fixed error comparing hex/binary in pubkey white/blacklist, complete neo4j and tests"
Some checks failed
Go / build-and-release (push) Has been cancelled

This commit is contained in:
2025-11-19 11:25:38 +00:00
parent 8b3d03da2c
commit be6cd8c740
33 changed files with 5509 additions and 1541 deletions

View File

@@ -1,7 +1,10 @@
package main
import (
"bufio"
"bytes"
"context"
"encoding/json"
"flag"
"fmt"
"log"
@@ -16,12 +19,13 @@ import (
"next.orly.dev/pkg/database"
"next.orly.dev/pkg/encoders/envelopes/eventenvelope"
"next.orly.dev/pkg/encoders/event"
examples "next.orly.dev/pkg/encoders/event/examples"
"next.orly.dev/pkg/encoders/filter"
"next.orly.dev/pkg/encoders/kind"
"next.orly.dev/pkg/encoders/tag"
"next.orly.dev/pkg/encoders/timestamp"
"next.orly.dev/pkg/protocol/ws"
"next.orly.dev/pkg/interfaces/signer/p8k"
"next.orly.dev/pkg/protocol/ws"
)
type BenchmarkConfig struct {
@@ -39,6 +43,7 @@ type BenchmarkConfig struct {
// Backend selection
UseDgraph bool
UseNeo4j bool
}
type BenchmarkResult struct {
@@ -57,12 +62,46 @@ type BenchmarkResult struct {
Errors []string
}
// RateLimiter implements a simple token bucket rate limiter
type RateLimiter struct {
rate float64 // events per second
interval time.Duration // time between events
lastEvent time.Time
mu sync.Mutex
}
// NewRateLimiter creates a rate limiter for the specified events per second
func NewRateLimiter(eventsPerSecond float64) *RateLimiter {
return &RateLimiter{
rate: eventsPerSecond,
interval: time.Duration(float64(time.Second) / eventsPerSecond),
lastEvent: time.Now(),
}
}
// Wait blocks until the next event is allowed based on the rate limit
func (rl *RateLimiter) Wait() {
rl.mu.Lock()
defer rl.mu.Unlock()
now := time.Now()
nextAllowed := rl.lastEvent.Add(rl.interval)
if now.Before(nextAllowed) {
time.Sleep(nextAllowed.Sub(now))
rl.lastEvent = nextAllowed
} else {
rl.lastEvent = now
}
}
type Benchmark struct {
config *BenchmarkConfig
db *database.D
eventStream *EventStream
results []*BenchmarkResult
mu sync.RWMutex
config *BenchmarkConfig
db *database.D
results []*BenchmarkResult
mu sync.RWMutex
cachedEvents []*event.E // Real-world events from examples.Cache
eventCacheMu sync.Mutex
}
func main() {
@@ -81,6 +120,12 @@ func main() {
return
}
if config.UseNeo4j {
// Run Neo4j benchmark
runNeo4jBenchmark(config)
return
}
// Run standard Badger benchmark
fmt.Printf("Starting Nostr Relay Benchmark (Badger Backend)\n")
fmt.Printf("Data Directory: %s\n", config.DataDir)
@@ -122,6 +167,28 @@ func runDgraphBenchmark(config *BenchmarkConfig) {
dgraphBench.GenerateAsciidocReport()
}
func runNeo4jBenchmark(config *BenchmarkConfig) {
fmt.Printf("Starting Nostr Relay Benchmark (Neo4j Backend)\n")
fmt.Printf("Data Directory: %s\n", config.DataDir)
fmt.Printf(
"Events: %d, Workers: %d\n",
config.NumEvents, config.ConcurrentWorkers,
)
neo4jBench, err := NewNeo4jBenchmark(config)
if err != nil {
log.Fatalf("Failed to create Neo4j benchmark: %v", err)
}
defer neo4jBench.Close()
// Run Neo4j benchmark suite
neo4jBench.RunSuite()
// Generate reports
neo4jBench.GenerateReport()
neo4jBench.GenerateAsciidocReport()
}
func parseFlags() *BenchmarkConfig {
config := &BenchmarkConfig{}
@@ -132,8 +199,8 @@ func parseFlags() *BenchmarkConfig {
&config.NumEvents, "events", 10000, "Number of events to generate",
)
flag.IntVar(
&config.ConcurrentWorkers, "workers", runtime.NumCPU(),
"Number of concurrent workers",
&config.ConcurrentWorkers, "workers", max(2, runtime.NumCPU()/4),
"Number of concurrent workers (default: CPU cores / 4 for low CPU usage)",
)
flag.DurationVar(
&config.TestDuration, "duration", 60*time.Second, "Test duration",
@@ -162,6 +229,10 @@ func parseFlags() *BenchmarkConfig {
&config.UseDgraph, "dgraph", false,
"Use dgraph backend (requires Docker)",
)
flag.BoolVar(
&config.UseNeo4j, "neo4j", false,
"Use Neo4j backend (requires Docker)",
)
flag.Parse()
return config
@@ -330,23 +401,10 @@ func NewBenchmark(config *BenchmarkConfig) *Benchmark {
log.Fatalf("Failed to create database: %v", err)
}
// Create event stream (stores events on disk to avoid memory bloat)
eventStream, err := NewEventStream(config.DataDir, config.NumEvents)
if err != nil {
log.Fatalf("Failed to create event stream: %v", err)
}
// Pre-generate all events to disk
fmt.Printf("Pre-generating %d events to disk to avoid memory bloat...\n", config.NumEvents)
if err := eventStream.Generate(); err != nil {
log.Fatalf("Failed to generate events: %v", err)
}
b := &Benchmark{
config: config,
db: db,
eventStream: eventStream,
results: make([]*BenchmarkResult, 0),
config: config,
db: db,
results: make([]*BenchmarkResult, 0),
}
// Trigger compaction/GC before starting tests
@@ -361,49 +419,42 @@ func (b *Benchmark) Close() {
}
}
// RunSuite runs the memory-optimized tests (Peak Throughput and Burst Pattern only)
// RunSuite runs the full benchmark test suite
func (b *Benchmark) RunSuite() {
fmt.Printf("\n=== Running Memory-Optimized Tests ===\n")
fmt.Println("\n╔════════════════════════════════════════════════════════╗")
fmt.Println("║ BADGER BACKEND BENCHMARK SUITE ║")
fmt.Println("╚════════════════════════════════════════════════════════╝")
fmt.Printf("RunPeakThroughputTest..\n")
fmt.Printf("\n=== Starting Badger benchmark ===\n")
fmt.Printf("RunPeakThroughputTest (Badger)..\n")
b.RunPeakThroughputTest()
fmt.Println("Wiping database between tests...")
b.db.Wipe()
time.Sleep(10 * time.Second)
// Clear database between tests to avoid duplicate event issues
fmt.Printf("\nClearing database for next test...\n")
if err := b.db.Close(); err != nil {
log.Printf("Error closing database: %v", err)
}
time.Sleep(1 * time.Second)
// Remove database files (.sst, .vlog, MANIFEST, etc.)
// Badger stores files directly in the data directory
matches, err := filepath.Glob(filepath.Join(b.config.DataDir, "*.sst"))
if err == nil {
for _, f := range matches {
os.Remove(f)
}
}
matches, err = filepath.Glob(filepath.Join(b.config.DataDir, "*.vlog"))
if err == nil {
for _, f := range matches {
os.Remove(f)
}
}
os.Remove(filepath.Join(b.config.DataDir, "MANIFEST"))
os.Remove(filepath.Join(b.config.DataDir, "DISCARD"))
os.Remove(filepath.Join(b.config.DataDir, "KEYREGISTRY"))
// Create fresh database
ctx := context.Background()
cancel := func() {}
db, err := database.New(ctx, cancel, b.config.DataDir, "warn")
if err != nil {
log.Fatalf("Failed to create fresh database: %v", err)
}
b.db = db
fmt.Printf("RunBurstPatternTest..\n")
fmt.Printf("RunBurstPatternTest (Badger)..\n")
b.RunBurstPatternTest()
fmt.Println("Wiping database between tests...")
b.db.Wipe()
time.Sleep(10 * time.Second)
fmt.Printf("RunMixedReadWriteTest (Badger)..\n")
b.RunMixedReadWriteTest()
fmt.Println("Wiping database between tests...")
b.db.Wipe()
time.Sleep(10 * time.Second)
fmt.Printf("RunQueryTest (Badger)..\n")
b.RunQueryTest()
fmt.Println("Wiping database between tests...")
b.db.Wipe()
time.Sleep(10 * time.Second)
fmt.Printf("RunConcurrentQueryStoreTest (Badger)..\n")
b.RunConcurrentQueryStoreTest()
fmt.Printf("\n=== Badger benchmark completed ===\n\n")
}
// compactDatabase triggers a Badger value log GC before starting tests.
@@ -430,17 +481,28 @@ func (b *Benchmark) RunPeakThroughputTest() {
var errorCount int64
var mu sync.Mutex
// Stream events from disk with reasonable buffer
eventChan, errChan := b.eventStream.GetEventChannel(1000)
// Stream events from memory (real-world sample events)
eventChan, errChan := b.getEventChannel(b.config.NumEvents, 1000)
// Start workers
// Calculate per-worker rate: 20k events/sec total divided by worker count
// This prevents all workers from synchronizing and hitting DB simultaneously
perWorkerRate := 20000.0 / float64(b.config.ConcurrentWorkers)
// Start workers with rate limiting
ctx := context.Background()
for i := 0; i < b.config.ConcurrentWorkers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
// Each worker gets its own rate limiter to avoid mutex contention
workerLimiter := NewRateLimiter(perWorkerRate)
for ev := range eventChan {
// Wait for rate limiter to allow this event
workerLimiter.Wait()
eventStart := time.Now()
_, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
@@ -531,8 +593,8 @@ func (b *Benchmark) RunBurstPatternTest() {
var errorCount int64
var mu sync.Mutex
// Stream events from disk
eventChan, errChan := b.eventStream.GetEventChannel(500)
// Stream events from memory (real-world sample events)
eventChan, errChan := b.getEventChannel(b.config.NumEvents, 500)
// Check for streaming errors
go func() {
@@ -556,11 +618,21 @@ func (b *Benchmark) RunBurstPatternTest() {
eventQueue := make(chan *event.E, numWorkers*4)
var wg sync.WaitGroup
// Calculate per-worker rate to avoid mutex contention
perWorkerRate := 20000.0 / float64(numWorkers)
for w := 0; w < numWorkers; w++ {
wg.Add(1)
go func() {
defer wg.Done()
// Each worker gets its own rate limiter
workerLimiter := NewRateLimiter(perWorkerRate)
for ev := range eventQueue {
// Wait for rate limiter to allow this event
workerLimiter.Wait()
eventStart := time.Now()
_, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
@@ -669,17 +741,25 @@ func (b *Benchmark) RunMixedReadWriteTest() {
events := b.generateEvents(b.config.NumEvents)
var wg sync.WaitGroup
// Calculate per-worker rate to avoid mutex contention
perWorkerRate := 20000.0 / float64(b.config.ConcurrentWorkers)
// Start mixed read/write workers
for i := 0; i < b.config.ConcurrentWorkers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
// Each worker gets its own rate limiter
workerLimiter := NewRateLimiter(perWorkerRate)
eventIndex := workerID
for time.Since(start) < b.config.TestDuration && eventIndex < len(events) {
// Alternate between write and read operations
if eventIndex%2 == 0 {
// Write operation
// Write operation - apply rate limiting
workerLimiter.Wait()
writeStart := time.Now()
_, err := b.db.SaveEvent(ctx, events[eventIndex])
writeLatency := time.Since(writeStart)
@@ -850,9 +930,8 @@ func (b *Benchmark) RunQueryTest() {
mu.Unlock()
queryCount++
if queryCount%10 == 0 {
time.Sleep(10 * time.Millisecond) // Small delay every 10 queries
}
// Always add delay to prevent CPU saturation (queries are CPU-intensive)
time.Sleep(1 * time.Millisecond)
}
}(i)
}
@@ -952,6 +1031,9 @@ func (b *Benchmark) RunConcurrentQueryStoreTest() {
numReaders := b.config.ConcurrentWorkers / 2
numWriters := b.config.ConcurrentWorkers - numReaders
// Calculate per-worker write rate to avoid mutex contention
perWorkerRate := 20000.0 / float64(numWriters)
// Start query workers (readers)
for i := 0; i < numReaders; i++ {
wg.Add(1)
@@ -986,9 +1068,8 @@ func (b *Benchmark) RunConcurrentQueryStoreTest() {
mu.Unlock()
queryCount++
if queryCount%5 == 0 {
time.Sleep(5 * time.Millisecond) // Small delay
}
// Always add delay to prevent CPU saturation (queries are CPU-intensive)
time.Sleep(1 * time.Millisecond)
}
}(i)
}
@@ -999,11 +1080,16 @@ func (b *Benchmark) RunConcurrentQueryStoreTest() {
go func(workerID int) {
defer wg.Done()
// Each worker gets its own rate limiter
workerLimiter := NewRateLimiter(perWorkerRate)
eventIndex := workerID
writeCount := 0
for time.Since(start) < b.config.TestDuration && eventIndex < len(writeEvents) {
// Write operation
// Write operation - apply rate limiting
workerLimiter.Wait()
writeStart := time.Now()
_, err := b.db.SaveEvent(ctx, writeEvents[eventIndex])
writeLatency := time.Since(writeStart)
@@ -1019,10 +1105,6 @@ func (b *Benchmark) RunConcurrentQueryStoreTest() {
eventIndex += numWriters
writeCount++
if writeCount%10 == 0 {
time.Sleep(10 * time.Millisecond) // Small delay every 10 writes
}
}
}(i)
}
@@ -1083,111 +1165,203 @@ func (b *Benchmark) RunConcurrentQueryStoreTest() {
}
func (b *Benchmark) generateEvents(count int) []*event.E {
fmt.Printf("Generating %d unique synthetic events (minimum 300 bytes each)...\n", count)
// Create a single signer for all events (reusing key is faster)
signer := p8k.MustNew()
if err := signer.Generate(); err != nil {
log.Fatalf("Failed to generate keypair: %v", err)
}
// Base timestamp - start from current time and increment
baseTime := time.Now().Unix()
// Minimum content size
const minContentSize = 300
// Base content template
baseContent := "This is a benchmark test event with realistic content size. "
// Pre-calculate how much padding we need
paddingNeeded := minContentSize - len(baseContent)
if paddingNeeded < 0 {
paddingNeeded = 0
}
// Create padding string (with varied characters for realistic size)
padding := make([]byte, paddingNeeded)
for i := range padding {
padding[i] = ' ' + byte(i%94) // Printable ASCII characters
}
events := make([]*event.E, count)
now := timestamp.Now()
// Generate a keypair for signing all events
var keys *p8k.Signer
var err error
if keys, err = p8k.New(); err != nil {
fmt.Printf("failed to create signer: %v\n", err)
return nil
}
if err := keys.Generate(); err != nil {
log.Fatalf("Failed to generate keys for benchmark events: %v", err)
}
// Define size distribution - from minimal to 500KB
// We'll create a logarithmic distribution to test various sizes
sizeBuckets := []int{
0, // Minimal: empty content, no tags
10, // Tiny: ~10 bytes
100, // Small: ~100 bytes
1024, // 1 KB
10 * 1024, // 10 KB
50 * 1024, // 50 KB
100 * 1024, // 100 KB
250 * 1024, // 250 KB
500 * 1024, // 500 KB (max realistic size for Nostr)
}
for i := 0; i < count; i++ {
ev := event.New()
ev.CreatedAt = now.I64()
ev.Kind = kind.TextNote.K
ev.CreatedAt = baseTime + int64(i) // Unique timestamp for each event
ev.Tags = tag.NewS()
// Distribute events across size buckets
bucketIndex := i % len(sizeBuckets)
targetSize := sizeBuckets[bucketIndex]
// Create content with unique identifier and padding
ev.Content = []byte(fmt.Sprintf("%s Event #%d. %s", baseContent, i, string(padding)))
// Generate content based on target size
if targetSize == 0 {
// Minimal event: empty content, no tags
ev.Content = []byte{}
ev.Tags = tag.NewS() // Empty tag set
} else if targetSize < 1024 {
// Small events: simple text content
ev.Content = []byte(fmt.Sprintf(
"Event %d - Size bucket: %d bytes. %s",
i, targetSize, strings.Repeat("x", max(0, targetSize-50)),
))
// Add minimal tags
ev.Tags = tag.NewS(
tag.NewFromBytesSlice([]byte("t"), []byte("benchmark")),
)
} else {
// Larger events: fill with repeated content to reach target size
// Account for JSON overhead (~200 bytes for event structure)
contentSize := targetSize - 200
if contentSize < 0 {
contentSize = targetSize
}
// Build content with repeated pattern
pattern := fmt.Sprintf("Event %d, target size %d bytes. ", i, targetSize)
repeatCount := contentSize / len(pattern)
if repeatCount < 1 {
repeatCount = 1
}
ev.Content = []byte(strings.Repeat(pattern, repeatCount))
// Add some tags (contributes to total size)
numTags := min(5, max(1, targetSize/10000)) // More tags for larger events
tags := make([]*tag.T, 0, numTags+1)
tags = append(tags, tag.NewFromBytesSlice([]byte("t"), []byte("benchmark")))
for j := 0; j < numTags; j++ {
tags = append(tags, tag.NewFromBytesSlice(
[]byte("e"),
[]byte(fmt.Sprintf("ref_%d_%d", i, j)),
))
}
ev.Tags = tag.NewS(tags...)
}
// Properly sign the event
if err := ev.Sign(keys); err != nil {
// Sign the event (this calculates ID and Sig)
if err := ev.Sign(signer); err != nil {
log.Fatalf("Failed to sign event %d: %v", i, err)
}
events[i] = ev
}
// Log size distribution summary
fmt.Printf("\nGenerated %d events with size distribution:\n", count)
for idx, size := range sizeBuckets {
eventsInBucket := count / len(sizeBuckets)
if idx < count%len(sizeBuckets) {
eventsInBucket++
}
sizeStr := formatSize(size)
fmt.Printf(" %s: ~%d events\n", sizeStr, eventsInBucket)
// Print stats
totalSize := int64(0)
for _, ev := range events {
totalSize += int64(len(ev.Content))
}
fmt.Println()
avgSize := totalSize / int64(count)
fmt.Printf("Generated %d events:\n", count)
fmt.Printf(" Average content size: %d bytes\n", avgSize)
fmt.Printf(" All events are unique (incremental timestamps)\n")
fmt.Printf(" All events are properly signed\n\n")
return events
}
// printEventStats prints statistics about the loaded real-world events
func (b *Benchmark) printEventStats() {
if len(b.cachedEvents) == 0 {
return
}
// Analyze event distribution
kindCounts := make(map[uint16]int)
var totalSize int64
for _, ev := range b.cachedEvents {
kindCounts[ev.Kind]++
totalSize += int64(len(ev.Content))
}
avgSize := totalSize / int64(len(b.cachedEvents))
fmt.Printf("\nEvent Statistics:\n")
fmt.Printf(" Total events: %d\n", len(b.cachedEvents))
fmt.Printf(" Average content size: %d bytes\n", avgSize)
fmt.Printf(" Event kinds found: %d unique\n", len(kindCounts))
fmt.Printf(" Most common kinds:\n")
// Print top 5 kinds
type kindCount struct {
kind uint16
count int
}
var counts []kindCount
for k, c := range kindCounts {
counts = append(counts, kindCount{k, c})
}
sort.Slice(counts, func(i, j int) bool {
return counts[i].count > counts[j].count
})
for i := 0; i < min(5, len(counts)); i++ {
fmt.Printf(" Kind %d: %d events\n", counts[i].kind, counts[i].count)
}
fmt.Println()
}
// loadRealEvents loads events from embedded examples.Cache on first call
func (b *Benchmark) loadRealEvents() {
b.eventCacheMu.Lock()
defer b.eventCacheMu.Unlock()
// Only load once
if len(b.cachedEvents) > 0 {
return
}
fmt.Println("Loading real-world sample events (11,596 events from 6 months of Nostr)...")
scanner := bufio.NewScanner(bytes.NewReader(examples.Cache))
buf := make([]byte, 0, 64*1024)
scanner.Buffer(buf, 1024*1024)
for scanner.Scan() {
var ev event.E
if err := json.Unmarshal(scanner.Bytes(), &ev); err != nil {
fmt.Printf("Warning: failed to unmarshal event: %v\n", err)
continue
}
b.cachedEvents = append(b.cachedEvents, &ev)
}
if err := scanner.Err(); err != nil {
log.Fatalf("Failed to read events: %v", err)
}
fmt.Printf("Loaded %d real-world events (already signed, zero crypto overhead)\n", len(b.cachedEvents))
b.printEventStats()
}
// getEventChannel returns a channel that streams unique synthetic events
// bufferSize controls memory usage - larger buffers improve throughput but use more memory
func (b *Benchmark) getEventChannel(count int, bufferSize int) (<-chan *event.E, <-chan error) {
eventChan := make(chan *event.E, bufferSize)
errChan := make(chan error, 1)
go func() {
defer close(eventChan)
defer close(errChan)
// Create a single signer for all events
signer := p8k.MustNew()
if err := signer.Generate(); err != nil {
errChan <- fmt.Errorf("failed to generate keypair: %w", err)
return
}
// Base timestamp - start from current time and increment
baseTime := time.Now().Unix()
// Minimum content size
const minContentSize = 300
// Base content template
baseContent := "This is a benchmark test event with realistic content size. "
// Pre-calculate padding
paddingNeeded := minContentSize - len(baseContent)
if paddingNeeded < 0 {
paddingNeeded = 0
}
// Create padding string (with varied characters for realistic size)
padding := make([]byte, paddingNeeded)
for i := range padding {
padding[i] = ' ' + byte(i%94) // Printable ASCII characters
}
// Stream unique events
for i := 0; i < count; i++ {
ev := event.New()
ev.Kind = kind.TextNote.K
ev.CreatedAt = baseTime + int64(i) // Unique timestamp for each event
ev.Tags = tag.NewS()
// Create content with unique identifier and padding
ev.Content = []byte(fmt.Sprintf("%s Event #%d. %s", baseContent, i, string(padding)))
// Sign the event (this calculates ID and Sig)
if err := ev.Sign(signer); err != nil {
errChan <- fmt.Errorf("failed to sign event %d: %w", i, err)
return
}
eventChan <- ev
}
}()
return eventChan, errChan
}
// formatSize formats byte size in human-readable format
func formatSize(bytes int) string {
if bytes == 0 {