initial addition of essential crypto, encoders, workflows and LLM instructions

This commit is contained in:
2025-08-20 05:47:06 +01:00
parent f449a9d415
commit b8db587d7b
159 changed files with 36993 additions and 10 deletions

View File

@@ -0,0 +1,68 @@
# p256k1
This is a library that uses the `bitcoin-core` optimized secp256k1 elliptic
curve signatures library for `nostr` schnorr signatures.
If you need to build it without `libsecp256k1` C library, you must disable cgo:
export CGO_ENABLED='0'
This enables the fallback `btcec` pure Go library to be used in its place. This
CGO setting is not default for Go, so it must be set in order to disable this.
The standard `libsecp256k1-0` and `libsecp256k1-dev` available through the
ubuntu dpkg repositories do not include support for the BIP-340 schnorr
signatures or the ECDH X-only shared secret generation algorithm, so you must
follow the following instructions to get the benefits of using this library. It
is 4x faster at signing and generating shared secrets so it is a must if your
intention is to use it for high throughput systems like a network transport.
The easy way to install it, if you have ubuntu/debian, is the script
[../ubuntu_install_libsecp256k1.sh](../../../scripts/ubuntu_install_libsecp256k1.sh),
it
handles the dependencies and runs the build all in one step for you. Note that
it
For ubuntu, you need these:
sudo apt -y install build-essential autoconf libtool
For other linux distributions, the process is the same but the dependencies are
likely different. The main thing is it requires make, gcc/++, autoconf and
libtool to run. The most important thing to point out is that you must enable
the schnorr signatures feature, and ECDH.
The directory `p256k/secp256k1` needs to be initialized, built and installed,
like so:
```bash
cd secp256k1
git submodule init
git submodule update
```
Then to build, you can refer to the [instructions](./secp256k1/README.md) or
just use the default autotools:
```bash
./autogen.sh
./configure --enable-module-schnorrsig --enable-module-ecdh --prefix=/usr
make
sudo make install
```
On WSL2 you may have to attend to various things to make this work, setting up
your basic locale (uncomment one or more in `/etc/locale.gen`, and run
`locale-gen`), installing the basic build tools (build-essential or base-devel)
and of course git, curl, wget, libtool and
autoconf.
## ECDH
TODO: Currently the use of the libsecp256k1 library for ECDH, used in nip-04 and
nip-44 encryption is not enabled, because the default version uses the Y
coordinate and this is incorrect for nostr. It will be enabled soon... for now
it is done with the `btcec` fallback version. This is slower, however previous
tests have shown that this ECDH library is fast enough to enable 8mb/s
throughput per CPU thread when used to generate a distinct secret for TCP
packets. The C library will likely raise this to 20mb/s or more.

25
pkg/crypto/p256k/btcec.go Normal file
View File

@@ -0,0 +1,25 @@
//go:build !cgo
package p256k
import (
"lol.mleku.dev/log"
"next.orly.dev/pkg/crypto/p256k/btcec"
)
func init() {
log.T.Ln("using btcec signature library")
}
// BTCECSigner is always available but enabling it disables the use of
// github.com/bitcoin-core/secp256k1 CGO signature implementation and points it at the btec
// version.
type Signer = btcec.Signer
type Keygen = btcec.Keygen
func NewKeygen() (k *Keygen) { return new(Keygen) }
var NewSecFromHex = btcec.NewSecFromHex[string]
var NewPubFromHex = btcec.NewPubFromHex[string]
var HexToBin = btcec.HexToBin

View File

@@ -0,0 +1,170 @@
//go:build !cgo
// Package btcec implements the signer.I interface for signatures and ECDH with nostr.
package btcec
import (
"lol.mleku.dev/chk"
"lol.mleku.dev/errorf"
btcec3 "next.orly.dev/pkg/crypto/ec"
"next.orly.dev/pkg/crypto/ec/schnorr"
"next.orly.dev/pkg/crypto/ec/secp256k1"
"next.orly.dev/pkg/interfaces/signer"
)
// Signer is an implementation of signer.I that uses the btcec library.
type Signer struct {
SecretKey *secp256k1.SecretKey
PublicKey *secp256k1.PublicKey
BTCECSec *btcec3.SecretKey
pkb, skb []byte
}
var _ signer.I = &Signer{}
// Generate creates a new Signer.
func (s *Signer) Generate() (err error) {
if s.SecretKey, err = btcec3.NewSecretKey(); chk.E(err) {
return
}
s.skb = s.SecretKey.Serialize()
s.BTCECSec, _ = btcec3.PrivKeyFromBytes(s.skb)
s.PublicKey = s.SecretKey.PubKey()
s.pkb = schnorr.SerializePubKey(s.PublicKey)
return
}
// InitSec initialises a Signer using raw secret key bytes.
func (s *Signer) InitSec(sec []byte) (err error) {
if len(sec) != secp256k1.SecKeyBytesLen {
err = errorf.E("sec key must be %d bytes", secp256k1.SecKeyBytesLen)
return
}
s.skb = sec
s.SecretKey = secp256k1.SecKeyFromBytes(sec)
s.PublicKey = s.SecretKey.PubKey()
s.pkb = schnorr.SerializePubKey(s.PublicKey)
s.BTCECSec, _ = btcec3.PrivKeyFromBytes(s.skb)
return
}
// InitPub initializes a signature verifier Signer from raw public key bytes.
func (s *Signer) InitPub(pub []byte) (err error) {
if s.PublicKey, err = schnorr.ParsePubKey(pub); chk.E(err) {
return
}
s.pkb = pub
return
}
// Sec returns the raw secret key bytes.
func (s *Signer) Sec() (b []byte) {
if s == nil {
return nil
}
return s.skb
}
// Pub returns the raw BIP-340 schnorr public key bytes.
func (s *Signer) Pub() (b []byte) {
if s == nil {
return nil
}
return s.pkb
}
// Sign a message with the Signer. Requires an initialised secret key.
func (s *Signer) Sign(msg []byte) (sig []byte, err error) {
if s.SecretKey == nil {
err = errorf.E("btcec: Signer not initialized")
return
}
var si *schnorr.Signature
if si, err = schnorr.Sign(s.SecretKey, msg); chk.E(err) {
return
}
sig = si.Serialize()
return
}
// Verify a message signature, only requires the public key is initialised.
func (s *Signer) Verify(msg, sig []byte) (valid bool, err error) {
if s.PublicKey == nil {
err = errorf.E("btcec: Pubkey not initialized")
return
}
// First try to verify using the schnorr package
var si *schnorr.Signature
if si, err = schnorr.ParseSignature(sig); err == nil {
valid = si.Verify(msg, s.PublicKey)
return
}
// If parsing the signature failed, log it at debug level
chk.D(err)
// If the signature is exactly 64 bytes, try to verify it directly
// This is to handle signatures created by p256k.Signer which uses libsecp256k1
if len(sig) == schnorr.SignatureSize {
// Create a new signature with the raw bytes
var r secp256k1.FieldVal
var sScalar secp256k1.ModNScalar
// Split the signature into r and s components
if overflow := r.SetByteSlice(sig[0:32]); !overflow {
sScalar.SetByteSlice(sig[32:64])
// Create a new signature and verify it
newSig := schnorr.NewSignature(&r, &sScalar)
valid = newSig.Verify(msg, s.PublicKey)
return
}
}
// If all verification methods failed, return an error
err = errorf.E(
"failed to verify signature:\n%d %s", len(sig), sig,
)
return
}
// Zero wipes the bytes of the secret key.
func (s *Signer) Zero() { s.SecretKey.Key.Zero() }
// ECDH creates a shared secret from a secret key and a provided public key bytes. It is advised
// to hash this result for security reasons.
func (s *Signer) ECDH(pubkeyBytes []byte) (secret []byte, err error) {
var pub *secp256k1.PublicKey
if pub, err = secp256k1.ParsePubKey(
append(
[]byte{0x02}, pubkeyBytes...,
),
); chk.E(err) {
return
}
secret = btcec3.GenerateSharedSecret(s.BTCECSec, pub)
return
}
// Keygen implements a key generator. Used for such things as vanity npub mining.
type Keygen struct {
Signer
}
// Generate a new key pair. If the result is suitable, the embedded Signer can have its contents
// extracted.
func (k *Keygen) Generate() (pubBytes []byte, err error) {
if k.Signer.SecretKey, err = btcec3.NewSecretKey(); chk.E(err) {
return
}
k.Signer.PublicKey = k.SecretKey.PubKey()
k.Signer.pkb = schnorr.SerializePubKey(k.Signer.PublicKey)
pubBytes = k.Signer.pkb
return
}
// KeyPairBytes returns the raw bytes of the embedded Signer.
func (k *Keygen) KeyPairBytes() (secBytes, cmprPubBytes []byte) {
return k.Signer.SecretKey.Serialize(), k.Signer.PublicKey.SerializeCompressed()
}

View File

@@ -0,0 +1,195 @@
//go:build !cgo
package btcec_test
import (
"testing"
"time"
"next.orly.dev/pkg/utils"
"lol.mleku.dev/chk"
"lol.mleku.dev/log"
"next.orly.dev/pkg/crypto/p256k/btcec"
)
func TestSigner_Generate(t *testing.T) {
for _ = range 100 {
var err error
signer := &btcec.Signer{}
var skb []byte
if err = signer.Generate(); chk.E(err) {
t.Fatal(err)
}
skb = signer.Sec()
if err = signer.InitSec(skb); chk.E(err) {
t.Fatal(err)
}
}
}
// func TestBTCECSignerVerify(t *testing.T) {
// evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
//
// // Create both btcec and p256k signers
// btcecSigner := &btcec.Signer{}
// p256kSigner := &p256k.Signer{}
//
// for scanner.Scan() {
// var valid bool
// b := scanner.Bytes()
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// } else {
// // We know ev.Verify() works, so we'll use it as a reference
// if valid, err = ev.Verify(); chk.E(err) || !valid {
// t.Errorf("invalid signature\n%s", b)
// continue
// }
// }
//
// // Get the ID from the event
// storedID := ev.ID
// calculatedID := ev.GetIDBytes()
//
// // Check if the stored ID matches the calculated ID
// if !utils.FastEqual(storedID, calculatedID) {
// log.D.Ln("Event ID mismatch: stored ID doesn't match calculated ID")
// // Use the calculated ID for verification as ev.Verify() would do
// ev.ID = calculatedID
// }
//
// if len(ev.ID) != sha256.Size {
// t.Errorf("id should be 32 bytes, got %d", len(ev.ID))
// continue
// }
//
// // Initialize both signers with the same public key
// if err = btcecSigner.InitPub(ev.Pubkey); chk.E(err) {
// t.Errorf("failed to init btcec pub key: %s\n%0x", err, b)
// }
// if err = p256kSigner.InitPub(ev.Pubkey); chk.E(err) {
// t.Errorf("failed to init p256k pub key: %s\n%0x", err, b)
// }
//
// // First try to verify with btcec.Signer
// if valid, err = btcecSigner.Verify(ev.ID, ev.Sig); err == nil && valid {
// // If btcec.Signer verification succeeds, great!
// log.D.Ln("btcec.Signer verification succeeded")
// } else {
// // If btcec.Signer verification fails, try with p256k.Signer
// // Use chk.T(err) like ev.Verify() does
// if valid, err = p256kSigner.Verify(ev.ID, ev.Sig); chk.T(err) {
// // If there's an error, log it but don't fail the test
// log.D.Ln("p256k.Signer verification error:", err)
// } else if !valid {
// // Only fail the test if both verifications fail
// t.Errorf(
// "invalid signature for pub %0x %0x %0x", ev.Pubkey, ev.ID,
// ev.Sig,
// )
// } else {
// log.D.Ln("p256k.Signer verification succeeded where btcec.Signer failed")
// }
// }
//
// evs = append(evs, ev)
// }
// }
// func TestBTCECSignerSign(t *testing.T) {
// evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
// signer := &btcec.Signer{}
// var skb []byte
// if err = signer.Generate(); chk.E(err) {
// t.Fatal(err)
// }
// skb = signer.Sec()
// if err = signer.InitSec(skb); chk.E(err) {
// t.Fatal(err)
// }
// verifier := &btcec.Signer{}
// pkb := signer.Pub()
// if err = verifier.InitPub(pkb); chk.E(err) {
// t.Fatal(err)
// }
// counter := 0
// for scanner.Scan() {
// counter++
// if counter > 1000 {
// break
// }
// b := scanner.Bytes()
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// }
// evs = append(evs, ev)
// }
// var valid bool
// sig := make([]byte, schnorr.SignatureSize)
// for _, ev := range evs {
// ev.Pubkey = pkb
// id := ev.GetIDBytes()
// if sig, err = signer.Sign(id); chk.E(err) {
// t.Errorf("failed to sign: %s\n%0x", err, id)
// }
// if valid, err = verifier.Verify(id, sig); chk.E(err) {
// t.Errorf("failed to verify: %s\n%0x", err, id)
// }
// if !valid {
// t.Errorf("invalid signature")
// }
// }
// signer.Zero()
// }
func TestBTCECECDH(t *testing.T) {
n := time.Now()
var err error
var counter int
const total = 50
for _ = range total {
s1 := new(btcec.Signer)
if err = s1.Generate(); chk.E(err) {
t.Fatal(err)
}
s2 := new(btcec.Signer)
if err = s2.Generate(); chk.E(err) {
t.Fatal(err)
}
for _ = range total {
var secret1, secret2 []byte
if secret1, err = s1.ECDH(s2.Pub()); chk.E(err) {
t.Fatal(err)
}
if secret2, err = s2.ECDH(s1.Pub()); chk.E(err) {
t.Fatal(err)
}
if !utils.FastEqual(secret1, secret2) {
counter++
t.Errorf(
"ECDH generation failed to work in both directions, %x %x",
secret1,
secret2,
)
}
}
}
a := time.Now()
duration := a.Sub(n)
log.I.Ln(
"errors", counter, "total", total, "time", duration, "time/op",
int(duration/total),
"ops/sec", int(time.Second)/int(duration/total),
)
}

View File

@@ -0,0 +1,41 @@
//go:build !cgo
package btcec
import (
"lol.mleku.dev/chk"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/interfaces/signer"
)
func NewSecFromHex[V []byte | string](skh V) (sign signer.I, err error) {
sk := make([]byte, len(skh)/2)
if _, err = hex.DecBytes(sk, []byte(skh)); chk.E(err) {
return
}
sign = &Signer{}
if err = sign.InitSec(sk); chk.E(err) {
return
}
return
}
func NewPubFromHex[V []byte | string](pkh V) (sign signer.I, err error) {
pk := make([]byte, len(pkh)/2)
if _, err = hex.DecBytes(pk, []byte(pkh)); chk.E(err) {
return
}
sign = &Signer{}
if err = sign.InitPub(pk); chk.E(err) {
return
}
return
}
func HexToBin(hexStr string) (b []byte, err error) {
b = make([]byte, len(hexStr)/2)
if _, err = hex.DecBytes(b, []byte(hexStr)); chk.E(err) {
return
}
return
}

6
pkg/crypto/p256k/doc.go Normal file
View File

@@ -0,0 +1,6 @@
// Package p256k is a signer interface that (by default) uses the
// bitcoin/libsecp256k1 library for fast signature creation and verification of
// the BIP-340 nostr X-only signatures and public keys, and ECDH.
//
// Currently the ECDH is only implemented with the btcec library.
package p256k

View File

@@ -0,0 +1,40 @@
//go:build cgo
package p256k
import (
"lol.mleku.dev/chk"
"next.orly.dev/pkg/encoders/hex"
"next.orly.dev/pkg/interfaces/signer"
)
func NewSecFromHex[V []byte | string](skh V) (sign signer.I, err error) {
sk := make([]byte, len(skh)/2)
if _, err = hex.DecBytes(sk, []byte(skh)); chk.E(err) {
return
}
sign = &Signer{}
if err = sign.InitSec(sk); chk.E(err) {
return
}
return
}
func NewPubFromHex[V []byte | string](pkh V) (sign signer.I, err error) {
pk := make([]byte, len(pkh)/2)
if _, err = hex.DecBytes(pk, []byte(pkh)); chk.E(err) {
return
}
sign = &Signer{}
if err = sign.InitPub(pk); chk.E(err) {
return
}
return
}
func HexToBin(hexStr string) (b []byte, err error) {
if b, err = hex.DecAppend(b, []byte(hexStr)); chk.E(err) {
return
}
return
}

140
pkg/crypto/p256k/p256k.go Normal file
View File

@@ -0,0 +1,140 @@
//go:build cgo
package p256k
import "C"
import (
"lol.mleku.dev/chk"
"lol.mleku.dev/errorf"
"lol.mleku.dev/log"
"next.orly.dev/pkg/crypto/ec"
"next.orly.dev/pkg/crypto/ec/secp256k1"
realy "next.orly.dev/pkg/interfaces/signer"
)
func init() {
log.T.Ln("using bitcoin/secp256k1 signature library")
}
// Signer implements the signer.I interface.
//
// Either the Sec or Pub must be populated, the former is for generating
// signatures, the latter is for verifying them.
//
// When using this library only for verification, a constructor that converts
// from bytes to PubKey is needed prior to calling Verify.
type Signer struct {
// SecretKey is the secret key.
SecretKey *SecKey
// PublicKey is the public key.
PublicKey *PubKey
// BTCECSec is needed for ECDH as currently the CGO bindings don't include it
BTCECSec *btcec.SecretKey
skb, pkb []byte
}
var _ realy.I = &Signer{}
// Generate a new Signer key pair using the CGO bindings to libsecp256k1
func (s *Signer) Generate() (err error) {
var cs *Sec
var cx *XPublicKey
if s.skb, s.pkb, cs, cx, err = Generate(); chk.E(err) {
return
}
s.SecretKey = &cs.Key
s.PublicKey = cx.Key
s.BTCECSec, _ = btcec.PrivKeyFromBytes(s.skb)
return
}
func (s *Signer) InitSec(skb []byte) (err error) {
var cs *Sec
var cx *XPublicKey
// var cp *PublicKey
if s.pkb, cs, cx, err = FromSecretBytes(skb); chk.E(err) {
if err.Error() != "provided secret generates a public key with odd Y coordinate, fixed version returned" {
log.E.Ln(err)
return
}
}
s.skb = skb
s.SecretKey = &cs.Key
s.PublicKey = cx.Key
// s.ECPublicKey = cp.Key
// needed for ecdh
s.BTCECSec, _ = btcec.PrivKeyFromBytes(s.skb)
return
}
func (s *Signer) InitPub(pub []byte) (err error) {
var up *Pub
if up, err = PubFromBytes(pub); chk.E(err) {
return
}
s.PublicKey = &up.Key
s.pkb = up.PubB()
return
}
func (s *Signer) Sec() (b []byte) {
if s == nil {
return nil
}
return s.skb
}
func (s *Signer) Pub() (b []byte) {
if s == nil {
return nil
}
return s.pkb
}
// func (s *Signer) ECPub() (b []byte) { return s.pkb }
func (s *Signer) Sign(msg []byte) (sig []byte, err error) {
if s.SecretKey == nil {
err = errorf.E("p256k: I secret not initialized")
return
}
u := ToUchar(msg)
if sig, err = Sign(u, s.SecretKey); chk.E(err) {
return
}
return
}
func (s *Signer) Verify(msg, sig []byte) (valid bool, err error) {
if s.PublicKey == nil {
err = errorf.E("p256k: Pubkey not initialized")
return
}
var uMsg, uSig *Uchar
if uMsg, err = Msg(msg); chk.E(err) {
return
}
if uSig, err = Sig(sig); chk.E(err) {
return
}
valid = Verify(uMsg, uSig, s.PublicKey)
if !valid {
err = errorf.E("p256k: invalid signature")
}
return
}
func (s *Signer) ECDH(pubkeyBytes []byte) (secret []byte, err error) {
var pub *secp256k1.PublicKey
if pub, err = secp256k1.ParsePubKey(
append(
[]byte{0x02},
pubkeyBytes...,
),
); chk.E(err) {
return
}
secret = btcec.GenerateSharedSecret(s.BTCECSec, pub)
return
}
func (s *Signer) Zero() { Zero(s.SecretKey) }

View File

@@ -0,0 +1,162 @@
//go:build cgo
package p256k_test
import (
"testing"
"time"
"next.orly.dev/pkg/utils"
"lol.mleku.dev/chk"
"lol.mleku.dev/log"
"next.orly.dev/pkg/crypto/p256k"
realy "next.orly.dev/pkg/interfaces/signer"
)
func TestSigner_Generate(t *testing.T) {
for _ = range 10000 {
var err error
signer := &p256k.Signer{}
var skb []byte
if err = signer.Generate(); chk.E(err) {
t.Fatal(err)
}
skb = signer.Sec()
if err = signer.InitSec(skb); chk.E(err) {
t.Fatal(err)
}
}
}
// func TestSignerVerify(t *testing.T) {
// // evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
// signer := &p256k.Signer{}
// for scanner.Scan() {
// var valid bool
// b := scanner.Bytes()
// bc := make([]byte, 0, len(b))
// bc = append(bc, b...)
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// } else {
// if valid, err = ev.Verify(); chk.T(err) || !valid {
// t.Errorf("invalid signature\n%s", bc)
// continue
// }
// }
// id := ev.GetIDBytes()
// if len(id) != sha256.Size {
// t.Errorf("id should be 32 bytes, got %d", len(id))
// continue
// }
// if err = signer.InitPub(ev.Pubkey); chk.T(err) {
// t.Errorf("failed to init pub key: %s\n%0x", err, ev.Pubkey)
// continue
// }
// if valid, err = signer.Verify(id, ev.Sig); chk.E(err) {
// t.Errorf("failed to verify: %s\n%0x", err, ev.ID)
// continue
// }
// if !valid {
// t.Errorf(
// "invalid signature for\npub %0x\neid %0x\nsig %0x\n%s",
// ev.Pubkey, id, ev.Sig, bc,
// )
// continue
// }
// // fmt.Printf("%s\n", bc)
// // evs = append(evs, ev)
// }
// }
// func TestSignerSign(t *testing.T) {
// evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
// signer := &p256k.Signer{}
// var skb, pkb []byte
// if skb, pkb, _, _, err = p256k.Generate(); chk.E(err) {
// t.Fatal(err)
// }
// log.I.S(skb, pkb)
// if err = signer.InitSec(skb); chk.E(err) {
// t.Fatal(err)
// }
// verifier := &p256k.Signer{}
// if err = verifier.InitPub(pkb); chk.E(err) {
// t.Fatal(err)
// }
// for scanner.Scan() {
// b := scanner.Bytes()
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// }
// evs = append(evs, ev)
// }
// var valid bool
// sig := make([]byte, schnorr.SignatureSize)
// for _, ev := range evs {
// ev.Pubkey = pkb
// id := ev.GetIDBytes()
// if sig, err = signer.Sign(id); chk.E(err) {
// t.Errorf("failed to sign: %s\n%0x", err, id)
// }
// if valid, err = verifier.Verify(id, sig); chk.E(err) {
// t.Errorf("failed to verify: %s\n%0x", err, id)
// }
// if !valid {
// t.Errorf("invalid signature")
// }
// }
// signer.Zero()
// }
func TestECDH(t *testing.T) {
n := time.Now()
var err error
var s1, s2 realy.I
var counter int
const total = 100
for _ = range total {
s1, s2 = &p256k.Signer{}, &p256k.Signer{}
if err = s1.Generate(); chk.E(err) {
t.Fatal(err)
}
for _ = range total {
if err = s2.Generate(); chk.E(err) {
t.Fatal(err)
}
var secret1, secret2 []byte
if secret1, err = s1.ECDH(s2.Pub()); chk.E(err) {
t.Fatal(err)
}
if secret2, err = s2.ECDH(s1.Pub()); chk.E(err) {
t.Fatal(err)
}
if !utils.FastEqual(secret1, secret2) {
counter++
t.Errorf(
"ECDH generation failed to work in both directions, %x %x",
secret1,
secret2,
)
}
}
}
a := time.Now()
duration := a.Sub(n)
log.I.Ln(
"errors", counter, "total", total*total, "time", duration, "time/op",
duration/total/total, "ops/sec",
float64(time.Second)/float64(duration/total/total),
)
}

View File

@@ -0,0 +1,426 @@
//go:build cgo
package p256k
import (
"crypto/rand"
"unsafe"
"lol.mleku.dev/chk"
"lol.mleku.dev/errorf"
"lol.mleku.dev/log"
"next.orly.dev/pkg/crypto/ec/schnorr"
"next.orly.dev/pkg/crypto/ec/secp256k1"
"next.orly.dev/pkg/crypto/sha256"
)
/*
#cgo LDFLAGS: -lsecp256k1
#include <secp256k1.h>
#include <secp256k1_schnorrsig.h>
#include <secp256k1_extrakeys.h>
*/
import "C"
type (
Context = C.secp256k1_context
Uchar = C.uchar
Cint = C.int
SecKey = C.secp256k1_keypair
PubKey = C.secp256k1_xonly_pubkey
ECPubKey = C.secp256k1_pubkey
)
var (
ctx *Context
)
func CreateContext() *Context {
return C.secp256k1_context_create(
C.SECP256K1_CONTEXT_SIGN |
C.SECP256K1_CONTEXT_VERIFY,
)
}
func GetRandom() (u *Uchar) {
rnd := make([]byte, 32)
_, _ = rand.Read(rnd)
return ToUchar(rnd)
}
func AssertLen(b []byte, length int, name string) (err error) {
if len(b) != length {
err = errorf.E("%s should be %d bytes, got %d", name, length, len(b))
}
return
}
func RandomizeContext(ctx *C.secp256k1_context) {
C.secp256k1_context_randomize(ctx, GetRandom())
return
}
func CreateRandomContext() (c *Context) {
c = CreateContext()
RandomizeContext(c)
return
}
func init() {
if ctx = CreateContext(); ctx == nil {
panic("failed to create secp256k1 context")
}
}
func ToUchar(b []byte) (u *Uchar) { return (*Uchar)(unsafe.Pointer(&b[0])) }
type Sec struct {
Key SecKey
}
func GenSec() (sec *Sec, err error) {
if _, _, sec, _, err = Generate(); chk.E(err) {
return
}
return
}
func SecFromBytes(sk []byte) (sec *Sec, err error) {
sec = new(Sec)
if C.secp256k1_keypair_create(ctx, &sec.Key, ToUchar(sk)) != 1 {
err = errorf.E("failed to parse private key")
return
}
return
}
func (s *Sec) Sec() *SecKey { return &s.Key }
func (s *Sec) Pub() (p *Pub, err error) {
p = new(Pub)
if C.secp256k1_keypair_xonly_pub(ctx, &p.Key, nil, s.Sec()) != 1 {
err = errorf.E("pubkey derivation failed")
return
}
return
}
// type PublicKey struct {
// Key *C.secp256k1_pubkey
// }
//
// func NewPublicKey() *PublicKey {
// return &PublicKey{
// Key: &C.secp256k1_pubkey{},
// }
// }
type XPublicKey struct {
Key *C.secp256k1_xonly_pubkey
}
func NewXPublicKey() *XPublicKey {
return &XPublicKey{
Key: &C.secp256k1_xonly_pubkey{},
}
}
// FromSecretBytes parses and processes what should be a secret key. If it is a correct key within the curve order, but
// with a public key having an odd Y coordinate, it returns an error with the fixed key.
func FromSecretBytes(skb []byte) (
pkb []byte,
sec *Sec,
pub *XPublicKey,
// ecPub *PublicKey,
err error,
) {
xpkb := make([]byte, schnorr.PubKeyBytesLen)
// clen := C.size_t(secp256k1.PubKeyBytesLenCompressed - 1)
pkb = make([]byte, schnorr.PubKeyBytesLen)
var parity Cint
// ecPub = NewPublicKey()
pub = NewXPublicKey()
sec = &Sec{}
uskb := ToUchar(skb)
res := C.secp256k1_keypair_create(ctx, &sec.Key, uskb)
if res != 1 {
err = errorf.E("failed to create secp256k1 keypair")
return
}
// C.secp256k1_keypair_pub(ctx, ecPub.Key, &sec.Key)
// C.secp256k1_ec_pubkey_serialize(ctx, ToUchar(ecpkb), &clen, ecPub.Key,
// C.SECP256K1_EC_COMPRESSED)
// if ecpkb[0] != 2 {
// log.W.ToSliceOfBytes("odd pubkey from %0x -> %0x", skb, ecpkb)
// Negate(skb)
// uskb = ToUchar(skb)
// res = C.secp256k1_keypair_create(ctx, &sec.Key, uskb)
// if res != 1 {
// err = errorf.E("failed to create secp256k1 keypair")
// return
// }
// C.secp256k1_keypair_pub(ctx, ecPub.Key, &sec.Key)
// C.secp256k1_ec_pubkey_serialize(ctx, ToUchar(ecpkb), &clen, ecPub.Key, C.SECP256K1_EC_COMPRESSED)
// C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key)
// err = errors.New("provided secret generates a public key with odd Y coordinate, fixed version returned")
// }
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key)
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(xpkb), pub.Key)
pkb = xpkb
// log.I.S(sec, pub, skb, pkb)
return
}
// Generate gathers entropy to generate a full set of bytes and CGO values of it and derived from it to perform
// signature and ECDH operations.
func Generate() (
skb, pkb []byte,
sec *Sec,
pub *XPublicKey,
err error,
) {
skb = make([]byte, secp256k1.SecKeyBytesLen)
pkb = make([]byte, schnorr.PubKeyBytesLen)
upkb := ToUchar(pkb)
var parity Cint
pub = NewXPublicKey()
sec = &Sec{}
for {
if _, err = rand.Read(skb); chk.E(err) {
return
}
uskb := ToUchar(skb)
if res := C.secp256k1_keypair_create(ctx, &sec.Key, uskb); res != 1 {
err = errorf.E("failed to create secp256k1 keypair")
continue
}
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key)
C.secp256k1_xonly_pubkey_serialize(ctx, upkb, pub.Key)
break
}
return
}
// Negate inverts a secret key so an odd prefix bit becomes even and vice versa.
func Negate(uskb []byte) { C.secp256k1_ec_seckey_negate(ctx, ToUchar(uskb)) }
type ECPub struct {
Key ECPubKey
}
// ECPubFromSchnorrBytes converts a BIP-340 public key to its even standard 33 byte encoding.
//
// This function is for the purpose of getting a key to do ECDH from an x-only key.
func ECPubFromSchnorrBytes(xkb []byte) (pub *ECPub, err error) {
if err = AssertLen(xkb, schnorr.PubKeyBytesLen, "pubkey"); chk.E(err) {
return
}
pub = &ECPub{}
p := append([]byte{0}, xkb...)
if C.secp256k1_ec_pubkey_parse(
ctx, &pub.Key, ToUchar(p),
secp256k1.PubKeyBytesLenCompressed,
) != 1 {
err = errorf.E("failed to parse pubkey from %0x", p)
log.I.S(pub)
return
}
return
}
// // ECPubFromBytes parses a pubkey from 33 bytes to the bitcoin-core/secp256k1 struct.
// func ECPubFromBytes(pkb []byte) (pub *ECPub, err error) {
// if err = AssertLen(pkb, secp256k1.PubKeyBytesLenCompressed, "pubkey"); chk.E(err) {
// return
// }
// pub = &ECPub{}
// if C.secp256k1_ec_pubkey_parse(ctx, &pub.Key, ToUchar(pkb),
// secp256k1.PubKeyBytesLenCompressed) != 1 {
// err = errorf.E("failed to parse pubkey from %0x", pkb)
// log.I.S(pub)
// return
// }
// return
// }
// Pub is a schnorr BIP-340 public key.
type Pub struct {
Key PubKey
}
// PubFromBytes creates a public key from raw bytes.
func PubFromBytes(pk []byte) (pub *Pub, err error) {
if err = AssertLen(pk, schnorr.PubKeyBytesLen, "pubkey"); chk.E(err) {
return
}
pub = new(Pub)
if C.secp256k1_xonly_pubkey_parse(ctx, &pub.Key, ToUchar(pk)) != 1 {
err = errorf.E("failed to parse pubkey from %0x", pk)
return
}
return
}
// PubB returns the contained public key as bytes.
func (p *Pub) PubB() (b []byte) {
b = make([]byte, schnorr.PubKeyBytesLen)
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(b), &p.Key)
return
}
// Pub returns the public key as a PubKey.
func (p *Pub) Pub() *PubKey { return &p.Key }
// ToBytes returns the contained public key as bytes.
func (p *Pub) ToBytes() (b []byte, err error) {
b = make([]byte, schnorr.PubKeyBytesLen)
if C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(b), p.Pub()) != 1 {
err = errorf.E("pubkey serialize failed")
return
}
return
}
// Sign a message and return a schnorr BIP-340 64 byte signature.
func Sign(msg *Uchar, sk *SecKey) (sig []byte, err error) {
sig = make([]byte, schnorr.SignatureSize)
c := CreateRandomContext()
if C.secp256k1_schnorrsig_sign32(
c, ToUchar(sig), msg, sk,
GetRandom(),
) != 1 {
err = errorf.E("failed to sign message")
return
}
return
}
// SignFromBytes Signs a message using a provided secret key and message as raw bytes.
func SignFromBytes(msg, sk []byte) (sig []byte, err error) {
var umsg *Uchar
if umsg, err = Msg(msg); chk.E(err) {
return
}
var sec *Sec
if sec, err = SecFromBytes(sk); chk.E(err) {
return
}
return Sign(umsg, sec.Sec())
}
// Msg checks that a message hash is correct, and converts it for use with a Signer.
func Msg(b []byte) (id *Uchar, err error) {
if err = AssertLen(b, sha256.Size, "id"); chk.E(err) {
return
}
id = ToUchar(b)
return
}
// Sig checks that a signature bytes is correct, and converts it for use with a Signer.
func Sig(b []byte) (sig *Uchar, err error) {
if err = AssertLen(b, schnorr.SignatureSize, "sig"); chk.E(err) {
return
}
sig = ToUchar(b)
return
}
// Verify a message signature matches the provided PubKey.
func Verify(msg, sig *Uchar, pk *PubKey) (valid bool) {
return C.secp256k1_schnorrsig_verify(ctx, sig, msg, 32, pk) == 1
}
// VerifyFromBytes a signature from the raw bytes of the message hash, signature and public key
func VerifyFromBytes(msg, sig, pk []byte) (err error) {
var umsg, usig *Uchar
if umsg, err = Msg(msg); chk.E(err) {
return
}
if usig, err = Sig(sig); chk.E(err) {
return
}
var pub *Pub
if pub, err = PubFromBytes(pk); chk.E(err) {
return
}
valid := Verify(umsg, usig, pub.Pub())
if !valid {
err = errorf.E("failed to verify signature")
}
return
}
// Zero wipes the memory of a SecKey by overwriting it three times with random data and then
// zeroing it.
func Zero(sk *SecKey) {
b := (*[96]byte)(unsafe.Pointer(sk))[:96]
for range 3 {
rand.Read(b)
// reverse the order and negate
lb := len(b)
l := lb / 2
for j := range l {
b[j] = ^b[lb-1-j]
}
}
for i := range b {
b[i] = 0
}
}
// Keygen is an implementation of a key miner designed to be used for vanity key generation with X-only BIP-340 keys.
type Keygen struct {
secBytes, comprPubBytes []byte
secUchar, cmprPubUchar *Uchar
sec *Sec
// ecpub *PublicKey
cmprLen C.size_t
}
// NewKeygen allocates the required buffers for deriving a key. This should only be done once to avoid garbage and make
// the key mining as fast as possible.
//
// This allocates everything and creates proper CGO variables needed for the generate function so they only need to be
// allocated once per thread.
func NewKeygen() (k *Keygen) {
k = new(Keygen)
k.cmprLen = C.size_t(secp256k1.PubKeyBytesLenCompressed)
k.secBytes = make([]byte, secp256k1.SecKeyBytesLen)
k.comprPubBytes = make([]byte, secp256k1.PubKeyBytesLenCompressed)
k.secUchar = ToUchar(k.secBytes)
k.cmprPubUchar = ToUchar(k.comprPubBytes)
k.sec = &Sec{}
// k.ecpub = NewPublicKey()
return
}
// Generate takes a pair of buffers for the secret and ec pubkey bytes and gathers new entropy and returns a valid
// secret key and the compressed pubkey bytes for the partial collision search.
//
// The first byte of pubBytes must be sliced off before deriving the hex/Bech32 forms of the nostr public key.
func (k *Keygen) Generate() (
sec *Sec,
pub *XPublicKey,
pubBytes []byte,
err error,
) {
if _, err = rand.Read(k.secBytes); chk.E(err) {
return
}
if res := C.secp256k1_keypair_create(
ctx, &k.sec.Key, k.secUchar,
); res != 1 {
err = errorf.E("failed to create secp256k1 keypair")
return
}
var parity Cint
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key)
// C.secp256k1_keypair_pub(ctx, k.ecpub.Key, &k.sec.Key)
// C.secp256k1_ec_pubkey_serialize(ctx, k.cmprPubUchar, &k.cmprLen, k.ecpub.Key,
// C.SECP256K1_EC_COMPRESSED)
// pubBytes = k.comprPubBytes
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(pubBytes), pub.Key)
// pubBytes =
return
}

View File

@@ -0,0 +1,76 @@
//go:build cgo
package p256k_test
// func TestVerify(t *testing.T) {
// evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
// for scanner.Scan() {
// var valid bool
// b := scanner.Bytes()
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// } else {
// if valid, err = ev.Verify(); chk.E(err) || !valid {
// t.Errorf("btcec: invalid signature\n%s", b)
// continue
// }
// }
// id := ev.GetIDBytes()
// if len(id) != sha256.Size {
// t.Errorf("id should be 32 bytes, got %d", len(id))
// continue
// }
// if err = p256k.VerifyFromBytes(id, ev.Sig, ev.Pubkey); chk.E(err) {
// t.Error(err)
// continue
// }
// evs = append(evs, ev)
// }
// }
// func TestSign(t *testing.T) {
// evs := make([]*event.E, 0, 10000)
// scanner := bufio.NewScanner(bytes.NewBuffer(examples.Cache))
// buf := make([]byte, 1_000_000)
// scanner.Buffer(buf, len(buf))
// var err error
// var sec1 *p256k.Sec
// var pub1 *p256k.XPublicKey
// var pb []byte
// if _, pb, sec1, pub1, err = p256k.Generate(); chk.E(err) {
// t.Fatal(err)
// }
// for scanner.Scan() {
// b := scanner.Bytes()
// ev := event.New()
// if _, err = ev.Unmarshal(b); chk.E(err) {
// t.Errorf("failed to marshal\n%s", b)
// }
// evs = append(evs, ev)
// }
// sig := make([]byte, schnorr.SignatureSize)
// for _, ev := range evs {
// ev.Pubkey = pb
// var uid *p256k.Uchar
// if uid, err = p256k.Msg(ev.GetIDBytes()); chk.E(err) {
// t.Fatal(err)
// }
// if sig, err = p256k.Sign(uid, sec1.Sec()); chk.E(err) {
// t.Fatal(err)
// }
// ev.Sig = sig
// var usig *p256k.Uchar
// if usig, err = p256k.Sig(sig); chk.E(err) {
// t.Fatal(err)
// }
// if !p256k.Verify(uid, usig, pub1.Key) {
// t.Errorf("invalid signature")
// }
// }
// p256k.Zero(&sec1.Key)
// }