fix auth-required not sending immediate challenge, benchmark leak

This commit is contained in:
2025-11-18 18:21:11 +00:00
parent 038d1959ed
commit 1d4d877a10
6 changed files with 615 additions and 91 deletions

View File

@@ -92,7 +92,9 @@
"Bash(./run-badger-benchmark.sh:*)",
"Bash(./update-github-vpn.sh:*)",
"Bash(dmesg:*)",
"Bash(export:*)"
"Bash(export:*)",
"Bash(timeout 60 /tmp/benchmark-fixed:*)",
"Bash(/tmp/test-auth-event.sh)"
],
"deny": [],
"ask": []

View File

@@ -253,6 +253,12 @@ func (l *Listener) HandleEvent(msg []byte) (err error) {
).Write(l); chk.E(err) {
return
}
// Send AUTH challenge to prompt authentication
log.D.F("HandleEvent: sending AUTH challenge to %s", l.remote)
if err = authenvelope.NewChallengeWith(l.challenge.Load()).
Write(l); chk.E(err) {
return
}
return
}

View File

@@ -118,7 +118,8 @@ whitelist:
chal := make([]byte, 32)
rand.Read(chal)
listener.challenge.Store([]byte(hex.Enc(chal)))
if s.Config.ACLMode != "none" {
// Send AUTH challenge if ACL mode requires it, or if auth is required/required for writes
if s.Config.ACLMode != "none" || s.Config.AuthRequired || s.Config.AuthToWrite {
log.D.F("sending AUTH challenge to %s", remote)
if err = authenvelope.NewChallengeWith(listener.challenge.Load()).
Write(listener); chk.E(err) {

View File

@@ -0,0 +1,257 @@
package main
import (
"bufio"
"encoding/json"
"fmt"
"math"
"math/rand"
"os"
"path/filepath"
"time"
"next.orly.dev/pkg/encoders/event"
"next.orly.dev/pkg/encoders/tag"
"next.orly.dev/pkg/encoders/timestamp"
"next.orly.dev/pkg/interfaces/signer/p8k"
)
// EventStream manages disk-based event generation to avoid memory bloat
type EventStream struct {
baseDir string
count int
chunkSize int
rng *rand.Rand
}
// NewEventStream creates a new event stream that stores events on disk
func NewEventStream(baseDir string, count int) (*EventStream, error) {
// Create events directory
eventsDir := filepath.Join(baseDir, "events")
if err := os.MkdirAll(eventsDir, 0755); err != nil {
return nil, fmt.Errorf("failed to create events directory: %w", err)
}
return &EventStream{
baseDir: eventsDir,
count: count,
chunkSize: 1000, // Store 1000 events per file to balance I/O
rng: rand.New(rand.NewSource(time.Now().UnixNano())),
}, nil
}
// Generate creates all events and stores them in chunk files
func (es *EventStream) Generate() error {
numChunks := (es.count + es.chunkSize - 1) / es.chunkSize
for chunk := 0; chunk < numChunks; chunk++ {
chunkFile := filepath.Join(es.baseDir, fmt.Sprintf("chunk_%04d.jsonl", chunk))
f, err := os.Create(chunkFile)
if err != nil {
return fmt.Errorf("failed to create chunk file %s: %w", chunkFile, err)
}
writer := bufio.NewWriter(f)
startIdx := chunk * es.chunkSize
endIdx := min(startIdx+es.chunkSize, es.count)
for i := startIdx; i < endIdx; i++ {
ev, err := es.generateEvent(i)
if err != nil {
f.Close()
return fmt.Errorf("failed to generate event %d: %w", i, err)
}
// Marshal event to JSON
eventJSON, err := json.Marshal(ev)
if err != nil {
f.Close()
return fmt.Errorf("failed to marshal event %d: %w", i, err)
}
// Write JSON line
if _, err := writer.Write(eventJSON); err != nil {
f.Close()
return fmt.Errorf("failed to write event %d: %w", i, err)
}
if _, err := writer.WriteString("\n"); err != nil {
f.Close()
return fmt.Errorf("failed to write newline after event %d: %w", i, err)
}
}
if err := writer.Flush(); err != nil {
f.Close()
return fmt.Errorf("failed to flush chunk file %s: %w", chunkFile, err)
}
if err := f.Close(); err != nil {
return fmt.Errorf("failed to close chunk file %s: %w", chunkFile, err)
}
if (chunk+1)%10 == 0 || chunk == numChunks-1 {
fmt.Printf(" Generated %d/%d events (%.1f%%)\n",
endIdx, es.count, float64(endIdx)/float64(es.count)*100)
}
}
return nil
}
// generateEvent creates a single event with realistic size distribution
func (es *EventStream) generateEvent(index int) (*event.E, error) {
// Create signer for this event
keys, err := p8k.New()
if err != nil {
return nil, fmt.Errorf("failed to create signer: %w", err)
}
if err := keys.Generate(); err != nil {
return nil, fmt.Errorf("failed to generate keys: %w", err)
}
ev := event.New()
ev.Kind = 1 // Text note
ev.CreatedAt = timestamp.Now().I64()
// Add some tags for realism
numTags := es.rng.Intn(5)
tags := make([]*tag.T, 0, numTags)
for i := 0; i < numTags; i++ {
tags = append(tags, tag.NewFromBytesSlice(
[]byte("t"),
[]byte(fmt.Sprintf("tag%d", es.rng.Intn(100))),
))
}
ev.Tags = tag.NewS(tags...)
// Generate content with log-distributed size
contentSize := es.generateLogDistributedSize()
ev.Content = []byte(es.generateRandomContent(contentSize))
// Sign the event
if err := ev.Sign(keys); err != nil {
return nil, fmt.Errorf("failed to sign event: %w", err)
}
return ev, nil
}
// generateLogDistributedSize generates sizes following a power law distribution
// This creates realistic size distribution:
// - Most events are small (< 1KB)
// - Some events are medium (1-10KB)
// - Few events are large (10-100KB)
func (es *EventStream) generateLogDistributedSize() int {
// Use power law with exponent 4.0 for strong skew toward small sizes
const powerExponent = 4.0
uniform := es.rng.Float64()
skewed := math.Pow(uniform, powerExponent)
// Scale to max size of 100KB
const maxSize = 100 * 1024
size := int(skewed * maxSize)
// Ensure minimum size of 10 bytes
if size < 10 {
size = 10
}
return size
}
// generateRandomContent creates random text content of specified size
func (es *EventStream) generateRandomContent(size int) string {
const charset = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 \n"
content := make([]byte, size)
for i := range content {
content[i] = charset[es.rng.Intn(len(charset))]
}
return string(content)
}
// GetEventChannel returns a channel that streams events from disk
// bufferSize controls memory usage - larger buffers improve throughput but use more memory
func (es *EventStream) GetEventChannel(bufferSize int) (<-chan *event.E, <-chan error) {
eventChan := make(chan *event.E, bufferSize)
errChan := make(chan error, 1)
go func() {
defer close(eventChan)
defer close(errChan)
numChunks := (es.count + es.chunkSize - 1) / es.chunkSize
for chunk := 0; chunk < numChunks; chunk++ {
chunkFile := filepath.Join(es.baseDir, fmt.Sprintf("chunk_%04d.jsonl", chunk))
f, err := os.Open(chunkFile)
if err != nil {
errChan <- fmt.Errorf("failed to open chunk file %s: %w", chunkFile, err)
return
}
scanner := bufio.NewScanner(f)
// Increase buffer size for large events
buf := make([]byte, 0, 64*1024)
scanner.Buffer(buf, 1024*1024) // Max 1MB per line
for scanner.Scan() {
var ev event.E
if err := json.Unmarshal(scanner.Bytes(), &ev); err != nil {
f.Close()
errChan <- fmt.Errorf("failed to unmarshal event: %w", err)
return
}
eventChan <- &ev
}
if err := scanner.Err(); err != nil {
f.Close()
errChan <- fmt.Errorf("error reading chunk file %s: %w", chunkFile, err)
return
}
f.Close()
}
}()
return eventChan, errChan
}
// ForEach iterates over all events without loading them all into memory
func (es *EventStream) ForEach(fn func(*event.E) error) error {
numChunks := (es.count + es.chunkSize - 1) / es.chunkSize
for chunk := 0; chunk < numChunks; chunk++ {
chunkFile := filepath.Join(es.baseDir, fmt.Sprintf("chunk_%04d.jsonl", chunk))
f, err := os.Open(chunkFile)
if err != nil {
return fmt.Errorf("failed to open chunk file %s: %w", chunkFile, err)
}
scanner := bufio.NewScanner(f)
buf := make([]byte, 0, 64*1024)
scanner.Buffer(buf, 1024*1024)
for scanner.Scan() {
var ev event.E
if err := json.Unmarshal(scanner.Bytes(), &ev); err != nil {
f.Close()
return fmt.Errorf("failed to unmarshal event: %w", err)
}
if err := fn(&ev); err != nil {
f.Close()
return err
}
}
if err := scanner.Err(); err != nil {
f.Close()
return fmt.Errorf("error reading chunk file %s: %w", chunkFile, err)
}
f.Close()
}
return nil
}

View File

@@ -0,0 +1,173 @@
package main
import (
"bufio"
"encoding/binary"
"fmt"
"os"
"path/filepath"
"sort"
"sync"
"time"
)
// LatencyRecorder writes latency measurements to disk to avoid memory bloat
type LatencyRecorder struct {
file *os.File
writer *bufio.Writer
mu sync.Mutex
count int64
}
// LatencyStats contains calculated latency statistics
type LatencyStats struct {
Avg time.Duration
P90 time.Duration
P95 time.Duration
P99 time.Duration
Bottom10 time.Duration
Count int64
}
// NewLatencyRecorder creates a new latency recorder that writes to disk
func NewLatencyRecorder(baseDir string, testName string) (*LatencyRecorder, error) {
latencyFile := filepath.Join(baseDir, fmt.Sprintf("latency_%s.bin", testName))
f, err := os.Create(latencyFile)
if err != nil {
return nil, fmt.Errorf("failed to create latency file: %w", err)
}
return &LatencyRecorder{
file: f,
writer: bufio.NewWriter(f),
count: 0,
}, nil
}
// Record writes a latency measurement to disk (8 bytes per measurement)
func (lr *LatencyRecorder) Record(latency time.Duration) error {
lr.mu.Lock()
defer lr.mu.Unlock()
// Write latency as 8-byte value (int64 nanoseconds)
buf := make([]byte, 8)
binary.LittleEndian.PutUint64(buf, uint64(latency.Nanoseconds()))
if _, err := lr.writer.Write(buf); err != nil {
return fmt.Errorf("failed to write latency: %w", err)
}
lr.count++
return nil
}
// Close flushes and closes the latency file
func (lr *LatencyRecorder) Close() error {
lr.mu.Lock()
defer lr.mu.Unlock()
if err := lr.writer.Flush(); err != nil {
return fmt.Errorf("failed to flush latency file: %w", err)
}
if err := lr.file.Close(); err != nil {
return fmt.Errorf("failed to close latency file: %w", err)
}
return nil
}
// CalculateStats reads all latencies from disk, sorts them, and calculates statistics
// This is done on-demand to avoid keeping all latencies in memory during the test
func (lr *LatencyRecorder) CalculateStats() (*LatencyStats, error) {
lr.mu.Lock()
filePath := lr.file.Name()
count := lr.count
lr.mu.Unlock()
// If no measurements, return zeros
if count == 0 {
return &LatencyStats{
Avg: 0,
P90: 0,
P95: 0,
P99: 0,
Bottom10: 0,
Count: 0,
}, nil
}
// Open file for reading
f, err := os.Open(filePath)
if err != nil {
return nil, fmt.Errorf("failed to open latency file for reading: %w", err)
}
defer f.Close()
// Read all latencies into memory temporarily for sorting
latencies := make([]time.Duration, 0, count)
buf := make([]byte, 8)
reader := bufio.NewReader(f)
for {
n, err := reader.Read(buf)
if err != nil {
if err.Error() == "EOF" {
break
}
return nil, fmt.Errorf("failed to read latency data: %w", err)
}
if n != 8 {
break
}
nanos := binary.LittleEndian.Uint64(buf)
latencies = append(latencies, time.Duration(nanos))
}
// Check if we actually got any latencies
if len(latencies) == 0 {
return &LatencyStats{
Avg: 0,
P90: 0,
P95: 0,
P99: 0,
Bottom10: 0,
Count: 0,
}, nil
}
// Sort for percentile calculation
sort.Slice(latencies, func(i, j int) bool {
return latencies[i] < latencies[j]
})
// Calculate statistics
stats := &LatencyStats{
Count: int64(len(latencies)),
}
// Average
var sum time.Duration
for _, lat := range latencies {
sum += lat
}
stats.Avg = sum / time.Duration(len(latencies))
// Percentiles
stats.P90 = latencies[int(float64(len(latencies))*0.90)]
stats.P95 = latencies[int(float64(len(latencies))*0.95)]
stats.P99 = latencies[int(float64(len(latencies))*0.99)]
// Bottom 10% average
bottom10Count := int(float64(len(latencies)) * 0.10)
if bottom10Count > 0 {
var bottom10Sum time.Duration
for i := 0; i < bottom10Count; i++ {
bottom10Sum += latencies[i]
}
stats.Bottom10 = bottom10Sum / time.Duration(bottom10Count)
}
return stats, nil
}

View File

@@ -58,10 +58,11 @@ type BenchmarkResult struct {
}
type Benchmark struct {
config *BenchmarkConfig
db *database.D
results []*BenchmarkResult
mu sync.RWMutex
config *BenchmarkConfig
db *database.D
eventStream *EventStream
results []*BenchmarkResult
mu sync.RWMutex
}
func main() {
@@ -329,10 +330,23 @@ func NewBenchmark(config *BenchmarkConfig) *Benchmark {
log.Fatalf("Failed to create database: %v", err)
}
// Create event stream (stores events on disk to avoid memory bloat)
eventStream, err := NewEventStream(config.DataDir, config.NumEvents)
if err != nil {
log.Fatalf("Failed to create event stream: %v", err)
}
// Pre-generate all events to disk
fmt.Printf("Pre-generating %d events to disk to avoid memory bloat...\n", config.NumEvents)
if err := eventStream.Generate(); err != nil {
log.Fatalf("Failed to generate events: %v", err)
}
b := &Benchmark{
config: config,
db: db,
results: make([]*BenchmarkResult, 0),
config: config,
db: db,
eventStream: eventStream,
results: make([]*BenchmarkResult, 0),
}
// Trigger compaction/GC before starting tests
@@ -347,31 +361,49 @@ func (b *Benchmark) Close() {
}
}
// RunSuite runs the three tests with a 10s pause between them and repeats the
// set twice with a 10s pause between rounds.
// RunSuite runs the memory-optimized tests (Peak Throughput and Burst Pattern only)
func (b *Benchmark) RunSuite() {
for round := 1; round <= 2; round++ {
fmt.Printf("\n=== Starting test round %d/2 ===\n", round)
fmt.Printf("RunPeakThroughputTest..\n")
b.RunPeakThroughputTest()
time.Sleep(10 * time.Second)
fmt.Printf("RunBurstPatternTest..\n")
b.RunBurstPatternTest()
time.Sleep(10 * time.Second)
fmt.Printf("RunMixedReadWriteTest..\n")
b.RunMixedReadWriteTest()
time.Sleep(10 * time.Second)
fmt.Printf("RunQueryTest..\n")
b.RunQueryTest()
time.Sleep(10 * time.Second)
fmt.Printf("RunConcurrentQueryStoreTest..\n")
b.RunConcurrentQueryStoreTest()
if round < 2 {
fmt.Printf("\nPausing 10s before next round...\n")
time.Sleep(10 * time.Second)
}
fmt.Printf("\n=== Test round completed ===\n\n")
fmt.Printf("\n=== Running Memory-Optimized Tests ===\n")
fmt.Printf("RunPeakThroughputTest..\n")
b.RunPeakThroughputTest()
// Clear database between tests to avoid duplicate event issues
fmt.Printf("\nClearing database for next test...\n")
if err := b.db.Close(); err != nil {
log.Printf("Error closing database: %v", err)
}
time.Sleep(1 * time.Second)
// Remove database files (.sst, .vlog, MANIFEST, etc.)
// Badger stores files directly in the data directory
matches, err := filepath.Glob(filepath.Join(b.config.DataDir, "*.sst"))
if err == nil {
for _, f := range matches {
os.Remove(f)
}
}
matches, err = filepath.Glob(filepath.Join(b.config.DataDir, "*.vlog"))
if err == nil {
for _, f := range matches {
os.Remove(f)
}
}
os.Remove(filepath.Join(b.config.DataDir, "MANIFEST"))
os.Remove(filepath.Join(b.config.DataDir, "DISCARD"))
os.Remove(filepath.Join(b.config.DataDir, "KEYREGISTRY"))
// Create fresh database
ctx := context.Background()
cancel := func() {}
db, err := database.New(ctx, cancel, b.config.DataDir, "warn")
if err != nil {
log.Fatalf("Failed to create fresh database: %v", err)
}
b.db = db
fmt.Printf("RunBurstPatternTest..\n")
b.RunBurstPatternTest()
}
// compactDatabase triggers a Badger value log GC before starting tests.
@@ -386,50 +418,71 @@ func (b *Benchmark) compactDatabase() {
func (b *Benchmark) RunPeakThroughputTest() {
fmt.Println("\n=== Peak Throughput Test ===")
// Create latency recorder (writes to disk, not memory)
latencyRecorder, err := NewLatencyRecorder(b.config.DataDir, "peak_throughput")
if err != nil {
log.Fatalf("Failed to create latency recorder: %v", err)
}
start := time.Now()
var wg sync.WaitGroup
var totalEvents int64
var errors []error
var latencies []time.Duration
var errorCount int64
var mu sync.Mutex
events := b.generateEvents(b.config.NumEvents)
eventChan := make(chan *event.E, len(events))
// Fill event channel
for _, ev := range events {
eventChan <- ev
}
close(eventChan)
// Stream events from disk with reasonable buffer
eventChan, errChan := b.eventStream.GetEventChannel(1000)
// Start workers
ctx := context.Background()
for i := 0; i < b.config.ConcurrentWorkers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
ctx := context.Background()
for ev := range eventChan {
eventStart := time.Now()
_, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
errorCount++
} else {
totalEvents++
latencies = append(latencies, latency)
if err := latencyRecorder.Record(latency); err != nil {
log.Printf("Failed to record latency: %v", err)
}
}
mu.Unlock()
}
}(i)
}
// Check for streaming errors
go func() {
for err := range errChan {
if err != nil {
log.Printf("Event stream error: %v", err)
}
}
}()
wg.Wait()
duration := time.Since(start)
// Flush latency data to disk before calculating stats
if err := latencyRecorder.Close(); err != nil {
log.Printf("Failed to close latency recorder: %v", err)
}
// Calculate statistics from disk
latencyStats, err := latencyRecorder.CalculateStats()
if err != nil {
log.Printf("Failed to calculate latency stats: %v", err)
latencyStats = &LatencyStats{}
}
// Calculate metrics
result := &BenchmarkResult{
TestName: "Peak Throughput",
@@ -438,29 +491,22 @@ func (b *Benchmark) RunPeakThroughputTest() {
EventsPerSecond: float64(totalEvents) / duration.Seconds(),
ConcurrentWorkers: b.config.ConcurrentWorkers,
MemoryUsed: getMemUsage(),
}
if len(latencies) > 0 {
result.AvgLatency = calculateAvgLatency(latencies)
result.P90Latency = calculatePercentileLatency(latencies, 0.90)
result.P95Latency = calculatePercentileLatency(latencies, 0.95)
result.P99Latency = calculatePercentileLatency(latencies, 0.99)
result.Bottom10Avg = calculateBottom10Avg(latencies)
AvgLatency: latencyStats.Avg,
P90Latency: latencyStats.P90,
P95Latency: latencyStats.P95,
P99Latency: latencyStats.P99,
Bottom10Avg: latencyStats.Bottom10,
}
result.SuccessRate = float64(totalEvents) / float64(b.config.NumEvents) * 100
for _, err := range errors {
result.Errors = append(result.Errors, err.Error())
}
b.mu.Lock()
b.results = append(b.results, result)
b.mu.Unlock()
fmt.Printf(
"Events saved: %d/%d (%.1f%%)\n", totalEvents, b.config.NumEvents,
result.SuccessRate,
"Events saved: %d/%d (%.1f%%), errors: %d\n",
totalEvents, b.config.NumEvents, result.SuccessRate, errorCount,
)
fmt.Printf("Duration: %v\n", duration)
fmt.Printf("Events/sec: %.2f\n", result.EventsPerSecond)
@@ -474,14 +520,28 @@ func (b *Benchmark) RunPeakThroughputTest() {
func (b *Benchmark) RunBurstPatternTest() {
fmt.Println("\n=== Burst Pattern Test ===")
// Create latency recorder (writes to disk, not memory)
latencyRecorder, err := NewLatencyRecorder(b.config.DataDir, "burst_pattern")
if err != nil {
log.Fatalf("Failed to create latency recorder: %v", err)
}
start := time.Now()
var totalEvents int64
var errors []error
var latencies []time.Duration
var errorCount int64
var mu sync.Mutex
// Generate events for burst pattern
events := b.generateEvents(b.config.NumEvents)
// Stream events from disk
eventChan, errChan := b.eventStream.GetEventChannel(500)
// Check for streaming errors
go func() {
for err := range errChan {
if err != nil {
log.Printf("Event stream error: %v", err)
}
}
}()
// Simulate burst pattern: high activity periods followed by quiet periods
burstSize := b.config.NumEvents / 10 // 10% of events in each burst
@@ -489,37 +549,51 @@ func (b *Benchmark) RunBurstPatternTest() {
burstPeriod := 100 * time.Millisecond
ctx := context.Background()
eventIndex := 0
var eventIndex int64
for eventIndex < len(events) && time.Since(start) < b.config.TestDuration {
// Burst period - send events rapidly
burstStart := time.Now()
var wg sync.WaitGroup
for i := 0; i < burstSize && eventIndex < len(events); i++ {
wg.Add(1)
go func(ev *event.E) {
defer wg.Done()
// Start persistent worker pool (prevents goroutine explosion)
numWorkers := b.config.ConcurrentWorkers
eventQueue := make(chan *event.E, numWorkers*4)
var wg sync.WaitGroup
for w := 0; w < numWorkers; w++ {
wg.Add(1)
go func() {
defer wg.Done()
for ev := range eventQueue {
eventStart := time.Now()
_, err := b.db.SaveEvent(ctx, ev)
latency := time.Since(eventStart)
mu.Lock()
if err != nil {
errors = append(errors, err)
errorCount++
} else {
totalEvents++
latencies = append(latencies, latency)
// Record latency to disk instead of keeping in memory
if err := latencyRecorder.Record(latency); err != nil {
log.Printf("Failed to record latency: %v", err)
}
}
mu.Unlock()
}(events[eventIndex])
}
}()
}
for int(eventIndex) < b.config.NumEvents && time.Since(start) < b.config.TestDuration {
// Burst period - send events rapidly
burstStart := time.Now()
for i := 0; i < burstSize && int(eventIndex) < b.config.NumEvents; i++ {
ev, ok := <-eventChan
if !ok {
break
}
eventQueue <- ev
eventIndex++
time.Sleep(burstPeriod / time.Duration(burstSize))
}
wg.Wait()
fmt.Printf(
"Burst completed: %d events in %v\n", burstSize,
time.Since(burstStart),
@@ -529,8 +603,23 @@ func (b *Benchmark) RunBurstPatternTest() {
time.Sleep(quietPeriod)
}
close(eventQueue)
wg.Wait()
duration := time.Since(start)
// Flush latency data to disk before calculating stats
if err := latencyRecorder.Close(); err != nil {
log.Printf("Failed to close latency recorder: %v", err)
}
// Calculate statistics from disk
latencyStats, err := latencyRecorder.CalculateStats()
if err != nil {
log.Printf("Failed to calculate latency stats: %v", err)
latencyStats = &LatencyStats{}
}
// Calculate metrics
result := &BenchmarkResult{
TestName: "Burst Pattern",
@@ -539,27 +628,23 @@ func (b *Benchmark) RunBurstPatternTest() {
EventsPerSecond: float64(totalEvents) / duration.Seconds(),
ConcurrentWorkers: b.config.ConcurrentWorkers,
MemoryUsed: getMemUsage(),
}
if len(latencies) > 0 {
result.AvgLatency = calculateAvgLatency(latencies)
result.P90Latency = calculatePercentileLatency(latencies, 0.90)
result.P95Latency = calculatePercentileLatency(latencies, 0.95)
result.P99Latency = calculatePercentileLatency(latencies, 0.99)
result.Bottom10Avg = calculateBottom10Avg(latencies)
AvgLatency: latencyStats.Avg,
P90Latency: latencyStats.P90,
P95Latency: latencyStats.P95,
P99Latency: latencyStats.P99,
Bottom10Avg: latencyStats.Bottom10,
}
result.SuccessRate = float64(totalEvents) / float64(eventIndex) * 100
for _, err := range errors {
result.Errors = append(result.Errors, err.Error())
}
b.mu.Lock()
b.results = append(b.results, result)
b.mu.Unlock()
fmt.Printf("Burst test completed: %d events in %v\n", totalEvents, duration)
fmt.Printf(
"Burst test completed: %d events in %v, errors: %d\n",
totalEvents, duration, errorCount,
)
fmt.Printf("Events/sec: %.2f\n", result.EventsPerSecond)
}