Decompose handle-event.go into DDD domain services (v0.36.15)
Some checks failed
Go / build-and-release (push) Has been cancelled

Major refactoring of event handling into clean, testable domain services:

- Add pkg/event/validation: JSON hex validation, signature verification,
  timestamp bounds, NIP-70 protected tag validation
- Add pkg/event/authorization: Policy and ACL authorization decisions,
  auth challenge handling, access level determination
- Add pkg/event/routing: Event router registry with ephemeral and delete
  handlers, kind-based dispatch
- Add pkg/event/processing: Event persistence, delivery to subscribers,
  and post-save hooks (ACL reconfig, sync, relay groups)
- Reduce handle-event.go from 783 to 296 lines (62% reduction)
- Add comprehensive unit tests for all new domain services
- Refactor database tests to use shared TestMain setup
- Fix blossom URL test expectations (missing "/" separator)
- Add go-memory-optimization skill and analysis documentation
- Update DDD_ANALYSIS.md to reflect completed decomposition

Files modified:
- app/handle-event.go: Slim orchestrator using domain services
- app/server.go: Service initialization and interface wrappers
- app/handle-event-types.go: Shared types (OkHelper, result types)
- pkg/event/validation/*: New validation service package
- pkg/event/authorization/*: New authorization service package
- pkg/event/routing/*: New routing service package
- pkg/event/processing/*: New processing service package
- pkg/database/*_test.go: Refactored to shared TestMain
- pkg/blossom/http_test.go: Fixed URL format expectations

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2025-12-25 05:30:07 +01:00
parent 3e0a94a053
commit 24383ef1f4
42 changed files with 4791 additions and 2118 deletions

View File

@@ -0,0 +1,594 @@
# Go Memory Optimization Patterns
Detailed code examples and patterns for memory-efficient Go programming.
## Buffer Pool Implementations
### Tiered Buffer Pool
For workloads with varying buffer sizes:
```go
type TieredPool struct {
small sync.Pool // 1KB
medium sync.Pool // 16KB
large sync.Pool // 256KB
}
func NewTieredPool() *TieredPool {
return &TieredPool{
small: sync.Pool{New: func() interface{} { return make([]byte, 1024) }},
medium: sync.Pool{New: func() interface{} { return make([]byte, 16384) }},
large: sync.Pool{New: func() interface{} { return make([]byte, 262144) }},
}
}
func (p *TieredPool) Get(size int) []byte {
switch {
case size <= 1024:
return p.small.Get().([]byte)[:size]
case size <= 16384:
return p.medium.Get().([]byte)[:size]
case size <= 262144:
return p.large.Get().([]byte)[:size]
default:
return make([]byte, size) // too large for pool
}
}
func (p *TieredPool) Put(b []byte) {
switch cap(b) {
case 1024:
p.small.Put(b[:cap(b)])
case 16384:
p.medium.Put(b[:cap(b)])
case 262144:
p.large.Put(b[:cap(b)])
}
// Non-standard sizes are not pooled
}
```
### bytes.Buffer Pool
```go
var bufferPool = sync.Pool{
New: func() interface{} {
return new(bytes.Buffer)
},
}
func GetBuffer() *bytes.Buffer {
return bufferPool.Get().(*bytes.Buffer)
}
func PutBuffer(b *bytes.Buffer) {
b.Reset()
bufferPool.Put(b)
}
// Usage
func processData(data []byte) string {
buf := GetBuffer()
defer PutBuffer(buf)
buf.WriteString("prefix:")
buf.Write(data)
buf.WriteString(":suffix")
return buf.String() // allocates new string
}
```
## Zero-Allocation JSON Encoding
### Pre-allocated Encoder
```go
type JSONEncoder struct {
buf []byte
scratch [64]byte // for number formatting
}
func (e *JSONEncoder) Reset() {
e.buf = e.buf[:0]
}
func (e *JSONEncoder) Bytes() []byte {
return e.buf
}
func (e *JSONEncoder) WriteString(s string) {
e.buf = append(e.buf, '"')
for i := 0; i < len(s); i++ {
c := s[i]
switch c {
case '"':
e.buf = append(e.buf, '\\', '"')
case '\\':
e.buf = append(e.buf, '\\', '\\')
case '\n':
e.buf = append(e.buf, '\\', 'n')
case '\r':
e.buf = append(e.buf, '\\', 'r')
case '\t':
e.buf = append(e.buf, '\\', 't')
default:
if c < 0x20 {
e.buf = append(e.buf, '\\', 'u', '0', '0',
hexDigits[c>>4], hexDigits[c&0xf])
} else {
e.buf = append(e.buf, c)
}
}
}
e.buf = append(e.buf, '"')
}
func (e *JSONEncoder) WriteInt(n int64) {
e.buf = strconv.AppendInt(e.buf, n, 10)
}
func (e *JSONEncoder) WriteHex(b []byte) {
e.buf = append(e.buf, '"')
for _, v := range b {
e.buf = append(e.buf, hexDigits[v>>4], hexDigits[v&0xf])
}
e.buf = append(e.buf, '"')
}
var hexDigits = [16]byte{'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}
```
### Append-Based Encoding
```go
// AppendJSON appends JSON representation to dst, returning extended slice
func (ev *Event) AppendJSON(dst []byte) []byte {
dst = append(dst, `{"id":"`...)
dst = appendHex(dst, ev.ID[:])
dst = append(dst, `","pubkey":"`...)
dst = appendHex(dst, ev.Pubkey[:])
dst = append(dst, `","created_at":`...)
dst = strconv.AppendInt(dst, ev.CreatedAt, 10)
dst = append(dst, `,"kind":`...)
dst = strconv.AppendInt(dst, int64(ev.Kind), 10)
dst = append(dst, `,"content":`...)
dst = appendJSONString(dst, ev.Content)
dst = append(dst, '}')
return dst
}
// Usage with pre-allocated buffer
func encodeEvents(events []Event) []byte {
// Estimate size: ~500 bytes per event
buf := make([]byte, 0, len(events)*500)
buf = append(buf, '[')
for i, ev := range events {
if i > 0 {
buf = append(buf, ',')
}
buf = ev.AppendJSON(buf)
}
buf = append(buf, ']')
return buf
}
```
## Memory-Efficient String Building
### strings.Builder with Preallocation
```go
func buildQuery(parts []string) string {
// Calculate total length
total := len(parts) - 1 // for separators
for _, p := range parts {
total += len(p)
}
var b strings.Builder
b.Grow(total) // single allocation
for i, p := range parts {
if i > 0 {
b.WriteByte(',')
}
b.WriteString(p)
}
return b.String()
}
```
### Avoiding String Concatenation
```go
// BAD: O(n^2) allocations
func buildPath(parts []string) string {
result := ""
for _, p := range parts {
result += "/" + p // new allocation each iteration
}
return result
}
// GOOD: O(n) with single allocation
func buildPath(parts []string) string {
if len(parts) == 0 {
return ""
}
n := len(parts) // for slashes
for _, p := range parts {
n += len(p)
}
b := make([]byte, 0, n)
for _, p := range parts {
b = append(b, '/')
b = append(b, p...)
}
return string(b)
}
```
### Unsafe String/Byte Conversion
```go
import "unsafe"
// Zero-allocation string to []byte (read-only!)
func unsafeBytes(s string) []byte {
return unsafe.Slice(unsafe.StringData(s), len(s))
}
// Zero-allocation []byte to string (b must not be modified!)
func unsafeString(b []byte) string {
return unsafe.String(unsafe.SliceData(b), len(b))
}
// Use when:
// 1. Converting string for read-only operations (hashing, comparison)
// 2. Returning []byte from buffer that won't be modified
// 3. Performance-critical paths with careful ownership management
```
## Slice Capacity Management
### Append Growth Patterns
```go
// Slice growth: 0 -> 1 -> 2 -> 4 -> 8 -> 16 -> 32 -> 64 -> ...
// After 1024: grows by 25% each time
// BAD: Unknown final size causes multiple reallocations
func collectItems() []Item {
var items []Item
for item := range source {
items = append(items, item) // may reallocate multiple times
}
return items
}
// GOOD: Preallocate when size is known
func collectItems(n int) []Item {
items := make([]Item, 0, n)
for item := range source {
items = append(items, item)
}
return items
}
// GOOD: Use slice header trick for uncertain sizes
func collectItems() []Item {
items := make([]Item, 0, 32) // reasonable initial capacity
for item := range source {
items = append(items, item)
}
// Trim excess capacity if items will be long-lived
return items[:len(items):len(items)]
}
```
### Slice Recycling
```go
// Reuse slice backing array
func processInBatches(items []Item, batchSize int) {
batch := make([]Item, 0, batchSize)
for i, item := range items {
batch = append(batch, item)
if len(batch) == batchSize || i == len(items)-1 {
processBatch(batch)
batch = batch[:0] // reset length, keep capacity
}
}
}
```
### Preventing Slice Memory Leaks
```go
// BAD: Subslice keeps entire backing array alive
func getFirst10(data []byte) []byte {
return data[:10] // entire data array stays in memory
}
// GOOD: Copy to release original array
func getFirst10(data []byte) []byte {
result := make([]byte, 10)
copy(result, data[:10])
return result
}
// Alternative: explicit capacity limit
func getFirst10(data []byte) []byte {
return data[:10:10] // cap=10, can't accidentally grow into original
}
```
## Struct Layout Optimization
### Field Ordering for Alignment
```go
// BAD: 32 bytes due to padding
type BadLayout struct {
a bool // 1 byte + 7 padding
b int64 // 8 bytes
c bool // 1 byte + 7 padding
d int64 // 8 bytes
}
// GOOD: 24 bytes with optimal ordering
type GoodLayout struct {
b int64 // 8 bytes
d int64 // 8 bytes
a bool // 1 byte
c bool // 1 byte + 6 padding
}
// Rule: Order fields from largest to smallest alignment
```
### Checking Struct Size
```go
func init() {
// Compile-time size assertions
var _ [24]byte = [unsafe.Sizeof(GoodLayout{})]byte{}
// Or runtime check
if unsafe.Sizeof(Event{}) > 256 {
panic("Event struct too large")
}
}
```
### Cache-Line Optimization
```go
const CacheLineSize = 64
// Pad struct to prevent false sharing in concurrent access
type PaddedCounter struct {
value uint64
_ [CacheLineSize - 8]byte // padding
}
type Counters struct {
reads PaddedCounter
writes PaddedCounter
// Each counter on separate cache line
}
```
## Object Reuse Patterns
### Reset Methods
```go
type Request struct {
Method string
Path string
Headers map[string]string
Body []byte
}
func (r *Request) Reset() {
r.Method = ""
r.Path = ""
// Reuse map, just clear entries
for k := range r.Headers {
delete(r.Headers, k)
}
r.Body = r.Body[:0]
}
var requestPool = sync.Pool{
New: func() interface{} {
return &Request{
Headers: make(map[string]string, 8),
Body: make([]byte, 0, 1024),
}
},
}
```
### Flyweight Pattern
```go
// Share immutable parts across many instances
type Event struct {
kind *Kind // shared, immutable
content string
}
type Kind struct {
ID int
Name string
Description string
}
var kindRegistry = map[int]*Kind{
0: {0, "set_metadata", "User metadata"},
1: {1, "text_note", "Text note"},
// ... pre-allocated, shared across all events
}
func NewEvent(kindID int, content string) Event {
return Event{
kind: kindRegistry[kindID], // no allocation
content: content,
}
}
```
## Channel Patterns for Memory Efficiency
### Buffered Channels as Object Pools
```go
type SimplePool struct {
pool chan *Buffer
}
func NewSimplePool(size int) *SimplePool {
p := &SimplePool{pool: make(chan *Buffer, size)}
for i := 0; i < size; i++ {
p.pool <- NewBuffer()
}
return p
}
func (p *SimplePool) Get() *Buffer {
select {
case b := <-p.pool:
return b
default:
return NewBuffer() // pool empty, allocate new
}
}
func (p *SimplePool) Put(b *Buffer) {
select {
case p.pool <- b:
default:
// pool full, let GC collect
}
}
```
### Batch Processing Channels
```go
// Reduce channel overhead by batching
func batchProcessor(input <-chan Item, batchSize int) <-chan []Item {
output := make(chan []Item)
go func() {
defer close(output)
batch := make([]Item, 0, batchSize)
for item := range input {
batch = append(batch, item)
if len(batch) == batchSize {
output <- batch
batch = make([]Item, 0, batchSize)
}
}
if len(batch) > 0 {
output <- batch
}
}()
return output
}
```
## Advanced Techniques
### Manual Memory Management with mmap
```go
import "golang.org/x/sys/unix"
// Allocate memory outside Go heap
func allocateMmap(size int) ([]byte, error) {
data, err := unix.Mmap(-1, 0, size,
unix.PROT_READ|unix.PROT_WRITE,
unix.MAP_ANON|unix.MAP_PRIVATE)
return data, err
}
func freeMmap(data []byte) error {
return unix.Munmap(data)
}
```
### Inline Arrays in Structs
```go
// Small-size optimization: inline for small, pointer for large
type SmallVec struct {
len int
small [8]int // inline storage for ≤8 elements
large []int // heap storage for >8 elements
}
func (v *SmallVec) Append(x int) {
if v.large != nil {
v.large = append(v.large, x)
v.len++
return
}
if v.len < 8 {
v.small[v.len] = x
v.len++
return
}
// Spill to heap
v.large = make([]int, 9, 16)
copy(v.large, v.small[:])
v.large[8] = x
v.len++
}
```
### Bump Allocator
```go
// Simple arena-style allocator for batch allocations
type BumpAllocator struct {
buf []byte
off int
}
func NewBumpAllocator(size int) *BumpAllocator {
return &BumpAllocator{buf: make([]byte, size)}
}
func (a *BumpAllocator) Alloc(size int) []byte {
if a.off+size > len(a.buf) {
panic("bump allocator exhausted")
}
b := a.buf[a.off : a.off+size]
a.off += size
return b
}
func (a *BumpAllocator) Reset() {
a.off = 0
}
// Usage: allocate many small objects, reset all at once
func processBatch(items []Item) {
arena := NewBumpAllocator(1 << 20) // 1MB
defer arena.Reset()
for _, item := range items {
buf := arena.Alloc(item.Size())
item.Serialize(buf)
}
}
```