93 lines
3.0 KiB
Go
93 lines
3.0 KiB
Go
// Copyright (c) 2020-2023 The Decred developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package secp256k1
|
|
|
|
import (
|
|
"math/big"
|
|
"testing"
|
|
)
|
|
|
|
// BenchmarkFieldNormalize benchmarks how long it takes the internal field
|
|
// to perform normalization (which includes modular reduction).
|
|
func BenchmarkFieldNormalize(b *testing.B) {
|
|
// The function is constant time so any value is fine.
|
|
f := &FieldVal{
|
|
n: [10]uint32{
|
|
0x000148f6, 0x03ffffc0, 0x03ffffff, 0x03ffffff, 0x03ffffff,
|
|
0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x00000007,
|
|
},
|
|
}
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
f.Normalize()
|
|
}
|
|
}
|
|
|
|
// BenchmarkFieldSqrt benchmarks calculating the square root of an unsigned
|
|
// 256-bit big-endian integer modulo the field prime with the specialized type.
|
|
func BenchmarkFieldSqrt(b *testing.B) {
|
|
// The function is constant time so any value is fine.
|
|
valHex := "16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca"
|
|
f := new(FieldVal).SetHex(valHex).Normalize()
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
var result FieldVal
|
|
_ = result.SquareRootVal(f)
|
|
}
|
|
}
|
|
|
|
// BenchmarkBigSqrt benchmarks calculating the square root of an unsigned
|
|
// 256-bit big-endian integer modulo the field prime with stdlib big integers.
|
|
func BenchmarkBigSqrt(b *testing.B) {
|
|
// The function is constant time so any value is fine.
|
|
valHex := "16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca"
|
|
val, ok := new(big.Int).SetString(valHex, 16)
|
|
if !ok {
|
|
b.Fatalf("failed to parse hex %s", valHex)
|
|
}
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
_ = new(big.Int).ModSqrt(val, curveParams.P)
|
|
}
|
|
}
|
|
|
|
// BenchmarkFieldIsGtOrEqPrimeMinusOrder benchmarks determining whether a value
|
|
// is greater than or equal to the field prime minus the group order with the
|
|
// specialized type.
|
|
func BenchmarkFieldIsGtOrEqPrimeMinusOrder(b *testing.B) {
|
|
// The function is constant time so any value is fine.
|
|
valHex := "16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca"
|
|
f := new(FieldVal).SetHex(valHex).Normalize()
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
_ = f.IsGtOrEqPrimeMinusOrder()
|
|
}
|
|
}
|
|
|
|
// BenchmarkBigIsGtOrEqPrimeMinusOrder benchmarks determining whether a value
|
|
// is greater than or equal to the field prime minus the group order with stdlib
|
|
// big integers.
|
|
func BenchmarkBigIsGtOrEqPrimeMinusOrder(b *testing.B) {
|
|
// Same value used in field val version.
|
|
valHex := "16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca"
|
|
val, ok := new(big.Int).SetString(valHex, 16)
|
|
if !ok {
|
|
b.Fatalf("failed to parse hex %s", valHex)
|
|
}
|
|
bigPMinusN := new(big.Int).Sub(curveParams.P, curveParams.N)
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
// In practice, the internal value to compare would have to be converted
|
|
// to a big integer from bytes, so it's a fair comparison to allocate a
|
|
// new big int here and set all bytes.
|
|
_ = new(big.Int).SetBytes(val.Bytes()).Cmp(bigPMinusN) >= 0
|
|
}
|
|
}
|