Files
next.orly.dev/pkg/crypto/ec/ecdsa/signature.go
mleku 110223fc4e Migrate internal module imports to unified package path.
Replaced legacy `*.orly` module imports with `next.orly.dev/pkg` paths across the codebase for consistency. Removed legacy `go.mod` files from sub-packages, consolidating dependency management. Added Dockerfiles and configurations for benchmarking environments.
2025-09-12 16:12:31 +01:00

955 lines
35 KiB
Go

// Copyright (c) 2013-2014 The btcsuite developers
// Copyright (c) 2015-2022 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecdsa
import (
"fmt"
"next.orly.dev/pkg/crypto/ec/secp256k1"
)
// References:
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
//
// [ISO/IEC 8825-1]: Information technology — ASN.1 encoding rules:
// Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
// (CER) and Distinguished Encoding Rules (DER)
//
// [SEC1]: Elliptic Curve Cryptography (May 31, 2009, Version 2.0)
// https://www.secg.org/sec1-v2.pdf
var (
// zero32 is an array of 32 bytes used for the purposes of zeroing and is
// defined here to avoid extra allocations.
zero32 = [32]byte{}
// orderAsFieldVal is the order of the secp256k1 curve group stored as a
// field value. It is provided here to avoid the need to create it multiple
// times.
orderAsFieldVal = func() secp256k1.FieldVal {
var f secp256k1.FieldVal
f.SetByteSlice(secp256k1.Params().N.Bytes())
return f
}()
)
const (
// asn1SequenceID is the ASN.1 identifier for a sequence and is used when
// parsing and serializing signatures encoded with the Distinguished
// Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1].
asn1SequenceID = 0x30
// asn1IntegerID is the ASN.1 identifier for an integer and is used when
// parsing and serializing signatures encoded with the Distinguished
// Encoding Rules (DER) format per section 10 of [ISO/IEC 8825-1].
asn1IntegerID = 0x02
)
// Signature is a type representing an ECDSA signature.
type Signature struct {
r secp256k1.ModNScalar
s secp256k1.ModNScalar
}
// NewSignature instantiates a new signature given some r and s values.
func NewSignature(r, s *secp256k1.ModNScalar) *Signature {
return &Signature{*r, *s}
}
// Serialize returns the ECDSA signature in the Distinguished Encoding Rules
// (DER) format per section 10 of [ISO/IEC 8825-1] and such that the S component
// of the signature is less than or equal to the half order of the group.
//
// Note that the serialized bytes returned do not include the appended hash type
// used in Decred signature scripts.
func (sig *Signature) Serialize() []byte {
// The format of a DER encoded signature is as follows:
//
// 0x30 <total length> 0x02 <length of R> <R> 0x02 <length of S> <S>
// - 0x30 is the ASN.1 identifier for a sequence.
// - Total length is 1 byte and specifies length of all remaining data.
// - 0x02 is the ASN.1 identifier that specifies an integer follows.
// - Length of R is 1 byte and specifies how many bytes R occupies.
// - R is the arbitrary length big-endian encoded number which
// represents the R value of the signature. DER encoding dictates
// that the value must be encoded using the minimum possible number
// of bytes. This implies the first byte can only be null if the
// highest bit of the next byte is set in order to prevent it from
// being interpreted as a negative number.
// - 0x02 is once again the ASN.1 integer identifier.
// - Length of S is 1 byte and specifies how many bytes S occupies.
// - S is the arbitrary length big-endian encoded number which
// represents the S value of the signature. The encoding rules are
// identical as those for R.
// Ensure the S component of the signature is less than or equal to the half
// order of the group because both S and its negation are valid signatures
// modulo the order, so this forces a consistent choice to reduce signature
// malleability.
sigS := new(secp256k1.ModNScalar).Set(&sig.s)
if sigS.IsOverHalfOrder() {
sigS.Negate()
}
// Serialize the R and S components of the signature into their fixed
// 32-byte big-endian encoding. Note that the extra leading zero byte is
// used to ensure it is canonical per DER and will be stripped if needed
// below.
var rBuf, sBuf [33]byte
sig.r.PutBytesUnchecked(rBuf[1:33])
sigS.PutBytesUnchecked(sBuf[1:33])
// Ensure the encoded bytes for the R and S components are canonical per DER
// by trimming all leading zero bytes so long as the next byte does not have
// the high bit set and it's not the final byte.
canonR, canonS := rBuf[:], sBuf[:]
for len(canonR) > 1 && canonR[0] == 0x00 && canonR[1]&0x80 == 0 {
canonR = canonR[1:]
}
for len(canonS) > 1 && canonS[0] == 0x00 && canonS[1]&0x80 == 0 {
canonS = canonS[1:]
}
// Total length of returned signature is 1 byte for each magic and length
// (6 total), plus lengths of R and S.
totalLen := 6 + len(canonR) + len(canonS)
b := make([]byte, 0, totalLen)
b = append(b, asn1SequenceID)
b = append(b, byte(totalLen-2))
b = append(b, asn1IntegerID)
b = append(b, byte(len(canonR)))
b = append(b, canonR...)
b = append(b, asn1IntegerID)
b = append(b, byte(len(canonS)))
b = append(b, canonS...)
return b
}
// zeroArray32 zeroes the provided 32-byte buffer.
func zeroArray32(b *[32]byte) {
copy(b[:], zero32[:])
}
// fieldToModNScalar converts a field value to scalar modulo the group order and
// returns the scalar along with either 1 if it was reduced (aka it overflowed)
// or 0 otherwise.
//
// Note that a bool is not used here because it is not possible in Go to convert
// from a bool to numeric value in constant time and many constant-time
// operations require a numeric value.
func fieldToModNScalar(v *secp256k1.FieldVal) (secp256k1.ModNScalar, uint32) {
var buf [32]byte
v.PutBytes(&buf)
var s secp256k1.ModNScalar
overflow := s.SetBytes(&buf)
zeroArray32(&buf)
return s, overflow
}
// modNScalarToField converts a scalar modulo the group order to a field value.
func modNScalarToField(v *secp256k1.ModNScalar) secp256k1.FieldVal {
var buf [32]byte
v.PutBytes(&buf)
var fv secp256k1.FieldVal
fv.SetBytes(&buf)
return fv
}
// Verify returns whether the signature is valid for the provided hash
// and secp256k1 public key.
func (sig *Signature) Verify(hash []byte, pubKey *secp256k1.PublicKey) bool {
// The algorithm for verifying an ECDSA signature is given as algorithm 4.30
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// Q = public key
// m = message
// R, S = signature
//
// 1. Fail if R and S are not in [1, N-1]
// 2. e = H(m)
// 3. w = S^-1 mod N
// 4. u1 = e * w mod N
// u2 = R * w mod N
// 5. X = u1G + u2Q
// 6. Fail if X is the point at infinity
// 7. x = X.x mod N (X.x is the x coordinate of X)
// 8. Verified if x == R
//
// However, since all group operations are done internally in Jacobian
// projective space, the algorithm is modified slightly here in order to
// avoid an expensive inversion back into affine coordinates at step 7.
// Credits to Greg Maxwell for originally suggesting this optimization.
//
// Ordinarily, step 7 involves converting the x coordinate to affine by
// calculating x = x / z^2 (mod P) and then calculating the remainder as
// x = x (mod N). Then step 8 compares it to R.
//
// Note that since R is the x coordinate mod N from a random point that was
// originally mod P, and the cofactor of the secp256k1 curve is 1, there are
// only two possible x coordinates that the original random point could have
// been to produce R: x, where x < N, and x+N, where x+N < P.
//
// This implies that the signature is valid if either:
// a) R == X.x / X.z^2 (mod P)
// => R * X.z^2 == X.x (mod P)
// --or--
// b) R + N < P && R + N == X.x / X.z^2 (mod P)
// => R + N < P && (R + N) * X.z^2 == X.x (mod P)
//
// Therefore the following modified algorithm is used:
//
// 1. Fail if R and S are not in [1, N-1]
// 2. e = H(m)
// 3. w = S^-1 mod N
// 4. u1 = e * w mod N
// u2 = R * w mod N
// 5. X = u1G + u2Q
// 6. Fail if X is the point at infinity
// 7. z = (X.z)^2 mod P (X.z is the z coordinate of X)
// 8. Verified if R * z == X.x (mod P)
// 9. Fail if R + N >= P
// 10. Verified if (R + N) * z == X.x (mod P)
//
// Step 1.
//
// Fail if R and S are not in [1, N-1].
if sig.r.IsZero() || sig.s.IsZero() {
return false
}
// Step 2.
//
// e = H(m)
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 3.
//
// w = S^-1 mod N
w := new(secp256k1.ModNScalar).InverseValNonConst(&sig.s)
// Step 4.
//
// u1 = e * w mod N
// u2 = R * w mod N
u1 := new(secp256k1.ModNScalar).Mul2(&e, w)
u2 := new(secp256k1.ModNScalar).Mul2(&sig.r, w)
// Step 5.
//
// X = u1G + u2Q
var X, Q, u1G, u2Q secp256k1.JacobianPoint
pubKey.AsJacobian(&Q)
secp256k1.ScalarBaseMultNonConst(u1, &u1G)
secp256k1.ScalarMultNonConst(u2, &Q, &u2Q)
secp256k1.AddNonConst(&u1G, &u2Q, &X)
// Step 6.
//
// Fail if X is the point at infinity
if (X.X.IsZero() && X.Y.IsZero()) || X.Z.IsZero() {
return false
}
// Step 7.
//
// z = (X.z)^2 mod P (X.z is the z coordinate of X)
z := new(secp256k1.FieldVal).SquareVal(&X.Z)
// Step 8.
//
// Verified if R * z == X.x (mod P)
sigRModP := modNScalarToField(&sig.r)
result := new(secp256k1.FieldVal).Mul2(&sigRModP, z).Normalize()
if result.Equals(&X.X) {
return true
}
// Step 9.
//
// Fail if R + N >= P
if sigRModP.IsGtOrEqPrimeMinusOrder() {
return false
}
// Step 10.
//
// Verified if (R + N) * z == X.x (mod P)
sigRModP.Add(&orderAsFieldVal)
result.Mul2(&sigRModP, z).Normalize()
return result.Equals(&X.X)
}
// IsEqual compares this Signature instance to the one passed, returning true if
// both Signatures are equivalent. A signature is equivalent to another, if
// they both have the same scalar value for R and S.
func (sig *Signature) IsEqual(otherSig *Signature) bool {
return sig.r.Equals(&otherSig.r) && sig.s.Equals(&otherSig.s)
}
// ParseDERSignature parses a signature in the Distinguished Encoding Rules
// (DER) format per section 10 of [ISO/IEC 8825-1] and enforces the following
// additional restrictions specific to secp256k1:
//
// - The R and S values must be in the valid range for secp256k1 scalars:
// - Negative values are rejected
// - Zero is rejected
// - Values greater than or equal to the secp256k1 group order are rejected
func ParseDERSignature(sig []byte) (*Signature, error) {
// The format of a DER encoded signature for secp256k1 is as follows:
//
// 0x30 <total length> 0x02 <length of R> <R> 0x02 <length of S> <S>
// - 0x30 is the ASN.1 identifier for a sequence
// - Total length is 1 byte and specifies length of all remaining data
// - 0x02 is the ASN.1 identifier that specifies an integer follows
// - Length of R is 1 byte and specifies how many bytes R occupies
// - R is the arbitrary length big-endian encoded number which
// represents the R value of the signature. DER encoding dictates
// that the value must be encoded using the minimum possible number
// of bytes. This implies the first byte can only be null if the
// highest bit of the next byte is set in order to prevent it from
// being interpreted as a negative number.
// - 0x02 is once again the ASN.1 integer identifier
// - Length of S is 1 byte and specifies how many bytes S occupies
// - S is the arbitrary length big-endian encoded number which
// represents the S value of the signature. The encoding rules are
// identical as those for R.
//
// NOTE: The DER specification supports specifying lengths that can occupy
// more than 1 byte, however, since this is specific to secp256k1
// signatures, all lengths will be a single byte.
const (
// minSigLen is the minimum length of a DER encoded signature and is
// when both R and S are 1 byte each.
//
// 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
minSigLen = 8
// maxSigLen is the maximum length of a DER encoded signature and is
// when both R and S are 33 bytes each. It is 33 bytes because a
// 256-bit integer requires 32 bytes and an additional leading null byte
// might be required if the high bit is set in the value.
//
// 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes>
maxSigLen = 72
// sequenceOffset is the byte offset within the signature of the
// expected ASN.1 sequence identifier.
sequenceOffset = 0
// dataLenOffset is the byte offset within the signature of the expected
// total length of all remaining data in the signature.
dataLenOffset = 1
// rTypeOffset is the byte offset within the signature of the ASN.1
// identifier for R and is expected to indicate an ASN.1 integer.
rTypeOffset = 2
// rLenOffset is the byte offset within the signature of the length of
// R.
rLenOffset = 3
// rOffset is the byte offset within the signature of R.
rOffset = 4
)
// The signature must adhere to the minimum and maximum allowed length.
sigLen := len(sig)
if sigLen < minSigLen {
str := fmt.Sprintf(
"malformed signature: too short: %d < %d", sigLen,
minSigLen,
)
return nil, signatureError(ErrSigTooShort, str)
}
if sigLen > maxSigLen {
str := fmt.Sprintf(
"malformed signature: too long: %d > %d", sigLen,
maxSigLen,
)
return nil, signatureError(ErrSigTooLong, str)
}
// The signature must start with the ASN.1 sequence identifier.
if sig[sequenceOffset] != asn1SequenceID {
str := fmt.Sprintf(
"malformed signature: format has wrong type: %#x",
sig[sequenceOffset],
)
return nil, signatureError(ErrSigInvalidSeqID, str)
}
// The signature must indicate the correct amount of data for all elements
// related to R and S.
if int(sig[dataLenOffset]) != sigLen-2 {
str := fmt.Sprintf(
"malformed signature: bad length: %d != %d",
sig[dataLenOffset], sigLen-2,
)
return nil, signatureError(ErrSigInvalidDataLen, str)
}
// Calculate the offsets of the elements related to S and ensure S is inside
// the signature.
//
// rLen specifies the length of the big-endian encoded number which
// represents the R value of the signature.
//
// sTypeOffset is the offset of the ASN.1 identifier for S and, like its R
// counterpart, is expected to indicate an ASN.1 integer.
//
// sLenOffset and sOffset are the byte offsets within the signature of the
// length of S and S itself, respectively.
rLen := int(sig[rLenOffset])
sTypeOffset := rOffset + rLen
sLenOffset := sTypeOffset + 1
if sTypeOffset >= sigLen {
str := "malformed signature: S type indicator missing"
return nil, signatureError(ErrSigMissingSTypeID, str)
}
if sLenOffset >= sigLen {
str := "malformed signature: S length missing"
return nil, signatureError(ErrSigMissingSLen, str)
}
// The lengths of R and S must match the overall length of the signature.
//
// sLen specifies the length of the big-endian encoded number which
// represents the S value of the signature.
sOffset := sLenOffset + 1
sLen := int(sig[sLenOffset])
if sOffset+sLen != sigLen {
str := "malformed signature: invalid S length"
return nil, signatureError(ErrSigInvalidSLen, str)
}
// R elements must be ASN.1 integers.
if sig[rTypeOffset] != asn1IntegerID {
str := fmt.Sprintf(
"malformed signature: R integer marker: %#x != %#x",
sig[rTypeOffset], asn1IntegerID,
)
return nil, signatureError(ErrSigInvalidRIntID, str)
}
// Zero-length integers are not allowed for R.
if rLen == 0 {
str := "malformed signature: R length is zero"
return nil, signatureError(ErrSigZeroRLen, str)
}
// R must not be negative.
if sig[rOffset]&0x80 != 0 {
str := "malformed signature: R is negative"
return nil, signatureError(ErrSigNegativeR, str)
}
// Null bytes at the start of R are not allowed, unless R would otherwise be
// interpreted as a negative number.
if rLen > 1 && sig[rOffset] == 0x00 && sig[rOffset+1]&0x80 == 0 {
str := "malformed signature: R value has too much padding"
return nil, signatureError(ErrSigTooMuchRPadding, str)
}
// S elements must be ASN.1 integers.
if sig[sTypeOffset] != asn1IntegerID {
str := fmt.Sprintf(
"malformed signature: S integer marker: %#x != %#x",
sig[sTypeOffset], asn1IntegerID,
)
return nil, signatureError(ErrSigInvalidSIntID, str)
}
// Zero-length integers are not allowed for S.
if sLen == 0 {
str := "malformed signature: S length is zero"
return nil, signatureError(ErrSigZeroSLen, str)
}
// S must not be negative.
if sig[sOffset]&0x80 != 0 {
str := "malformed signature: S is negative"
return nil, signatureError(ErrSigNegativeS, str)
}
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if sLen > 1 && sig[sOffset] == 0x00 && sig[sOffset+1]&0x80 == 0 {
str := "malformed signature: S value has too much padding"
return nil, signatureError(ErrSigTooMuchSPadding, str)
}
// The signature is validly encoded per DER at this point, however, enforce
// additional restrictions to ensure R and S are in the range [1, N-1] since
// valid ECDSA signatures are required to be in that range per spec.
//
// Also note that while the overflow checks are required to make use of the
// specialized mod N scalar type, rejecting zero here is not strictly
// required because it is also checked when verifying the signature, but
// there really isn't a good reason not to fail early here on signatures
// that do not conform to the ECDSA spec.
//
// Strip leading zeroes from R.
rBytes := sig[rOffset : rOffset+rLen]
for len(rBytes) > 0 && rBytes[0] == 0x00 {
rBytes = rBytes[1:]
}
// R must be in the range [1, N-1]. Notice the check for the maximum number
// of bytes is required because SetByteSlice truncates as noted in its
// comment so it could otherwise fail to detect the overflow.
var r secp256k1.ModNScalar
if len(rBytes) > 32 {
str := "invalid signature: R is larger than 256 bits"
return nil, signatureError(ErrSigRTooBig, str)
}
if overflow := r.SetByteSlice(rBytes); overflow {
str := "invalid signature: R >= group order"
return nil, signatureError(ErrSigRTooBig, str)
}
if r.IsZero() {
str := "invalid signature: R is 0"
return nil, signatureError(ErrSigRIsZero, str)
}
// Strip leading zeroes from S.
sBytes := sig[sOffset : sOffset+sLen]
for len(sBytes) > 0 && sBytes[0] == 0x00 {
sBytes = sBytes[1:]
}
// S must be in the range [1, N-1]. Notice the check for the maximum number
// of bytes is required because SetByteSlice truncates as noted in its
// comment so it could otherwise fail to detect the overflow.
var s secp256k1.ModNScalar
if len(sBytes) > 32 {
str := "invalid signature: S is larger than 256 bits"
return nil, signatureError(ErrSigSTooBig, str)
}
if overflow := s.SetByteSlice(sBytes); overflow {
str := "invalid signature: S >= group order"
return nil, signatureError(ErrSigSTooBig, str)
}
if s.IsZero() {
str := "invalid signature: S is 0"
return nil, signatureError(ErrSigSIsZero, str)
}
// Create and return the signature.
return NewSignature(&r, &s), nil
}
// sign generates an ECDSA signature over the secp256k1 curve for the provided
// hash (which should be the result of hashing a larger message) using the given
// nonce and secret key and returns it along with an additional public key
// recovery code and success indicator. Upon success, the produced signature is
// deterministic (same message, nonce, and key yield the same signature) and
// canonical in accordance with BIP0062.
//
// Note that signRFC6979 makes use of this function as it is the primary ECDSA
// signing logic. It differs in that it accepts a nonce to use when signing and
// may not successfully produce a valid signature for the given nonce. It is
// primarily separated for testing purposes.
func sign(secKey, nonce *secp256k1.ModNScalar, hash []byte) (
*Signature, byte,
bool,
) {
// The algorithm for producing an ECDSA signature is given as algorithm 4.29
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// d = secret key
// m = message
// r, s = signature
//
// 1. Select random nonce k in [1, N-1]
// 2. Compute kG
// 3. r = kG.x mod N (kG.x is the x coordinate of the point kG)
// Repeat from step 1 if r = 0
// 4. e = H(m)
// 5. s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// 6. Return (r,s)
//
// This is slightly modified here to conform to RFC6979 and BIP 62 as
// follows:
//
// A. Instead of selecting a random nonce in step 1, use RFC6979 to generate
// a deterministic nonce in [1, N-1] parameterized by the secret key,
// message being signed, and an iteration count for the repeat cases
// B. Negate s calculated in step 5 if it is > N/2
// This is done because both s and its negation are valid signatures
// modulo the curve order N, so it forces a consistent choice to reduce
// signature malleability
//
// NOTE: Step 1 is performed by the caller.
//
// Step 2.
//
// Compute kG
//
// Note that the point must be in affine coordinates.
k := nonce
var kG secp256k1.JacobianPoint
secp256k1.ScalarBaseMultNonConst(k, &kG)
kG.ToAffine()
// Step 3.
//
// r = kG.x mod N
// Repeat from step 1 if r = 0
r, overflow := fieldToModNScalar(&kG.X)
if r.IsZero() {
return nil, 0, false
}
// Since the secp256k1 curve has a cofactor of 1, when recovering a
// public key from an ECDSA signature over it, there are four possible
// candidates corresponding to the following cases:
//
// 1) The X coord of the random point is < N and its Y coord even
// 2) The X coord of the random point is < N and its Y coord is odd
// 3) The X coord of the random point is >= N and its Y coord is even
// 4) The X coord of the random point is >= N and its Y coord is odd
//
// Rather than forcing the recovery procedure to check all possible
// cases, this creates a recovery code that uniquely identifies which of
// the cases apply by making use of 2 bits. Bit 0 identifies the
// oddness case and Bit 1 identifies the overflow case (aka when the X
// coord >= N).
//
// It is also worth noting that making use of Hasse's theorem shows
// there are around log_2((p-n)/p) ~= -127.65 ~= 1 in 2^127 points where
// the X coordinate is >= N. It is not possible to calculate these
// points since that would require breaking the ECDLP, but, in practice
// this strongly implies with extremely high probability that there are
// only a few actual points for which this case is true.
pubKeyRecoveryCode := byte(overflow<<1) | byte(kG.Y.IsOddBit())
// Step 4.
//
// e = H(m)
//
// Note that this actually sets e = H(m) mod N which is correct since
// it is only used in step 5 which itself is mod N.
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 5 with modification B.
//
// s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// s = -s if s > N/2
kinv := new(secp256k1.ModNScalar).InverseValNonConst(k)
s := new(secp256k1.ModNScalar).Mul2(secKey, &r).Add(&e).Mul(kinv)
if s.IsZero() {
return nil, 0, false
}
if s.IsOverHalfOrder() {
s.Negate()
// Negating s corresponds to the random point that would have been
// generated by -k (mod N), which necessarily has the opposite
// oddness since N is prime, thus flip the pubkey recovery code
// oddness bit accordingly.
pubKeyRecoveryCode ^= 0x01
}
// Step 6.
//
// Return (r,s)
return NewSignature(&r, s), pubKeyRecoveryCode, true
}
// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979
// and BIP0062 and returns it along with an additional public key recovery code
// for efficiently recovering the public key from the signature.
func signRFC6979(secKey *secp256k1.SecretKey, hash []byte) (
*Signature,
byte,
) {
// The algorithm for producing an ECDSA signature is given as algorithm 4.29
// in [GECC].
//
// The following is a paraphrased version for reference:
//
// G = curve generator
// N = curve order
// d = secret key
// m = message
// r, s = signature
//
// 1. Select random nonce k in [1, N-1]
// 2. Compute kG
// 3. r = kG.x mod N (kG.x is the x coordinate of the point kG)
// Repeat from step 1 if r = 0
// 4. e = H(m)
// 5. s = k^-1(e + dr) mod N
// Repeat from step 1 if s = 0
// 6. Return (r,s)
//
// This is slightly modified here to conform to RFC6979 and BIP 62 as
// follows:
//
// A. Instead of selecting a random nonce in step 1, use RFC6979 to generate
// a deterministic nonce in [1, N-1] parameterized by the secret key,
// message being signed, and an iteration count for the repeat cases
// B. Negate s calculated in step 5 if it is > N/2
// This is done because both s and its negation are valid signatures
// modulo the curve order N, so it forces a consistent choice to reduce
// signature malleability
secKeyScalar := &secKey.Key
var secKeyBytes [32]byte
secKeyScalar.PutBytes(&secKeyBytes)
defer zeroArray32(&secKeyBytes)
for iteration := uint32(0); ; iteration++ {
// Step 1 with modification A.
//
// Generate a deterministic nonce in [1, N-1] parameterized by the
// secret key, message being signed, and iteration count.
k := secp256k1.NonceRFC6979(secKeyBytes[:], hash, nil, nil, iteration)
// Steps 2-6.
sig, pubKeyRecoveryCode, success := sign(secKeyScalar, k, hash)
k.Zero()
if !success {
continue
}
return sig, pubKeyRecoveryCode
}
}
// Sign generates an ECDSA signature over the secp256k1 curve for the provided
// hash (which should be the result of hashing a larger message) using the given
// secret key. The produced signature is deterministic (same message and same
// key yield the same signature) and canonical in accordance with RFC6979 and
// BIP0062.
func Sign(key *secp256k1.SecretKey, hash []byte) *Signature {
signature, _ := signRFC6979(key, hash)
return signature
}
const (
// compactSigSize is the size of a compact signature. It consists of a
// compact signature recovery code byte followed by the R and S components
// serialized as 32-byte big-endian values. 1+32*2 = 65.
// for the R and S components. 1+32+32=65.
compactSigSize = 65
// compactSigMagicOffset is a value used when creating the compact signature
// recovery code inherited from Bitcoin and has no meaning, but has been
// retained for compatibility. For historical purposes, it was originally
// picked to avoid a binary representation that would allow compact
// signatures to be mistaken for other components.
compactSigMagicOffset = 27
// compactSigCompPubKey is a value used when creating the compact signature
// recovery code to indicate the original public key was compressed.
compactSigCompPubKey = 4
// pubKeyRecoveryCodeOddnessBit specifies the bit that indicates the oddess
// of the Y coordinate of the random point calculated when creating a
// signature.
pubKeyRecoveryCodeOddnessBit = 1 << 0
// pubKeyRecoveryCodeOverflowBit specifies the bit that indicates the X
// coordinate of the random point calculated when creating a signature was
// >= N, where N is the order of the group.
pubKeyRecoveryCodeOverflowBit = 1 << 1
)
// SignCompact produces a compact ECDSA signature over the secp256k1 curve for
// the provided hash (which should be the result of hashing a larger message)
// using the given secret key. The isCompressedKey parameter specifies if the
// produced signature should reference a compressed public key or not.
//
// Compact signature format:
// <1-byte compact sig recovery code><32-byte R><32-byte S>
//
// The compact sig recovery code is the value 27 + public key recovery code + 4
// if the compact signature was created with a compressed public key.
func SignCompact(
key *secp256k1.SecretKey, hash []byte,
isCompressedKey bool,
) []byte {
// Create the signature and associated pubkey recovery code and calculate
// the compact signature recovery code.
sig, pubKeyRecoveryCode := signRFC6979(key, hash)
compactSigRecoveryCode := compactSigMagicOffset + pubKeyRecoveryCode
if isCompressedKey {
compactSigRecoveryCode += compactSigCompPubKey
}
// Output <compactSigRecoveryCode><32-byte R><32-byte S>.
var b [compactSigSize]byte
b[0] = compactSigRecoveryCode
sig.r.PutBytesUnchecked(b[1:33])
sig.s.PutBytesUnchecked(b[33:65])
return b[:]
}
// RecoverCompact attempts to recover the secp256k1 public key from the provided
// compact signature and message hash. It first verifies the signature, and, if
// the signature matches then the recovered public key will be returned as well
// as a boolean indicating whether or not the original key was compressed.
func RecoverCompact(signature, hash []byte) (
*secp256k1.PublicKey, bool, error,
) {
// The following is very loosely based on the information and algorithm that
// describes recovering a public key from and ECDSA signature in section
// 4.1.6 of [SEC1].
//
// Given the following parameters:
//
// G = curve generator
// N = group order
// P = field prime
// Q = public key
// m = message
// e = hash of the message
// r, s = signature
// X = random point used when creating signature whose x coordinate is r
//
// The equation to recover a public key candidate from an ECDSA signature
// is:
// Q = r^-1(sX - eG).
//
// This can be verified by plugging it in for Q in the sig verification
// equation:
// X = s^-1(eG + rQ) (mod N)
// => s^-1(eG + r(r^-1(sX - eG))) (mod N)
// => s^-1(eG + sX - eG) (mod N)
// => s^-1(sX) (mod N)
// => X (mod N)
//
// However, note that since r is the x coordinate mod N from a random point
// that was originally mod P, and the cofactor of the secp256k1 curve is 1,
// there are four possible points that the original random point could have
// been to produce r: (r,y), (r,-y), (r+N,y), and (r+N,-y). At least 2 of
// those points will successfully verify, and all 4 will successfully verify
// when the original x coordinate was in the range [N+1, P-1], but in any
// case, only one of them corresponds to the original secret key used.
//
// The method described by section 4.1.6 of [SEC1] to determine which one is
// the correct one involves calculating each possibility as a candidate
// public key and comparing the candidate to the authentic public key. It
// also hints that it is possible to generate the signature in a such a
// way that only one of the candidate public keys is viable.
//
// A more efficient approach that is specific to the secp256k1 curve is used
// here instead which is to produce a "pubkey recovery code" when signing
// that uniquely identifies which of the 4 possibilities is correct for the
// original random point and using that to recover the pubkey directly as
// follows:
//
// 1. Fail if r and s are not in [1, N-1]
// 2. Convert r to integer mod P
// 3. If pubkey recovery code overflow bit is set:
// 3.1 Fail if r + N >= P
// 3.2 r = r + N (mod P)
// 4. y = +sqrt(r^3 + 7) (mod P)
// 4.1 Fail if y does not exist
// 4.2 y = -y if needed to match pubkey recovery code oddness bit
// 5. X = (r, y)
// 6. e = H(m) mod N
// 7. w = r^-1 mod N
// 8. u1 = -(e * w) mod N
// u2 = s * w mod N
// 9. Q = u1G + u2X
// 10. Fail if Q is the point at infinity
//
// A compact signature consists of a recovery byte followed by the R and
// S components serialized as 32-byte big-endian values.
if len(signature) != compactSigSize {
str := fmt.Sprintf(
"malformed signature: wrong size: %d != %d",
len(signature), compactSigSize,
)
return nil, false, signatureError(ErrSigInvalidLen, str)
}
// Parse and validate the compact signature recovery code.
const (
minValidCode = compactSigMagicOffset
maxValidCode = compactSigMagicOffset + compactSigCompPubKey + 3
)
sigRecoveryCode := signature[0]
if sigRecoveryCode < minValidCode || sigRecoveryCode > maxValidCode {
str := fmt.Sprintf(
"invalid signature: public key recovery code %d is "+
"not in the valid range [%d, %d]", sigRecoveryCode,
minValidCode,
maxValidCode,
)
return nil, false, signatureError(ErrSigInvalidRecoveryCode, str)
}
sigRecoveryCode -= compactSigMagicOffset
wasCompressed := sigRecoveryCode&compactSigCompPubKey != 0
pubKeyRecoveryCode := sigRecoveryCode & 3
// Step 1.
//
// Parse and validate the R and S signature components.
//
// Fail if r and s are not in [1, N-1].
var r, s secp256k1.ModNScalar
if overflow := r.SetByteSlice(signature[1:33]); overflow {
str := "invalid signature: R >= group order"
return nil, false, signatureError(ErrSigRTooBig, str)
}
if r.IsZero() {
str := "invalid signature: R is 0"
return nil, false, signatureError(ErrSigRIsZero, str)
}
if overflow := s.SetByteSlice(signature[33:]); overflow {
str := "invalid signature: S >= group order"
return nil, false, signatureError(ErrSigSTooBig, str)
}
if s.IsZero() {
str := "invalid signature: S is 0"
return nil, false, signatureError(ErrSigSIsZero, str)
}
// Step 2.
//
// Convert r to integer mod P.
fieldR := modNScalarToField(&r)
// Step 3.
//
// If pubkey recovery code overflow bit is set:
if pubKeyRecoveryCode&pubKeyRecoveryCodeOverflowBit != 0 {
// Step 3.1.
//
// Fail if r + N >= P
//
// Either the signature or the recovery code must be invalid if the
// recovery code overflow bit is set and adding N to the R component
// would exceed the field prime since R originally came from the X
// coordinate of a random point on the curve.
if fieldR.IsGtOrEqPrimeMinusOrder() {
str := "invalid signature: signature R + N >= P"
return nil, false, signatureError(ErrSigOverflowsPrime, str)
}
// Step 3.2.
//
// r = r + N (mod P)
fieldR.Add(&orderAsFieldVal)
}
// Step 4.
//
// y = +sqrt(r^3 + 7) (mod P)
// Fail if y does not exist.
// y = -y if needed to match pubkey recovery code oddness bit
//
// The signature must be invalid if the calculation fails because the X
// coord originally came from a random point on the curve which means there
// must be a Y coord that satisfies the equation for a valid signature.
oddY := pubKeyRecoveryCode&pubKeyRecoveryCodeOddnessBit != 0
var y secp256k1.FieldVal
if valid := secp256k1.DecompressY(&fieldR, oddY, &y); !valid {
str := "invalid signature: not for a valid curve point"
return nil, false, signatureError(ErrPointNotOnCurve, str)
}
// Step 5.
//
// X = (r, y)
var X secp256k1.JacobianPoint
X.X.Set(fieldR.Normalize())
X.Y.Set(y.Normalize())
X.Z.SetInt(1)
// Step 6.
//
// e = H(m) mod N
var e secp256k1.ModNScalar
e.SetByteSlice(hash)
// Step 7.
//
// w = r^-1 mod N
w := new(secp256k1.ModNScalar).InverseValNonConst(&r)
// Step 8.
//
// u1 = -(e * w) mod N
// u2 = s * w mod N
u1 := new(secp256k1.ModNScalar).Mul2(&e, w).Negate()
u2 := new(secp256k1.ModNScalar).Mul2(&s, w)
// Step 9.
//
// Q = u1G + u2X
var Q, u1G, u2X secp256k1.JacobianPoint
secp256k1.ScalarBaseMultNonConst(u1, &u1G)
secp256k1.ScalarMultNonConst(u2, &X, &u2X)
secp256k1.AddNonConst(&u1G, &u2X, &Q)
// Step 10.
//
// Fail if Q is the point at infinity.
//
// Either the signature or the pubkey recovery code must be invalid if the
// recovered pubkey is the point at infinity.
if (Q.X.IsZero() && Q.Y.IsZero()) || Q.Z.IsZero() {
str := "invalid signature: recovered pubkey is the point at infinity"
return nil, false, signatureError(ErrPointNotOnCurve, str)
}
// Notice that the public key is in affine coordinates.
Q.ToAffine()
pubKey := secp256k1.NewPublicKey(&Q.X, &Q.Y)
return pubKey, wasCompressed, nil
}