlindWithFactor(t *testing.T) {
k, K, _ := GenerateKeypair()
secret := []byte("test secret message")
// Use deterministic blinding factor
rBytes := make([]byte, 32)
for i := range rBytes {
rBytes[i] = byte(i)
}
blindResult, err := BlindWithFactor(secret, rBytes)
if err != nil {
t.Fatalf("BlindWithFactor failed: %v", err)
}
// Complete the protocol
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
valid, _ := Verify(secret, C, k)
if !valid {
t.Error("BlindWithFactor: verification failed")
}
// Do it again with same factor - should get same B
blindResult2, _ := BlindWithFactor(secret, rBytes)
if !bytes.Equal(blindResult.B.SerializeCompressed(), blindResult2.B.SerializeCompressed()) {
t.Error("BlindWithFactor not deterministic")
}
}
func TestHashToCurveDeterministic(t *testing.T) {
message := []byte("deterministic test")
p1, err := HashToCurve(message)
if err != nil {
t.Fatalf("HashToCurve failed: %v", err)
}
p2, err := HashToCurve(message)
if err != nil {
t.Fatalf("HashToCurve failed: %v", err)
}
if !p1.IsEqual(p2) {
t.Error("HashToCurve not deterministic")
}
}
func TestSignNilInputs(t *testing.T) {
k, _, _ := GenerateKeypair()
_, err := Sign(nil, k)
if err == nil {
t.Error("Sign(nil, k) should error")
}
B, _ := HashToCurve([]byte("test"))
_, err = Sign(B, nil)
if err == nil {
t.Error("Sign(B, nil) should error")
}
}
func TestUnblindNilInputs(t *testing.T) {
k, K, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
_, err := Unblind(nil, blindResult.R, K)
if err == nil {
t.Error("Unblind(nil, r, K) should error")
}
_, err = Unblind(C_, nil, K)
if err == nil {
t.Error("Unblind(C_, nil, K) should error")
}
_, err = Unblind(C_, blindResult.R, nil)
if err == nil {
t.Error("Unblind(C_, r, nil) should error")
}
}
func TestVerifyNilInputs(t *testing.T) {
k, K, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
_, err := Verify(secret, nil, k)
if err == nil {
t.Error("Verify(secret, nil, k) should error")
}
_, err = Verify(secret, C, nil)
if err == nil {
t.Error("Verify(secret, C, nil) should error")
}
}
// Benchmark functions
func BenchmarkHashToCurve(b *testing.B) {
secret, _ := GenerateSecret()
b.ResetTimer()
for i := 0; i < b.N; i++ {
HashToCurve(secret)
}
}
func BenchmarkBlind(b *testing.B) {
secret, _ := GenerateSecret()
b.ResetTimer()
for i := 0; i < b.N; i++ {
Blind(secret)
}
}
func BenchmarkSign(b *testing.B) {
k, _, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Sign(blindResult.B, k)
}
}
func BenchmarkUnblind(b *testing.B) {
k, K, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Unblind(C_, blindResult.R, K)
}
}
func BenchmarkVerify(b *testing.B) {
k, K, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Verify(secret, C, k)
}
}
func BenchmarkFullProtocol(b *testing.B) {
k, K, _ := GenerateKeypair()
b.ResetTimer()
for i := 0; i < b.N; i++ {
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
Verify(secret, C, k)
}
}
// Test that serialization/deserialization works correctly
func TestPointSerialization(t *testing.T) {
k, K, _ := GenerateKeypair()
secret, _ := GenerateSecret()
blindResult, _ := Blind(secret)
C_, _ := Sign(blindResult.B, k)
C, _ := Unblind(C_, blindResult.R, K)
// Serialize and deserialize C
serialized := C.SerializeCompressed()
deserialized, err := secp256k1.ParsePubKey(serialized)
if err != nil {
t.Fatalf("failed to parse serialized point: %v", err)
}
// Verify with deserialized point
valid, err := Verify(secret, deserialized, k)
if err != nil {
t.Fatalf("Verify failed: %v", err)
}
if !valid {
t.Error("Verify failed after point serialization round-trip")
}
// Same for K
kSerialized := K.SerializeCompressed()
kDeserialized, err := secp256k1.ParsePubKey(kSerialized)
if err != nil {
t.Fatalf("failed to parse serialized K: %v", err)
}
// Unblind with deserialized K
C2, err := Unblind(C_, blindResult.R, kDeserialized)
if err != nil {
t.Fatalf("Unblind with deserialized K failed: %v", err)
}
if !C.IsEqual(C2) {
t.Error("Unblind result differs after K round-trip")
}
}