Files
next.orly.dev/cmd/benchmark/main.go
mleku 110223fc4e Migrate internal module imports to unified package path.
Replaced legacy `*.orly` module imports with `next.orly.dev/pkg` paths across the codebase for consistency. Removed legacy `go.mod` files from sub-packages, consolidating dependency management. Added Dockerfiles and configurations for benchmarking environments.
2025-09-12 16:12:31 +01:00

574 lines
14 KiB
Go

package main
import (
"context"
"crypto/rand"
"flag"
"fmt"
"log"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"time"
"next.orly.dev/pkg/database"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/filter"
"next.orly.dev/pkg/encoders/kind"
"next.orly.dev/pkg/encoders/tag"
"next.orly.dev/pkg/encoders/timestamp"
)
type BenchmarkConfig struct {
DataDir string
NumEvents int
ConcurrentWorkers int
TestDuration time.Duration
BurstPattern bool
ReportInterval time.Duration
}
type BenchmarkResult struct {
TestName string
Duration time.Duration
TotalEvents int
EventsPerSecond float64
AvgLatency time.Duration
P95Latency time.Duration
P99Latency time.Duration
SuccessRate float64
ConcurrentWorkers int
MemoryUsed uint64
Errors []string
}
type Benchmark struct {
config *BenchmarkConfig
db *database.D
results []*BenchmarkResult
mu sync.RWMutex
}
func main() {
config := parseFlags()
fmt.Printf("Starting Nostr Relay Benchmark\n")
fmt.Printf("Data Directory: %s\n", config.DataDir)
fmt.Printf(
"Events: %d, Workers: %d, Duration: %v\n",
config.NumEvents, config.ConcurrentWorkers, config.TestDuration,
)
benchmark := NewBenchmark(config)
defer benchmark.Close()
// Run benchmark tests
benchmark.RunPeakThroughputTest()
benchmark.RunBurstPatternTest()
benchmark.RunMixedReadWriteTest()
// Generate report
benchmark.GenerateReport()
}
func parseFlags() *BenchmarkConfig {
config := &BenchmarkConfig{}
flag.StringVar(
&config.DataDir, "datadir", "/tmp/benchmark_db", "Database directory",
)
flag.IntVar(
&config.NumEvents, "events", 10000, "Number of events to generate",
)
flag.IntVar(
&config.ConcurrentWorkers, "workers", runtime.NumCPU(),
"Number of concurrent workers",
)
flag.DurationVar(
&config.TestDuration, "duration", 60*time.Second, "Test duration",
)
flag.BoolVar(
&config.BurstPattern, "burst", true, "Enable burst pattern testing",
)
flag.DurationVar(
&config.ReportInterval, "report-interval", 10*time.Second,
"Report interval",
)
flag.Parse()
return config
}
func NewBenchmark(config *BenchmarkConfig) *Benchmark {
// Clean up existing data directory
os.RemoveAll(config.DataDir)
ctx := context.Background()
cancel := func() {}
db, err := database.New(ctx, cancel, config.DataDir, "info")
if err != nil {
log.Fatalf("Failed to create database: %v", err)
}
return &Benchmark{
config: config,
db: db,
results: make([]*BenchmarkResult, 0),
}
}
func (b *Benchmark) Close() {
if b.db != nil {
b.db.Close()
}
}
func (b *Benchmark) RunPeakThroughputTest() {
fmt.Println("\n=== Peak Throughput Test ===")
start := time.Now()
var wg sync.WaitGroup
var totalEvents int64
var errors []error
var latencies []time.Duration
var mu sync.Mutex
events := b.generateEvents(b.config.NumEvents)
eventChan := make(chan *event.E, len(events))
// Fill event channel
for _, ev := range events {
eventChan <- ev
}
close(eventChan)
// Start workers
for i := 0; i < b.config.ConcurrentWorkers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
ctx := context.Background()
for ev := range eventChan {
eventStart := time.Now()
_, _, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
} else {
totalEvents++
latencies = append(latencies, latency)
}
mu.Unlock()
}
}(i)
}
wg.Wait()
duration := time.Since(start)
// Calculate metrics
result := &BenchmarkResult{
TestName: "Peak Throughput",
Duration: duration,
TotalEvents: int(totalEvents),
EventsPerSecond: float64(totalEvents) / duration.Seconds(),
ConcurrentWorkers: b.config.ConcurrentWorkers,
MemoryUsed: getMemUsage(),
}
if len(latencies) > 0 {
result.AvgLatency = calculateAvgLatency(latencies)
result.P95Latency = calculatePercentileLatency(latencies, 0.95)
result.P99Latency = calculatePercentileLatency(latencies, 0.99)
}
result.SuccessRate = float64(totalEvents) / float64(b.config.NumEvents) * 100
for _, err := range errors {
result.Errors = append(result.Errors, err.Error())
}
b.mu.Lock()
b.results = append(b.results, result)
b.mu.Unlock()
fmt.Printf(
"Events saved: %d/%d (%.1f%%)\n", totalEvents, b.config.NumEvents,
result.SuccessRate,
)
fmt.Printf("Duration: %v\n", duration)
fmt.Printf("Events/sec: %.2f\n", result.EventsPerSecond)
fmt.Printf("Avg latency: %v\n", result.AvgLatency)
fmt.Printf("P95 latency: %v\n", result.P95Latency)
fmt.Printf("P99 latency: %v\n", result.P99Latency)
}
func (b *Benchmark) RunBurstPatternTest() {
fmt.Println("\n=== Burst Pattern Test ===")
start := time.Now()
var totalEvents int64
var errors []error
var latencies []time.Duration
var mu sync.Mutex
// Generate events for burst pattern
events := b.generateEvents(b.config.NumEvents)
// Simulate burst pattern: high activity periods followed by quiet periods
burstSize := b.config.NumEvents / 10 // 10% of events in each burst
quietPeriod := 500 * time.Millisecond
burstPeriod := 100 * time.Millisecond
ctx := context.Background()
eventIndex := 0
for eventIndex < len(events) && time.Since(start) < b.config.TestDuration {
// Burst period - send events rapidly
burstStart := time.Now()
var wg sync.WaitGroup
for i := 0; i < burstSize && eventIndex < len(events); i++ {
wg.Add(1)
go func(ev *event.E) {
defer wg.Done()
eventStart := time.Now()
_, _, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
} else {
totalEvents++
latencies = append(latencies, latency)
}
mu.Unlock()
}(events[eventIndex])
eventIndex++
time.Sleep(burstPeriod / time.Duration(burstSize))
}
wg.Wait()
fmt.Printf(
"Burst completed: %d events in %v\n", burstSize,
time.Since(burstStart),
)
// Quiet period
time.Sleep(quietPeriod)
}
duration := time.Since(start)
// Calculate metrics
result := &BenchmarkResult{
TestName: "Burst Pattern",
Duration: duration,
TotalEvents: int(totalEvents),
EventsPerSecond: float64(totalEvents) / duration.Seconds(),
ConcurrentWorkers: b.config.ConcurrentWorkers,
MemoryUsed: getMemUsage(),
}
if len(latencies) > 0 {
result.AvgLatency = calculateAvgLatency(latencies)
result.P95Latency = calculatePercentileLatency(latencies, 0.95)
result.P99Latency = calculatePercentileLatency(latencies, 0.99)
}
result.SuccessRate = float64(totalEvents) / float64(eventIndex) * 100
for _, err := range errors {
result.Errors = append(result.Errors, err.Error())
}
b.mu.Lock()
b.results = append(b.results, result)
b.mu.Unlock()
fmt.Printf("Burst test completed: %d events in %v\n", totalEvents, duration)
fmt.Printf("Events/sec: %.2f\n", result.EventsPerSecond)
}
func (b *Benchmark) RunMixedReadWriteTest() {
fmt.Println("\n=== Mixed Read/Write Test ===")
start := time.Now()
var totalWrites, totalReads int64
var writeLatencies, readLatencies []time.Duration
var errors []error
var mu sync.Mutex
// Pre-populate with some events for reading
seedEvents := b.generateEvents(1000)
ctx := context.Background()
fmt.Println("Pre-populating database for read tests...")
for _, ev := range seedEvents {
b.db.SaveEvent(ctx, ev)
}
events := b.generateEvents(b.config.NumEvents)
var wg sync.WaitGroup
// Start mixed read/write workers
for i := 0; i < b.config.ConcurrentWorkers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
eventIndex := workerID
for time.Since(start) < b.config.TestDuration && eventIndex < len(events) {
// Alternate between write and read operations
if eventIndex%2 == 0 {
// Write operation
writeStart := time.Now()
_, _, err := b.db.SaveEvent(ctx, events[eventIndex])
writeLatency := time.Since(writeStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
} else {
totalWrites++
writeLatencies = append(writeLatencies, writeLatency)
}
mu.Unlock()
} else {
// Read operation
readStart := time.Now()
f := filter.New()
f.Kinds = kind.NewS(kind.TextNote)
limit := uint(10)
f.Limit = &limit
_, err := b.db.GetSerialsFromFilter(f)
readLatency := time.Since(readStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
} else {
totalReads++
readLatencies = append(readLatencies, readLatency)
}
mu.Unlock()
}
eventIndex += b.config.ConcurrentWorkers
time.Sleep(10 * time.Millisecond) // Small delay between operations
}
}(i)
}
wg.Wait()
duration := time.Since(start)
// Calculate metrics
result := &BenchmarkResult{
TestName: "Mixed Read/Write",
Duration: duration,
TotalEvents: int(totalWrites + totalReads),
EventsPerSecond: float64(totalWrites+totalReads) / duration.Seconds(),
ConcurrentWorkers: b.config.ConcurrentWorkers,
MemoryUsed: getMemUsage(),
}
// Calculate combined latencies for overall metrics
allLatencies := append(writeLatencies, readLatencies...)
if len(allLatencies) > 0 {
result.AvgLatency = calculateAvgLatency(allLatencies)
result.P95Latency = calculatePercentileLatency(allLatencies, 0.95)
result.P99Latency = calculatePercentileLatency(allLatencies, 0.99)
}
result.SuccessRate = float64(totalWrites+totalReads) / float64(len(events)) * 100
for _, err := range errors {
result.Errors = append(result.Errors, err.Error())
}
b.mu.Lock()
b.results = append(b.results, result)
b.mu.Unlock()
fmt.Printf(
"Mixed test completed: %d writes, %d reads in %v\n", totalWrites,
totalReads, duration,
)
fmt.Printf("Combined ops/sec: %.2f\n", result.EventsPerSecond)
}
func (b *Benchmark) generateEvents(count int) []*event.E {
events := make([]*event.E, count)
now := timestamp.Now()
for i := 0; i < count; i++ {
ev := event.New()
// Generate random 32-byte ID
ev.ID = make([]byte, 32)
rand.Read(ev.ID)
// Generate random 32-byte pubkey
ev.Pubkey = make([]byte, 32)
rand.Read(ev.Pubkey)
ev.CreatedAt = now.I64()
ev.Kind = kind.TextNote.K
ev.Content = []byte(fmt.Sprintf(
"This is test event number %d with some content", i,
))
// Create tags using NewFromBytesSlice
ev.Tags = tag.NewS(
tag.NewFromBytesSlice([]byte("t"), []byte("benchmark")),
tag.NewFromBytesSlice(
[]byte("e"), []byte(fmt.Sprintf("ref_%d", i%50)),
),
)
events[i] = ev
}
return events
}
func (b *Benchmark) GenerateReport() {
fmt.Println("\n" + strings.Repeat("=", 80))
fmt.Println("BENCHMARK REPORT")
fmt.Println(strings.Repeat("=", 80))
b.mu.RLock()
defer b.mu.RUnlock()
for _, result := range b.results {
fmt.Printf("\nTest: %s\n", result.TestName)
fmt.Printf("Duration: %v\n", result.Duration)
fmt.Printf("Total Events: %d\n", result.TotalEvents)
fmt.Printf("Events/sec: %.2f\n", result.EventsPerSecond)
fmt.Printf("Success Rate: %.1f%%\n", result.SuccessRate)
fmt.Printf("Concurrent Workers: %d\n", result.ConcurrentWorkers)
fmt.Printf("Memory Used: %d MB\n", result.MemoryUsed/(1024*1024))
fmt.Printf("Avg Latency: %v\n", result.AvgLatency)
fmt.Printf("P95 Latency: %v\n", result.P95Latency)
fmt.Printf("P99 Latency: %v\n", result.P99Latency)
if len(result.Errors) > 0 {
fmt.Printf("Errors (%d):\n", len(result.Errors))
for i, err := range result.Errors {
if i < 5 { // Show first 5 errors
fmt.Printf(" - %s\n", err)
}
}
if len(result.Errors) > 5 {
fmt.Printf(" ... and %d more errors\n", len(result.Errors)-5)
}
}
fmt.Println(strings.Repeat("-", 40))
}
// Save report to file
reportPath := filepath.Join(b.config.DataDir, "benchmark_report.txt")
b.saveReportToFile(reportPath)
fmt.Printf("\nReport saved to: %s\n", reportPath)
}
func (b *Benchmark) saveReportToFile(path string) error {
file, err := os.Create(path)
if err != nil {
return err
}
defer file.Close()
file.WriteString("NOSTR RELAY BENCHMARK REPORT\n")
file.WriteString("============================\n\n")
file.WriteString(
fmt.Sprintf(
"Generated: %s\n", time.Now().Format(time.RFC3339),
),
)
file.WriteString(fmt.Sprintf("Relay: next.orly.dev\n"))
file.WriteString(fmt.Sprintf("Database: BadgerDB\n"))
file.WriteString(fmt.Sprintf("Workers: %d\n", b.config.ConcurrentWorkers))
file.WriteString(
fmt.Sprintf(
"Test Duration: %v\n\n", b.config.TestDuration,
),
)
b.mu.RLock()
defer b.mu.RUnlock()
for _, result := range b.results {
file.WriteString(fmt.Sprintf("Test: %s\n", result.TestName))
file.WriteString(fmt.Sprintf("Duration: %v\n", result.Duration))
file.WriteString(fmt.Sprintf("Events: %d\n", result.TotalEvents))
file.WriteString(
fmt.Sprintf(
"Events/sec: %.2f\n", result.EventsPerSecond,
),
)
file.WriteString(
fmt.Sprintf(
"Success Rate: %.1f%%\n", result.SuccessRate,
),
)
file.WriteString(fmt.Sprintf("Avg Latency: %v\n", result.AvgLatency))
file.WriteString(fmt.Sprintf("P95 Latency: %v\n", result.P95Latency))
file.WriteString(fmt.Sprintf("P99 Latency: %v\n", result.P99Latency))
file.WriteString(
fmt.Sprintf(
"Memory: %d MB\n", result.MemoryUsed/(1024*1024),
),
)
file.WriteString("\n")
}
return nil
}
// Helper functions
func calculateAvgLatency(latencies []time.Duration) time.Duration {
if len(latencies) == 0 {
return 0
}
var total time.Duration
for _, l := range latencies {
total += l
}
return total / time.Duration(len(latencies))
}
func calculatePercentileLatency(
latencies []time.Duration, percentile float64,
) time.Duration {
if len(latencies) == 0 {
return 0
}
// Simple percentile calculation - in production would sort first
index := int(float64(len(latencies)) * percentile)
if index >= len(latencies) {
index = len(latencies) - 1
}
return latencies[index]
}
func getMemUsage() uint64 {
var m runtime.MemStats
runtime.ReadMemStats(&m)
return m.Alloc
}