Files
moxa/interp/run.go
2020-10-27 11:24:04 +01:00

3197 lines
75 KiB
Go

package interp
//go:generate go run ../internal/cmd/genop/genop.go
import (
"fmt"
"go/constant"
"log"
"reflect"
"sync"
"unsafe"
)
// bltn type defines functions which run at CFG execution.
type bltn func(f *frame) bltn
// bltnGenerator type defines a builtin generator function.
type bltnGenerator func(n *node)
var builtin = [...]bltnGenerator{
aNop: nop,
aAddr: addr,
aAssign: assign,
aAdd: add,
aAddAssign: addAssign,
aAnd: and,
aAndAssign: andAssign,
aAndNot: andNot,
aAndNotAssign: andNotAssign,
aBitNot: bitNot,
aCall: call,
aCallSlice: call,
aCase: _case,
aCompositeLit: arrayLit,
aDec: dec,
aEqual: equal,
aGetFunc: getFunc,
aGreater: greater,
aGreaterEqual: greaterEqual,
aInc: inc,
aLand: land,
aLor: lor,
aLower: lower,
aLowerEqual: lowerEqual,
aMul: mul,
aMulAssign: mulAssign,
aNeg: neg,
aNot: not,
aNotEqual: notEqual,
aOr: or,
aOrAssign: orAssign,
aPos: pos,
aQuo: quo,
aQuoAssign: quoAssign,
aRange: _range,
aRecv: recv,
aRem: rem,
aRemAssign: remAssign,
aReturn: _return,
aSend: send,
aShl: shl,
aShlAssign: shlAssign,
aShr: shr,
aShrAssign: shrAssign,
aSlice: slice,
aSlice0: slice0,
aStar: deref,
aSub: sub,
aSubAssign: subAssign,
aTypeAssert: typeAssert,
aXor: xor,
aXorAssign: xorAssign,
}
type valueInterface struct {
node *node
value reflect.Value
}
var floatType, complexType reflect.Type
func init() {
floatType = reflect.ValueOf(0.0).Type()
complexType = reflect.ValueOf(complex(0, 0)).Type()
}
func (interp *Interpreter) run(n *node, cf *frame) {
if n == nil {
return
}
var f *frame
if cf == nil {
f = interp.frame
} else {
f = newFrame(cf, len(n.types), interp.runid())
}
interp.mutex.RLock()
c := reflect.ValueOf(interp.done)
interp.mutex.RUnlock()
f.mutex.Lock()
f.done = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: c}
f.mutex.Unlock()
for i, t := range n.types {
f.data[i] = reflect.New(t).Elem()
}
runCfg(n.start, f)
}
// Functions set to run during execution of CFG.
// runCfg executes a node AST by walking its CFG and running node builtin at each step.
func runCfg(n *node, f *frame) {
defer func() {
f.mutex.Lock()
f.recovered = recover()
for _, val := range f.deferred {
val[0].Call(val[1:])
}
if f.recovered != nil {
fmt.Println(n.cfgErrorf("panic"))
f.mutex.Unlock()
panic(f.recovered)
}
f.mutex.Unlock()
}()
for exec := n.exec; exec != nil && f.runid() == n.interp.runid(); {
exec = exec(f)
}
}
func typeAssertStatus(n *node) {
c0, c1 := n.child[0], n.child[1] // cO contains the input value, c1 the type to assert
value := genValue(c0) // input value
value1 := genValue(n.anc.child[1]) // returned status
rtype := c1.typ.rtype // type to assert
next := getExec(n.tnext)
switch {
case isInterfaceSrc(c1.typ):
typ := c1.typ
n.exec = func(f *frame) bltn {
v, ok := value(f).Interface().(valueInterface)
value1(f).SetBool(ok && v.node.typ.implements(typ))
return next
}
case isInterface(c1.typ):
n.exec = func(f *frame) bltn {
v := value(f)
ok := v.IsValid() && canAssertTypes(v.Elem().Type(), rtype)
value1(f).SetBool(ok)
return next
}
case c0.typ.cat == valueT || c0.typ.cat == errorT:
n.exec = func(f *frame) bltn {
v := value(f)
ok := v.IsValid() && canAssertTypes(v.Elem().Type(), rtype)
value1(f).SetBool(ok)
return next
}
default:
n.exec = func(f *frame) bltn {
v, ok := value(f).Interface().(valueInterface)
ok = ok && v.value.IsValid() && canAssertTypes(v.value.Type(), rtype)
value1(f).SetBool(ok)
return next
}
}
}
func typeAssert(n *node) {
c0, c1 := n.child[0], n.child[1]
value := genValue(c0) // input value
value0 := genValue(n) // returned result
next := getExec(n.tnext)
switch {
case isInterfaceSrc(c1.typ):
typ := n.child[1].typ
typID := n.child[1].typ.id()
n.exec = func(f *frame) bltn {
v := value(f)
vi, ok := v.Interface().(valueInterface)
if !ok {
panic(n.cfgErrorf("interface conversion: nil is not %v", typID))
}
if !vi.node.typ.implements(typ) {
panic(n.cfgErrorf("interface conversion: %v is not %v", vi.node.typ.id(), typID))
}
value0(f).Set(v)
return next
}
case isInterface(c1.typ):
n.exec = func(f *frame) bltn {
v := value(f).Elem()
typ := value0(f).Type()
if !v.IsValid() {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", typ.String()))
}
if !canAssertTypes(v.Type(), typ) {
method := firstMissingMethod(v.Type(), typ)
panic(fmt.Sprintf("interface conversion: %s is not %s: missing method %s", v.Type().String(), typ.String(), method))
}
value0(f).Set(v)
return next
}
case c0.typ.cat == valueT || c0.typ.cat == errorT:
n.exec = func(f *frame) bltn {
v := value(f).Elem()
typ := value0(f).Type()
if !v.IsValid() {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", typ.String()))
}
if !canAssertTypes(v.Type(), typ) {
method := firstMissingMethod(v.Type(), typ)
panic(fmt.Sprintf("interface conversion: %s is not %s: missing method %s", v.Type().String(), typ.String(), method))
}
value0(f).Set(v)
return next
}
default:
n.exec = func(f *frame) bltn {
v := value(f).Interface().(valueInterface)
typ := value0(f).Type()
if !v.value.IsValid() {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", typ.String()))
}
if !canAssertTypes(v.value.Type(), typ) {
panic(fmt.Sprintf("interface conversion: interface {} is %s, not %s", v.value.Type().String(), typ.String()))
}
value0(f).Set(v.value)
return next
}
}
}
func typeAssert2(n *node) {
c0, c1 := n.child[0], n.child[1]
value := genValue(c0) // input value
value0 := genValue(n.anc.child[0]) // returned result
value1 := genValue(n.anc.child[1]) // returned status
setStatus := n.anc.child[1].ident != "_" // do not assign status to "_"
typ := c1.typ // type to assert or convert to
typID := typ.id()
rtype := typ.rtype // type to assert
next := getExec(n.tnext)
switch {
case isInterfaceSrc(typ):
n.exec = func(f *frame) bltn {
v, ok := value(f).Interface().(valueInterface)
if ok && v.node.typ.id() == typID {
value0(f).Set(value(f))
} else {
ok = false
}
if setStatus {
value1(f).SetBool(ok)
}
return next
}
case isInterface(typ):
n.exec = func(f *frame) bltn {
v := value(f).Elem()
ok := v.IsValid() && canAssertTypes(v.Type(), rtype)
if ok {
value0(f).Set(v)
}
if setStatus {
value1(f).SetBool(ok)
}
return next
}
case n.child[0].typ.cat == valueT || n.child[0].typ.cat == errorT:
n.exec = func(f *frame) bltn {
v := value(f).Elem()
ok := v.IsValid() && canAssertTypes(v.Type(), rtype)
if ok {
value0(f).Set(v)
}
if setStatus {
value1(f).SetBool(ok)
}
return next
}
default:
n.exec = func(f *frame) bltn {
v, ok := value(f).Interface().(valueInterface)
ok = ok && v.value.IsValid() && canAssertTypes(v.value.Type(), rtype)
if ok {
value0(f).Set(v.value)
}
if setStatus {
value1(f).SetBool(ok)
}
return next
}
}
}
func canAssertTypes(src, dest reflect.Type) bool {
if dest == nil {
return false
}
if src == dest {
return true
}
if dest.Kind() == reflect.Interface && src.Implements(dest) {
return true
}
if src.AssignableTo(dest) {
return true
}
return false
}
func firstMissingMethod(src, dest reflect.Type) string {
for i := 0; i < dest.NumMethod(); i++ {
m := dest.Method(i).Name
if _, ok := src.MethodByName(m); !ok {
return m
}
}
return ""
}
func convert(n *node) {
dest := genValue(n)
c := n.child[1]
typ := n.child[0].typ.TypeOf()
next := getExec(n.tnext)
if c.isNil() { // convert nil to type
if n.child[0].typ.cat == interfaceT {
typ = reflect.TypeOf((*valueInterface)(nil)).Elem()
}
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.New(typ).Elem())
return next
}
return
}
var value func(*frame) reflect.Value
if c.typ.cat == funcT {
value = genFunctionWrapper(c)
} else {
value = genValue(c)
}
for _, con := range n.interp.hooks.convert {
if c.typ.rtype == nil {
continue
}
fn := con(c.typ.rtype, typ)
if fn == nil {
continue
}
n.exec = func(f *frame) bltn {
fn(value(f), dest(f))
return next
}
return
}
n.exec = func(f *frame) bltn {
dest(f).Set(value(f).Convert(typ))
return next
}
}
func isRecursiveType(t *itype, rtype reflect.Type) bool {
if t.cat == structT && rtype.Kind() == reflect.Interface {
return true
}
switch t.cat {
case ptrT, arrayT, mapT:
return isRecursiveType(t.val, t.val.rtype)
default:
return false
}
}
func assign(n *node) {
next := getExec(n.tnext)
dvalue := make([]func(*frame) reflect.Value, n.nleft)
ivalue := make([]func(*frame) reflect.Value, n.nleft)
svalue := make([]func(*frame) reflect.Value, n.nleft)
var sbase int
if n.nright > 0 {
sbase = len(n.child) - n.nright
}
for i := 0; i < n.nleft; i++ {
dest, src := n.child[i], n.child[sbase+i]
switch {
case dest.typ.cat == interfaceT:
svalue[i] = genValueInterface(src)
case (dest.typ.cat == valueT || dest.typ.cat == errorT) && dest.typ.rtype.Kind() == reflect.Interface:
svalue[i] = genInterfaceWrapper(src, dest.typ.rtype)
case src.typ.cat == funcT && dest.typ.cat == valueT:
svalue[i] = genFunctionWrapper(src)
case src.typ.cat == funcT && isField(dest):
svalue[i] = genFunctionWrapper(src)
case dest.typ.cat == funcT && src.typ.cat == valueT:
svalue[i] = genValueNode(src)
case src.kind == basicLit && src.val == nil:
t := dest.typ.TypeOf()
svalue[i] = func(*frame) reflect.Value { return reflect.New(t).Elem() }
case isRecursiveType(dest.typ, dest.typ.rtype):
svalue[i] = genValueRecursiveInterface(src, dest.typ.rtype)
case isRecursiveType(src.typ, src.typ.rtype):
svalue[i] = genValueRecursiveInterfacePtrValue(src)
case src.typ.untyped && isComplex(dest.typ.TypeOf()):
svalue[i] = genValueComplex(src)
case src.typ.untyped && !dest.typ.untyped:
svalue[i] = genValueAs(src, dest.typ.TypeOf())
default:
svalue[i] = genValue(src)
}
if isMapEntry(dest) {
if dest.child[1].typ.cat == interfaceT { // key
ivalue[i] = genValueInterface(dest.child[1])
} else {
ivalue[i] = genValue(dest.child[1])
}
dvalue[i] = genValue(dest.child[0])
} else {
dvalue[i] = genValue(dest)
}
}
if n.nleft == 1 {
switch s, d, i := svalue[0], dvalue[0], ivalue[0]; {
case n.child[0].ident == "_":
n.exec = func(f *frame) bltn {
return next
}
case i != nil:
n.exec = func(f *frame) bltn {
d(f).SetMapIndex(i(f), s(f))
return next
}
default:
n.exec = func(f *frame) bltn {
d(f).Set(s(f))
return next
}
}
} else {
types := make([]reflect.Type, n.nright)
for i := range types {
var t reflect.Type
switch typ := n.child[sbase+i].typ; typ.cat {
case funcT:
t = reflect.TypeOf((*node)(nil))
case interfaceT:
t = reflect.TypeOf((*valueInterface)(nil)).Elem()
default:
t = typ.TypeOf()
}
types[i] = t
}
// To handle swap in multi-assign:
// evaluate and copy all values in assign right hand side into temporary
// then evaluate assign left hand side and copy temporary into it
n.exec = func(f *frame) bltn {
t := make([]reflect.Value, len(svalue))
for i, s := range svalue {
if n.child[i].ident == "_" {
continue
}
t[i] = reflect.New(types[i]).Elem()
t[i].Set(s(f))
}
for i, d := range dvalue {
if n.child[i].ident == "_" {
continue
}
if j := ivalue[i]; j != nil {
d(f).SetMapIndex(j(f), t[i]) // Assign a map entry
} else {
d(f).Set(t[i]) // Assign a var or array/slice entry
}
}
return next
}
}
}
func not(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
tnext := getExec(n.tnext)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if !value(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(!value(f).Bool())
return tnext
}
}
}
func addr(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).Set(value(f).Addr())
return next
}
}
func deref(n *node) {
value := genValue(n.child[0])
tnext := getExec(n.tnext)
i := n.findex
l := n.level
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value(f).Elem()
if r.Bool() {
getFrame(f, l).data[i] = r
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem()
return tnext
}
}
}
func _print(n *node) {
child := n.child[1:]
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
values[i] = genValue(c)
}
out := n.interp.stdout
genBuiltinDeferWrapper(n, values, nil, func(args []reflect.Value) []reflect.Value {
for i, value := range args {
if i > 0 {
fmt.Fprintf(out, " ")
}
fmt.Fprintf(out, "%v", value)
}
return nil
})
}
func _println(n *node) {
child := n.child[1:]
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
values[i] = genValue(c)
}
out := n.interp.stdout
genBuiltinDeferWrapper(n, values, nil, func(args []reflect.Value) []reflect.Value {
for i, value := range args {
if i > 0 {
fmt.Fprintf(out, " ")
}
fmt.Fprintf(out, "%v", value)
}
fmt.Fprintln(out, "")
return nil
})
}
func _recover(n *node) {
tnext := getExec(n.tnext)
dest := genValue(n)
n.exec = func(f *frame) bltn {
if f.anc.recovered == nil {
dest(f).Set(reflect.ValueOf(valueInterface{}))
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, reflect.ValueOf(f.anc.recovered)}))
f.anc.recovered = nil
}
return tnext
}
}
func _panic(n *node) {
value := genValue(n.child[1])
n.exec = func(f *frame) bltn {
panic(value(f))
}
}
func genBuiltinDeferWrapper(n *node, in, out []func(*frame) reflect.Value, fn func([]reflect.Value) []reflect.Value) {
next := getExec(n.tnext)
if n.anc.kind == deferStmt {
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(in)+1)
inTypes := make([]reflect.Type, len(in))
for i, v := range in {
val[i+1] = v(f)
inTypes[i] = val[i+1].Type()
}
outTypes := make([]reflect.Type, len(out))
for i, v := range out {
outTypes[i] = v(f).Type()
}
funcType := reflect.FuncOf(inTypes, outTypes, false)
val[0] = reflect.MakeFunc(funcType, fn)
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return next
}
return
}
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(in))
for i, v := range in {
val[i] = v(f)
}
dests := fn(val)
for i, dest := range dests {
out[i](f).Set(dest)
}
return next
}
}
func genFunctionWrapper(n *node) func(*frame) reflect.Value {
var def *node
var ok bool
if n.kind == basicLit {
return func(f *frame) reflect.Value { return n.rval }
}
if def, ok = n.val.(*node); !ok {
return genValueAsFunctionWrapper(n)
}
start := def.child[3].start
numRet := len(def.typ.ret)
var rcvr func(*frame) reflect.Value
if n.recv != nil {
if n.recv.node.typ.cat != defRecvType(def).cat {
rcvr = genValueRecvIndirect(n)
} else {
rcvr = genValueRecv(n)
}
}
funcType := n.typ.TypeOf()
return func(f *frame) reflect.Value {
if n.frame != nil { // Use closure context if defined
f = n.frame
}
return reflect.MakeFunc(funcType, func(in []reflect.Value) []reflect.Value {
// Allocate and init local frame. All values to be settable and addressable.
fr := newFrame(f, len(def.types), f.runid())
d := fr.data
for i, t := range def.types {
d[i] = reflect.New(t).Elem()
}
// Copy method receiver as first argument, if defined
if rcvr != nil {
src, dest := rcvr(f), d[numRet]
if src.Type().Kind() != dest.Type().Kind() {
dest.Set(src.Addr())
} else {
dest.Set(src)
}
d = d[numRet+1:]
} else {
d = d[numRet:]
}
// Copy function input arguments in local frame
for i, arg := range in {
typ := def.typ.arg[i]
switch {
case typ.cat == interfaceT:
d[i].Set(reflect.ValueOf(valueInterface{value: arg.Elem()}))
case typ.cat == funcT && arg.Kind() == reflect.Func:
d[i].Set(reflect.ValueOf(genFunctionNode(arg)))
default:
d[i].Set(arg)
}
}
// Interpreter code execution
runCfg(start, fr)
result := fr.data[:numRet]
for i, r := range result {
if v, ok := r.Interface().(*node); ok {
result[i] = genFunctionWrapper(v)(f)
}
if def.typ.ret[i].cat == interfaceT {
x := result[i].Interface().(valueInterface).value
result[i] = reflect.New(reflect.TypeOf((*interface{})(nil)).Elem()).Elem()
result[i].Set(x)
}
}
return result
})
}
}
func genFunctionNode(v reflect.Value) *node {
return &node{kind: funcType, action: aNop, rval: v, typ: &itype{cat: valueT, rtype: v.Type()}}
}
func genInterfaceWrapper(n *node, typ reflect.Type) func(*frame) reflect.Value {
value := genValue(n)
if typ == nil || typ.Kind() != reflect.Interface || typ.NumMethod() == 0 || n.typ.cat == valueT {
return value
}
if nt := n.typ.TypeOf(); nt != nil && nt.Kind() == reflect.Interface {
return value
}
mn := typ.NumMethod()
names := make([]string, mn)
methods := make([]*node, mn)
indexes := make([][]int, mn)
for i := 0; i < mn; i++ {
names[i] = typ.Method(i).Name
methods[i], indexes[i] = n.typ.lookupMethod(names[i])
if methods[i] == nil && n.typ.cat != nilT {
// interpreted method not found, look for binary method, possibly embedded
_, indexes[i], _, _ = n.typ.lookupBinMethod(names[i])
}
}
wrap := n.interp.getWrapper(typ)
return func(f *frame) reflect.Value {
v := value(f)
vv := v
switch v.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
if v.IsNil() {
return reflect.New(typ).Elem()
}
if v.Kind() == reflect.Ptr {
vv = v.Elem()
}
}
w := reflect.New(wrap).Elem()
for i, m := range methods {
if m == nil {
if r := v.MethodByName(names[i]); r.IsValid() {
w.Field(i).Set(r)
continue
}
o := vv.FieldByIndex(indexes[i])
if r := o.MethodByName(names[i]); r.IsValid() {
w.Field(i).Set(r)
} else {
log.Println(n.cfgErrorf("genInterfaceWrapper error, no method %s", names[i]))
}
continue
}
nod := *m
nod.recv = &receiver{n, v, indexes[i]}
w.Field(i).Set(genFunctionWrapper(&nod)(f))
}
return w
}
}
func call(n *node) {
goroutine := n.anc.kind == goStmt
var method bool
value := genValue(n.child[0])
var values []func(*frame) reflect.Value
if n.child[0].recv != nil {
// Compute method receiver value.
if isRecursiveType(n.child[0].recv.node.typ, n.child[0].recv.node.typ.rtype) {
values = append(values, genValueRecvInterfacePtr(n.child[0]))
} else {
values = append(values, genValueRecv(n.child[0]))
}
method = true
} else if n.child[0].action == aMethod {
// Add a place holder for interface method receiver.
values = append(values, nil)
method = true
}
numRet := len(n.child[0].typ.ret)
variadic := variadicPos(n)
child := n.child[1:]
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
// Compute input argument value functions.
for i, c := range child {
switch {
case isBinCall(c):
// Handle nested function calls: pass returned values as arguments.
numOut := c.child[0].typ.rtype.NumOut()
for j := 0; j < numOut; j++ {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
case isRegularCall(c):
// Arguments are return values of a nested function call.
for j := range c.child[0].typ.ret {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
default:
var arg *itype
if variadic >= 0 && i >= variadic {
arg = n.child[0].typ.arg[variadic].val
} else {
arg = n.child[0].typ.arg[i]
}
if c.kind == basicLit || c.rval.IsValid() {
argType := arg.TypeOf()
convertLiteralValue(c, argType)
}
switch {
case arg.cat == interfaceT:
values = append(values, genValueInterface(c))
case isRecursiveType(c.typ, c.typ.rtype):
values = append(values, genValueRecursiveInterfacePtrValue(c))
default:
values = append(values, genValue(c))
}
}
}
// Compute output argument value functions.
rtypes := n.child[0].typ.ret
rvalues := make([]func(*frame) reflect.Value, len(rtypes))
switch n.anc.kind {
case defineXStmt, assignXStmt:
for i := range rvalues {
c := n.anc.child[i]
switch {
case c.ident == "_":
// Skip assigning return value to blank var.
case c.typ.cat == interfaceT && rtypes[i].cat != interfaceT:
rvalues[i] = genValueInterfaceValue(c)
default:
rvalues[i] = genValue(c)
}
}
case returnStmt:
// Function call from a return statement: forward return values (always at frame start).
for i := range rtypes {
j := n.findex + i
ret := n.child[0].typ.ret[i]
callret := n.anc.val.(*node).typ.ret[i]
if callret.cat == interfaceT && ret.cat != interfaceT {
// Wrap the returned value in a valueInterface in caller frame.
rvalues[i] = func(f *frame) reflect.Value {
v := reflect.New(ret.rtype).Elem()
f.data[j].Set(reflect.ValueOf(valueInterface{n, v}))
return v
}
} else {
// Set the return value location in return value of caller frame.
rvalues[i] = func(f *frame) reflect.Value { return f.data[j] }
}
}
default:
// Multiple return values frame index are indexed from the node frame index.
l := n.level
for i := range rtypes {
j := n.findex + i
rvalues[i] = func(f *frame) reflect.Value { return getFrame(f, l).data[j] }
}
}
if n.anc.kind == deferStmt {
// Store function call in frame for deferred execution.
value = genFunctionWrapper(n.child[0])
if method {
// The receiver is already passed in the function wrapper, skip it.
values = values[1:]
}
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(values)+1)
val[0] = value(f)
for i, v := range values {
val[i+1] = v(f)
}
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return tnext
}
return
}
n.exec = func(f *frame) bltn {
var def *node
var ok bool
bf := value(f)
if def, ok = bf.Interface().(*node); ok {
bf = def.rval
}
// Call bin func if defined
if bf.IsValid() {
in := make([]reflect.Value, len(values))
for i, v := range values {
in[i] = v(f)
}
if goroutine {
go bf.Call(in)
return tnext
}
out := bf.Call(in)
for i, v := range rvalues {
if v != nil {
v(f).Set(out[i])
}
}
if fnext != nil && !out[0].Bool() {
return fnext
}
return tnext
}
anc := f
// Get closure frame context (if any)
if def.frame != nil {
anc = def.frame
}
nf := newFrame(anc, len(def.types), anc.runid())
var vararg reflect.Value
// Init return values
for i, v := range rvalues {
if v != nil {
nf.data[i] = v(f)
} else {
nf.data[i] = reflect.New(def.types[i]).Elem()
}
}
// Init local frame values
for i, t := range def.types[numRet:] {
nf.data[numRet+i] = reflect.New(t).Elem()
}
// Init variadic argument vector
varIndex := variadic
if variadic >= 0 {
if method {
vararg = nf.data[numRet+variadic+1]
varIndex++
} else {
vararg = nf.data[numRet+variadic]
}
}
// Copy input parameters from caller
if dest := nf.data[numRet:]; len(dest) > 0 {
for i, v := range values {
switch {
case method && i == 0:
// compute receiver
var src reflect.Value
if v == nil {
src = def.recv.val
if len(def.recv.index) > 0 {
if src.Kind() == reflect.Ptr {
src = src.Elem().FieldByIndex(def.recv.index)
} else {
src = src.FieldByIndex(def.recv.index)
}
}
} else {
src = v(f)
}
// Accommodate to receiver type
d := dest[0]
if ks, kd := src.Kind(), d.Kind(); ks != kd {
if kd == reflect.Ptr {
d.Set(src.Addr())
} else {
d.Set(src.Elem())
}
} else {
d.Set(src)
}
case variadic >= 0 && i >= varIndex:
if v(f).Type() == vararg.Type() {
vararg.Set(v(f))
} else {
vararg.Set(reflect.Append(vararg, v(f)))
}
default:
val := v(f)
if !val.IsZero() {
dest[i].Set(val)
}
}
}
}
// Execute function body
if goroutine {
go runCfg(def.child[3].start, nf)
return tnext
}
runCfg(def.child[3].start, nf)
// Handle branching according to boolean result
if fnext != nil && !nf.data[0].Bool() {
return fnext
}
return tnext
}
}
func getFrame(f *frame, l int) *frame {
switch l {
case 0:
return f
case 1:
return f.anc
case 2:
return f.anc.anc
}
for ; l > 0; l-- {
f = f.anc
}
return f
}
// Callbin calls a function from a bin import, accessible through reflect.
func callBin(n *node) {
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
child := n.child[1:]
value := genValue(n.child[0])
var values []func(*frame) reflect.Value
funcType := n.child[0].typ.rtype
variadic := -1
if funcType.IsVariadic() {
variadic = funcType.NumIn() - 1
}
// A method signature obtained from reflect.Type includes receiver as 1st arg, except for interface types.
rcvrOffset := 0
if recv := n.child[0].recv; recv != nil && !isInterface(recv.node.typ) {
if variadic > 0 || funcType.NumIn() > len(child) {
rcvrOffset = 1
}
}
// Determine if we should use `Call` or `CallSlice` on the function Value.
callFn := func(v reflect.Value, in []reflect.Value) []reflect.Value { return v.Call(in) }
if n.action == aCallSlice {
callFn = func(v reflect.Value, in []reflect.Value) []reflect.Value { return v.CallSlice(in) }
}
for i, c := range child {
var defType reflect.Type
if variadic >= 0 && i >= variadic {
defType = funcType.In(variadic)
} else {
defType = funcType.In(rcvrOffset + i)
}
switch {
case isBinCall(c):
// Handle nested function calls: pass returned values as arguments
numOut := c.child[0].typ.rtype.NumOut()
for j := 0; j < numOut; j++ {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
case isRegularCall(c):
// Handle nested function calls: pass returned values as arguments
for j := range c.child[0].typ.ret {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
default:
if c.kind == basicLit || c.rval.IsValid() {
// Convert literal value (untyped) to function argument type (if not an interface{})
var argType reflect.Type
if variadic >= 0 && i >= variadic {
argType = funcType.In(variadic).Elem()
} else {
argType = funcType.In(i + rcvrOffset)
}
convertLiteralValue(c, argType)
if !reflect.ValueOf(c.val).IsValid() { // Handle "nil"
c.val = reflect.Zero(argType)
}
}
switch c.typ.cat {
case funcT:
values = append(values, genFunctionWrapper(c))
case interfaceT:
values = append(values, genValueInterfaceValue(c))
case arrayT, variadicT:
switch c.typ.val.cat {
case interfaceT:
values = append(values, genValueInterfaceArray(c))
default:
values = append(values, genInterfaceWrapper(c, defType))
}
default:
values = append(values, genInterfaceWrapper(c, defType))
}
}
}
l := len(values)
switch {
case n.anc.kind == deferStmt:
// Store function call in frame for deferred execution.
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, l+1)
val[0] = value(f)
for i, v := range values {
val[i+1] = v(f)
}
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return tnext
}
case n.anc.kind == goStmt:
// Execute function in a goroutine, discard results.
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
go callFn(value(f), in)
return tnext
}
case fnext != nil:
// Handle branching according to boolean result.
index := n.findex
level := n.level
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
res := callFn(value(f), in)
b := res[0].Bool()
getFrame(f, level).data[index].SetBool(b)
if b {
return tnext
}
return fnext
}
default:
switch n.anc.action {
case aAssignX:
// The function call is part of an assign expression, store results direcly
// to assigned location, to avoid an additional frame copy.
// The optimization of aAssign is handled in assign(), and should not
// be handled here.
rvalues := make([]func(*frame) reflect.Value, funcType.NumOut())
for i := range rvalues {
c := n.anc.child[i]
if c.ident != "_" {
rvalues[i] = genValue(c)
}
}
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i, v := range rvalues {
if v != nil {
v(f).Set(out[i])
}
}
return tnext
}
case aReturn:
// The function call is part of a return statement, store output results
// directly in the frame location of outputs of the current function.
b := childPos(n)
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i, v := range out {
f.data[b+i].Set(v)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i := 0; i < len(out); i++ {
getFrame(f, n.level).data[n.findex+i].Set(out[i])
}
return tnext
}
}
}
}
func getIndexBinMethod(n *node) {
// dest := genValue(n)
i := n.findex
l := n.level
m := n.val.(int)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
// Can not use .Set() because dest type contains the receiver and source not
// dest(f).Set(value(f).Method(m))
getFrame(f, l).data[i] = value(f).Method(m)
return next
}
}
func getIndexBinPtrMethod(n *node) {
i := n.findex
l := n.level
m := n.val.(int)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
// Can not use .Set() because dest type contains the receiver and source not
getFrame(f, l).data[i] = value(f).Addr().Method(m)
return next
}
}
// getIndexArray returns array value from index.
func getIndexArray(n *node) {
tnext := getExec(n.tnext)
value0 := genValueArray(n.child[0]) // array
i := n.findex
l := n.level
if n.child[1].rval.IsValid() { // constant array index
ai := int(vInt(n.child[1].rval))
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value0(f).Index(ai)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value0(f).Index(ai)
return tnext
}
}
} else {
value1 := genValueInt(n.child[1]) // array index
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
_, vi := value1(f)
r := value0(f).Index(int(vi))
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
_, vi := value1(f)
getFrame(f, l).data[i] = value0(f).Index(int(vi))
return tnext
}
}
}
}
// valueInterfaceType is the reflection type of valueInterface.
var valueInterfaceType = reflect.TypeOf((*valueInterface)(nil)).Elem()
// getIndexMap retrieves map value from index.
func getIndexMap(n *node) {
dest := genValue(n)
value0 := genValue(n.child[0]) // map
tnext := getExec(n.tnext)
z := reflect.New(n.child[0].typ.frameType().Elem()).Elem()
if n.child[1].rval.IsValid() { // constant map index
mi := n.child[1].rval
switch {
case n.fnext != nil:
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() && v.Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).Set(z)
return fnext
}
case n.typ.cat == interfaceT:
z = reflect.New(n.child[0].typ.val.frameType()).Elem()
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
} else {
dest(f).Set(z)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() {
dest(f).Set(v)
} else {
dest(f).Set(z)
}
return tnext
}
}
} else {
value1 := genValue(n.child[1]) // map index
switch {
case n.fnext != nil:
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() && v.Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).Set(z)
return fnext
}
case n.typ.cat == interfaceT:
z = reflect.New(n.child[0].typ.val.frameType()).Elem()
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
} else {
dest(f).Set(z)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() {
dest(f).Set(v)
} else {
dest(f).Set(z)
}
return tnext
}
}
}
}
// getIndexMap2 retrieves map value from index and set status.
func getIndexMap2(n *node) {
dest := genValue(n.anc.child[0]) // result
value0 := genValue(n.child[0]) // map
value2 := genValue(n.anc.child[1]) // status
next := getExec(n.tnext)
typ := n.anc.child[0].typ
doValue := n.anc.child[0].ident != "_"
doStatus := n.anc.child[1].ident != "_"
if !doValue && !doStatus {
nop(n)
return
}
if n.child[1].rval.IsValid() { // constant map index
mi := n.child[1].rval
switch {
case !doValue:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
value2(f).SetBool(v.IsValid())
return next
}
case typ.cat == interfaceT:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
if v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
default:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
if v.IsValid() {
dest(f).Set(v)
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
}
} else {
value1 := genValue(n.child[1]) // map index
switch {
case !doValue:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
value2(f).SetBool(v.IsValid())
return next
}
case typ.cat == interfaceT:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
if v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
default:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
if v.IsValid() {
dest(f).Set(v)
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
}
}
}
func getFunc(n *node) {
dest := genValue(n)
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
fr := f.clone()
nod := *n
nod.val = &nod
nod.frame = fr
dest(f).Set(reflect.ValueOf(&nod))
return next
}
}
func getMethod(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
fr := f.clone()
nod := *(n.val.(*node))
nod.val = &nod
nod.recv = n.recv
nod.frame = fr
getFrame(f, l).data[i] = reflect.ValueOf(&nod)
return next
}
}
func getMethodByName(n *node) {
next := getExec(n.tnext)
value0 := genValue(n.child[0])
name := n.child[1].ident
i := n.findex
l := n.level
n.exec = func(f *frame) bltn {
val := value0(f).Interface().(valueInterface)
m, li := val.node.typ.lookupMethod(name)
fr := f.clone()
nod := *m
nod.val = &nod
nod.recv = &receiver{nil, val.value, li}
nod.frame = fr
getFrame(f, l).data[i] = reflect.ValueOf(&nod)
return next
}
}
func getIndexSeq(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
tnext := getExec(n.tnext)
i := n.findex
l := n.level
// Note:
// Here we have to store the result using
// f.data[i] = value(...)
// instead of normal
// dest(f).Set(value(...)
// because the value returned by FieldByIndex() must be preserved
// for possible future Set operations on the struct field (avoid a
// dereference from Set, resulting in setting a copy of the
// original field).
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
v := value(f)
if v.Type().Kind() == reflect.Interface && n.child[0].typ.recursive {
v = writableDeref(v)
}
r := v.FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
v := value(f)
if v.Type().Kind() == reflect.Interface && n.child[0].typ.recursive {
v = writableDeref(v)
}
getFrame(f, l).data[i] = v.FieldByIndex(index)
return tnext
}
}
}
//go:nocheckptr
func writableDeref(v reflect.Value) reflect.Value {
// Here we have an interface to a struct. Any attempt to dereference it will
// make a copy of the struct. We need to get a Value to the actual struct.
// TODO: using unsafe is a temporary measure. Rethink this.
return reflect.NewAt(v.Elem().Type(), unsafe.Pointer(v.InterfaceData()[1])).Elem() //nolint:govet
}
func getPtrIndexSeq(n *node) {
index := n.val.([]int)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if isRecursiveType(n.child[0].typ, n.child[0].typ.rtype) {
v := genValue(n.child[0])
value = func(f *frame) reflect.Value { return v(f).Elem().Elem() }
} else {
value = genValue(n.child[0])
}
i := n.findex
l := n.level
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value(f).Elem().FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(index)
return tnext
}
}
}
func getIndexSeqField(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
i := n.findex
l := n.level
tnext := getExec(n.tnext)
if n.fnext != nil {
fnext := getExec(n.fnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
r := value(f).Elem().FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
r := value(f).FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
}
} else {
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(index)
return tnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(index)
return tnext
}
}
}
}
func getIndexSeqPtrMethod(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
fi := index[1:]
mi := index[0]
i := n.findex
l := n.level
next := getExec(n.tnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(fi).Addr().Method(mi)
return next
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(fi).Addr().Method(mi)
return next
}
}
}
func getIndexSeqMethod(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
fi := index[1:]
mi := index[0]
i := n.findex
l := n.level
next := getExec(n.tnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(fi).Method(mi)
return next
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(fi).Method(mi)
return next
}
}
}
func neg(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
switch n.typ.TypeOf().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n.exec = func(f *frame) bltn {
dest(f).SetInt(-value(f).Int())
return next
}
case reflect.Float32, reflect.Float64:
n.exec = func(f *frame) bltn {
dest(f).SetFloat(-value(f).Float())
return next
}
case reflect.Complex64, reflect.Complex128:
n.exec = func(f *frame) bltn {
dest(f).SetComplex(-value(f).Complex())
return next
}
}
}
func pos(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).Set(value(f))
return next
}
}
func bitNot(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
typ := n.typ.TypeOf()
switch typ.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n.exec = func(f *frame) bltn {
dest(f).SetInt(^value(f).Int())
return next
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n.exec = func(f *frame) bltn {
dest(f).SetUint(^value(f).Uint())
return next
}
}
}
func land(n *node) {
value0 := genValue(n.child[0])
value1 := genValue(n.child[1])
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if value0(f).Bool() && value1(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value0(f).Bool() && value1(f).Bool())
return tnext
}
}
}
func lor(n *node) {
value0 := genValue(n.child[0])
value1 := genValue(n.child[1])
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if value0(f).Bool() || value1(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value0(f).Bool() || value1(f).Bool())
return tnext
}
}
}
func nop(n *node) {
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
return next
}
}
func branch(n *node) {
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
value := genValue(n)
n.exec = func(f *frame) bltn {
if value(f).Bool() {
return tnext
}
return fnext
}
}
func _return(n *node) {
child := n.child
def := n.val.(*node)
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
switch t := def.typ.ret[i]; t.cat {
case errorT:
values[i] = genInterfaceWrapper(c, t.TypeOf())
case aliasT:
if isInterfaceSrc(t) {
values[i] = genValueInterface(c)
} else {
values[i] = genValue(c)
}
case funcT:
values[i] = genValue(c)
case interfaceT:
values[i] = genValueInterface(c)
case valueT:
if t.rtype.Kind() == reflect.Interface {
values[i] = genInterfaceWrapper(c, t.rtype)
break
}
fallthrough
default:
if c.typ.untyped {
values[i] = genValueAs(c, def.typ.ret[i].TypeOf())
} else {
values[i] = genValue(c)
}
}
}
switch len(child) {
case 0:
n.exec = nil
case 1:
// This is an optimisation that is applied for binary expressions or function
// calls, but not for (binary) expressions involving const, as the values are not
// stored in the frame in that case.
if !child[0].rval.IsValid() && child[0].kind == binaryExpr || isCall(child[0]) {
n.exec = nil
} else {
v := values[0]
n.exec = func(f *frame) bltn {
f.data[0].Set(v(f))
return nil
}
}
case 2:
v0, v1 := values[0], values[1]
n.exec = func(f *frame) bltn {
f.data[0].Set(v0(f))
f.data[1].Set(v1(f))
return nil
}
default:
n.exec = func(f *frame) bltn {
for i, value := range values {
f.data[i].Set(value(f))
}
return nil
}
}
}
func arrayLit(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
values := make([]func(*frame) reflect.Value, len(child))
index := make([]int, len(child))
rtype := n.typ.val.TypeOf()
var max, prev int
for i, c := range child {
if c.kind == keyValueExpr {
convertLiteralValue(c.child[1], rtype)
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
index[i] = int(vInt(c.child[0].rval))
} else {
convertLiteralValue(c, rtype)
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c)
} else {
values[i] = genValue(c)
}
index[i] = prev
}
prev = index[i] + 1
if prev > max {
max = prev
}
}
typ := n.typ.frameType()
n.exec = func(f *frame) bltn {
var a reflect.Value
if n.typ.sizedef {
a, _ = n.typ.zero()
} else {
a = reflect.MakeSlice(typ, max, max)
}
for i, v := range values {
a.Index(index[i]).Set(v(f))
}
value(f).Set(a)
return next
}
}
func mapLit(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
typ := n.typ.TypeOf()
keys := make([]func(*frame) reflect.Value, len(child))
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
convertLiteralValue(c.child[0], n.typ.key.TypeOf())
convertLiteralValue(c.child[1], n.typ.val.TypeOf())
if n.typ.key.cat == interfaceT {
keys[i] = genValueInterface(c.child[0])
} else {
keys[i] = genValue(c.child[0])
}
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
}
n.exec = func(f *frame) bltn {
m := reflect.MakeMap(typ)
for i, k := range keys {
m.SetMapIndex(k(f), values[i](f))
}
value(f).Set(m)
return next
}
}
func compositeBinMap(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
typ := n.typ.TypeOf()
keys := make([]func(*frame) reflect.Value, len(child))
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
convertLiteralValue(c.child[0], typ.Key())
convertLiteralValue(c.child[1], typ.Elem())
keys[i] = genValue(c.child[0])
values[i] = genValue(c.child[1])
}
n.exec = func(f *frame) bltn {
m := reflect.MakeMap(typ)
for i, k := range keys {
m.SetMapIndex(k(f), values[i](f))
}
value(f).Set(m)
return next
}
}
// doCompositeBinStruct creates and populates a struct object from a binary type.
func doCompositeBinStruct(n *node, hasType bool) {
next := getExec(n.tnext)
value := valueGenerator(n, n.findex)
typ := n.typ.rtype
if n.typ.cat == ptrT || n.typ.cat == aliasT {
typ = n.typ.val.rtype
}
child := n.child
if hasType {
child = n.child[1:]
}
values := make([]func(*frame) reflect.Value, len(child))
fieldIndex := make([][]int, len(child))
for i, c := range child {
if c.kind == keyValueExpr {
if sf, ok := typ.FieldByName(c.child[0].ident); ok {
fieldIndex[i] = sf.Index
convertLiteralValue(c.child[1], sf.Type)
if c.child[1].typ.cat == funcT {
values[i] = genFunctionWrapper(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
}
} else {
fieldIndex[i] = []int{i}
if c.typ.cat == funcT && len(c.child) > 1 {
convertLiteralValue(c.child[1], typ.Field(i).Type)
values[i] = genFunctionWrapper(c.child[1])
} else {
convertLiteralValue(c, typ.Field(i).Type)
values[i] = genValue(c)
}
}
}
n.exec = func(f *frame) bltn {
s := reflect.New(typ).Elem()
for i, v := range values {
s.FieldByIndex(fieldIndex[i]).Set(v(f))
}
d := value(f)
switch {
case d.Type().Kind() == reflect.Ptr:
d.Set(s.Addr())
default:
d.Set(s)
}
return next
}
}
func compositeBinStruct(n *node) { doCompositeBinStruct(n, true) }
func compositeBinStructNotype(n *node) { doCompositeBinStruct(n, false) }
func destType(n *node) *itype {
switch n.anc.kind {
case assignStmt, defineStmt:
return n.anc.child[0].typ
default:
return n.typ
}
}
func doComposite(n *node, hasType bool, keyed bool) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
typ := n.typ
if typ.cat == ptrT || typ.cat == aliasT {
typ = typ.val
}
var mu sync.Mutex
typ.mu = &mu
child := n.child
if hasType {
child = n.child[1:]
}
destInterface := destType(n).cat == interfaceT
values := make(map[int]func(*frame) reflect.Value)
for i, c := range child {
var val *node
var fieldIndex int
if keyed {
val = c.child[1]
fieldIndex = typ.fieldIndex(c.child[0].ident)
} else {
val = c
fieldIndex = i
}
ft := typ.field[fieldIndex].typ
rft := ft.TypeOf()
convertLiteralValue(val, rft)
switch {
case val.typ.cat == nilT:
values[fieldIndex] = func(*frame) reflect.Value { return reflect.New(rft).Elem() }
case val.typ.cat == funcT:
values[fieldIndex] = genFunctionWrapper(val)
case isArray(val.typ) && val.typ.val != nil && val.typ.val.cat == interfaceT:
values[fieldIndex] = genValueInterfaceArray(val)
case isRecursiveType(ft, rft):
values[fieldIndex] = genValueRecursiveInterface(val, rft)
case isInterface(ft):
values[fieldIndex] = genInterfaceWrapper(val, rft)
default:
values[fieldIndex] = genValue(val)
}
}
frameIndex := n.findex
l := n.level
n.exec = func(f *frame) bltn {
typ.mu.Lock()
// No need to call zero() as doComposite is only called for a structT
a := reflect.New(typ.TypeOf()).Elem()
typ.mu.Unlock()
for i, v := range values {
a.Field(i).Set(v(f))
}
d := value(f)
switch {
case d.Type().Kind() == reflect.Ptr:
d.Set(a.Addr())
case destInterface:
d.Set(reflect.ValueOf(valueInterface{n, a}))
default:
getFrame(f, l).data[frameIndex] = a
}
return next
}
}
// doCompositeLit creates and populates a struct object.
func doCompositeLit(n *node, hasType bool) {
doComposite(n, hasType, false)
}
func compositeLit(n *node) { doCompositeLit(n, true) }
func compositeLitNotype(n *node) { doCompositeLit(n, false) }
// doCompositeLitKeyed creates a struct Object, filling fields from sparse key-values.
func doCompositeLitKeyed(n *node, hasType bool) {
doComposite(n, hasType, true)
}
func compositeLitKeyed(n *node) { doCompositeLitKeyed(n, true) }
func compositeLitKeyedNotype(n *node) { doCompositeLitKeyed(n, false) }
func empty(n *node) {}
var rat = reflect.ValueOf((*[]rune)(nil)).Type().Elem() // runes array type
func _range(n *node) {
index0 := n.child[0].findex // array index location in frame
index2 := index0 - 1 // shallow array for range, always just behind index0
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if len(n.child) == 4 {
an := n.child[2]
index1 := n.child[1].findex // array value location in frame
if isString(an.typ.TypeOf()) {
value = genValueAs(an, rat) // range on string iterates over runes
} else {
value = genValueRangeArray(an)
}
n.exec = func(f *frame) bltn {
a := f.data[index2]
v0 := f.data[index0]
v0.SetInt(v0.Int() + 1)
i := int(v0.Int())
if i >= a.Len() {
return fnext
}
f.data[index1].Set(a.Index(i))
return tnext
}
} else {
an := n.child[1]
if isString(an.typ.TypeOf()) {
value = genValueAs(an, rat) // range on string iterates over runes
} else {
value = genValueRangeArray(an)
}
n.exec = func(f *frame) bltn {
v0 := f.data[index0]
v0.SetInt(v0.Int() + 1)
if int(v0.Int()) >= f.data[index2].Len() {
return fnext
}
return tnext
}
}
// Init sequence
next := n.exec
n.child[0].exec = func(f *frame) bltn {
f.data[index2] = value(f) // set array shallow copy for range
f.data[index0].SetInt(-1) // assing index value
return next
}
}
func rangeChan(n *node) {
i := n.child[0].findex // element index location in frame
value := genValue(n.child[1]) // chan
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
n.exec = func(f *frame) bltn {
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, ok := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: value(f)}})
if chosen == 0 {
return nil
}
if !ok {
return fnext
}
f.data[i].Set(v)
return tnext
}
}
func rangeMap(n *node) {
index0 := n.child[0].findex // map index location in frame
index2 := index0 - 1 // iterator for range, always just behind index0
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if len(n.child) == 4 {
index1 := n.child[1].findex // map value location in frame
value = genValue(n.child[2]) // map
if n.child[1].typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
if e := iter.Value().Elem(); e.Type().AssignableTo(valueInterfaceType) {
f.data[index1].Set(e)
} else {
f.data[index1].Set(reflect.ValueOf(valueInterface{n, e}))
}
return tnext
}
} else {
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
f.data[index1].Set(iter.Value())
return tnext
}
}
} else {
value = genValue(n.child[1]) // map
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
return tnext
}
}
// Init sequence
next := n.exec
n.child[0].exec = func(f *frame) bltn {
f.data[index2].Set(reflect.ValueOf(value(f).MapRange()))
return next
}
}
func _case(n *node) {
tnext := getExec(n.tnext)
switch {
case n.anc.anc.kind == typeSwitch:
fnext := getExec(n.fnext)
sn := n.anc.anc // switch node
types := make([]*itype, len(n.child)-1)
for i := range types {
types[i] = n.child[i].typ
}
srcValue := genValue(sn.child[1].lastChild().child[0])
if len(sn.child[1].child) == 2 {
// assign in switch guard
destValue := genValue(n.lastChild().child[0])
switch len(types) {
case 0:
// default clause: assign var to interface value
n.exec = func(f *frame) bltn {
destValue(f).Set(srcValue(f))
return tnext
}
case 1:
// match against 1 type: assign var to concrete value
typ := types[0]
n.exec = func(f *frame) bltn {
v := srcValue(f)
if !v.IsValid() {
// match zero value against nil
if typ.cat == nilT {
return tnext
}
return fnext
}
if t := v.Type(); t.Kind() == reflect.Interface {
if typ.cat == nilT && v.IsNil() {
return tnext
}
if typ.TypeOf().String() == t.String() {
destValue(f).Set(v.Elem())
return tnext
}
return fnext
}
vi := v.Interface().(valueInterface)
if vi.node == nil {
if typ.cat == nilT {
return tnext
}
return fnext
}
if vi.node.typ.id() == typ.id() {
destValue(f).Set(vi.value)
return tnext
}
return fnext
}
default:
// match against multiple types: assign var to interface value
n.exec = func(f *frame) bltn {
val := srcValue(f)
if v := srcValue(f).Interface().(valueInterface).node; v != nil {
for _, typ := range types {
if v.typ.id() == typ.id() {
destValue(f).Set(val)
return tnext
}
}
}
return fnext
}
}
} else {
// no assign in switch guard
if len(n.child) <= 1 {
n.exec = func(f *frame) bltn { return tnext }
} else {
n.exec = func(f *frame) bltn {
if v := srcValue(f).Interface().(valueInterface).node; v != nil {
for _, typ := range types {
if v.typ.id() == typ.id() {
return tnext
}
}
}
return fnext
}
}
}
case len(n.child) <= 1: // default clause
n.exec = func(f *frame) bltn { return tnext }
default:
fnext := getExec(n.fnext)
l := len(n.anc.anc.child)
value := genValue(n.anc.anc.child[l-2])
values := make([]func(*frame) reflect.Value, len(n.child)-1)
for i := range values {
values[i] = genValue(n.child[i])
}
n.exec = func(f *frame) bltn {
v0 := value(f)
for _, v := range values {
v1 := v(f)
if !v0.Type().AssignableTo(v1.Type()) {
v0 = v0.Convert(v1.Type())
}
if v0.Interface() == v1.Interface() {
return tnext
}
}
return fnext
}
}
}
func appendSlice(n *node) {
dest := genValueOutput(n, n.typ.rtype)
next := getExec(n.tnext)
value := genValue(n.child[1])
value0 := genValue(n.child[2])
if isString(n.child[2].typ.TypeOf()) {
typ := reflect.TypeOf([]byte{})
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.AppendSlice(value(f), value0(f).Convert(typ)))
return next
}
} else {
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.AppendSlice(value(f), value0(f)))
return next
}
}
}
func _append(n *node) {
if len(n.child) == 3 {
c1, c2 := n.child[1], n.child[2]
if (c1.typ.cat == valueT || c2.typ.cat == valueT) && c1.typ.rtype == c2.typ.rtype ||
c2.typ.cat == arrayT && c2.typ.val.id() == n.typ.val.id() ||
isByteArray(c1.typ.TypeOf()) && isString(c2.typ.TypeOf()) {
appendSlice(n)
return
}
}
dest := genValueOutput(n, n.typ.rtype)
value := genValue(n.child[1])
next := getExec(n.tnext)
if len(n.child) > 3 {
args := n.child[2:]
l := len(args)
values := make([]func(*frame) reflect.Value, l)
for i, arg := range args {
switch {
case n.typ.val.cat == interfaceT:
values[i] = genValueInterface(arg)
case isRecursiveType(n.typ.val, n.typ.val.rtype):
values[i] = genValueRecursiveInterface(arg, n.typ.val.rtype)
case arg.typ.untyped:
values[i] = genValueAs(arg, n.child[1].typ.TypeOf().Elem())
default:
values[i] = genValue(arg)
}
}
n.exec = func(f *frame) bltn {
sl := make([]reflect.Value, l)
for i, v := range values {
sl[i] = v(f)
}
dest(f).Set(reflect.Append(value(f), sl...))
return next
}
} else {
var value0 func(*frame) reflect.Value
switch {
case n.typ.val.cat == interfaceT:
value0 = genValueInterface(n.child[2])
case isRecursiveType(n.typ.val, n.typ.val.rtype):
value0 = genValueRecursiveInterface(n.child[2], n.typ.val.rtype)
case n.child[2].typ.untyped:
value0 = genValueAs(n.child[2], n.child[1].typ.TypeOf().Elem())
default:
value0 = genValue(n.child[2])
}
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.Append(value(f), value0(f)))
return next
}
}
}
func _cap(n *node) {
dest := genValueOutput(n, reflect.TypeOf(int(0)))
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetInt(int64(value(f).Cap()))
return next
}
}
func _copy(n *node) {
in := []func(*frame) reflect.Value{genValueArray(n.child[1]), genValue(n.child[2])}
out := []func(*frame) reflect.Value{genValueOutput(n, reflect.TypeOf(0))}
genBuiltinDeferWrapper(n, in, out, func(args []reflect.Value) []reflect.Value {
cnt := reflect.Copy(args[0], args[1])
return []reflect.Value{reflect.ValueOf(cnt)}
})
}
func _close(n *node) {
in := []func(*frame) reflect.Value{genValue(n.child[1])}
genBuiltinDeferWrapper(n, in, nil, func(args []reflect.Value) []reflect.Value {
args[0].Close()
return nil
})
}
func _complex(n *node) {
dest := genValueOutput(n, reflect.TypeOf(complex(0, 0)))
c1, c2 := n.child[1], n.child[2]
convertLiteralValue(c1, floatType)
convertLiteralValue(c2, floatType)
value0 := genValue(c1)
value1 := genValue(c2)
next := getExec(n.tnext)
if typ := n.typ.TypeOf(); isComplex(typ) {
n.exec = func(f *frame) bltn {
dest(f).SetComplex(complex(value0(f).Float(), value1(f).Float()))
return next
}
} else {
// Not a complex type: ignore imaginary part
n.exec = func(f *frame) bltn {
dest(f).Set(value0(f).Convert(typ))
return next
}
}
}
func _imag(n *node) {
dest := genValueOutput(n, reflect.TypeOf(float64(0)))
convertLiteralValue(n.child[1], complexType)
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetFloat(imag(value(f).Complex()))
return next
}
}
func _real(n *node) {
dest := genValueOutput(n, reflect.TypeOf(float64(0)))
convertLiteralValue(n.child[1], complexType)
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetFloat(real(value(f).Complex()))
return next
}
}
func _delete(n *node) {
value0 := genValue(n.child[1]) // map
value1 := genValue(n.child[2]) // key
in := []func(*frame) reflect.Value{value0, value1}
var z reflect.Value
genBuiltinDeferWrapper(n, in, nil, func(args []reflect.Value) []reflect.Value {
args[0].SetMapIndex(args[1], z)
return nil
})
}
func _len(n *node) {
dest := genValueOutput(n, reflect.TypeOf(int(0)))
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetInt(int64(value(f).Len()))
return next
}
}
func _new(n *node) {
next := getExec(n.tnext)
typ := n.child[1].typ.TypeOf()
dest := genValueOutput(n, reflect.PtrTo(typ))
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.New(typ))
return next
}
}
// _make allocates and initializes a slice, a map or a chan.
func _make(n *node) {
next := getExec(n.tnext)
typ := n.child[1].typ.frameType()
dest := genValueOutput(n, typ)
switch typ.Kind() {
case reflect.Array, reflect.Slice:
value := genValue(n.child[2])
switch len(n.child) {
case 3:
n.exec = func(f *frame) bltn {
len := int(vInt(value(f)))
dest(f).Set(reflect.MakeSlice(typ, len, len))
return next
}
case 4:
value1 := genValue(n.child[3])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeSlice(typ, int(vInt(value(f))), int(vInt(value1(f)))))
return next
}
}
case reflect.Chan:
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeChan(typ, 0))
return next
}
case 3:
value := genValue(n.child[2])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeChan(typ, int(vInt(value(f)))))
return next
}
}
case reflect.Map:
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeMap(typ))
return next
}
case 3:
value := genValue(n.child[2])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeMapWithSize(typ, int(vInt(value(f)))))
return next
}
}
}
}
func reset(n *node) {
next := getExec(n.tnext)
switch l := len(n.child) - 1; l {
case 1:
typ := n.child[0].typ.frameType()
i := n.child[0].findex
n.exec = func(f *frame) bltn {
f.data[i] = reflect.New(typ).Elem()
return next
}
case 2:
c0, c1 := n.child[0], n.child[1]
i0, i1 := c0.findex, c1.findex
t0, t1 := c0.typ.frameType(), c1.typ.frameType()
n.exec = func(f *frame) bltn {
f.data[i0] = reflect.New(t0).Elem()
f.data[i1] = reflect.New(t1).Elem()
return next
}
default:
types := make([]reflect.Type, l)
index := make([]int, l)
for i, c := range n.child[:l] {
index[i] = c.findex
types[i] = c.typ.frameType()
}
n.exec = func(f *frame) bltn {
for i, ind := range index {
f.data[ind] = reflect.New(types[i]).Elem()
}
return next
}
}
}
// recv reads from a channel.
func recv(n *node) {
value := genValue(n.child[0])
tnext := getExec(n.tnext)
i := n.findex
l := n.level
if n.interp.cancelChan {
// Cancellable channel read
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
// Fast: channel read doesn't block
ch := value(f)
if r, ok := ch.TryRecv(); ok {
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
// Slow: channel read blocks, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, _ := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
if v.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
// Fast: channel read doesn't block
ch := value(f)
if r, ok := ch.TryRecv(); ok {
getFrame(f, l).data[i] = r
return tnext
}
// Slow: channel is blocked, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
var chosen int
chosen, getFrame(f, l).data[i], _ = reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
return tnext
}
}
} else {
// Blocking channel read (less overhead)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if r, _ := value(f).Recv(); r.Bool() {
getFrame(f, l).data[i] = r
return tnext
}
return fnext
}
} else {
i := n.findex
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i], _ = value(f).Recv()
return tnext
}
}
}
}
func recv2(n *node) {
vchan := genValue(n.child[0]) // chan
vres := genValue(n.anc.child[0]) // result
vok := genValue(n.anc.child[1]) // status
tnext := getExec(n.tnext)
if n.interp.cancelChan {
// Cancellable channel read
n.exec = func(f *frame) bltn {
ch, result, status := vchan(f), vres(f), vok(f)
// Fast: channel read doesn't block
if v, ok := ch.TryRecv(); ok {
result.Set(v)
status.SetBool(true)
return tnext
}
// Slow: channel is blocked, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, ok := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
result.Set(v)
status.SetBool(ok)
return tnext
}
} else {
// Blocking channel read (less overhead)
n.exec = func(f *frame) bltn {
v, ok := vchan(f).Recv()
vres(f).Set(v)
vok(f).SetBool(ok)
return tnext
}
}
}
func convertLiteralValue(n *node, t reflect.Type) {
switch {
case n.typ.cat == nilT:
// Create a zero value of target type.
n.rval = reflect.New(t).Elem()
case !(n.kind == basicLit || n.rval.IsValid()) || t == nil || t.Kind() == reflect.Interface || t.Kind() == reflect.Slice && t.Elem().Kind() == reflect.Interface:
// Skip non-constant values, undefined target type or interface target type.
case n.rval.IsValid():
// Convert constant value to target type.
convertConstantValue(n)
n.rval = n.rval.Convert(t)
default:
// Create a zero value of target type.
n.rval = reflect.New(t).Elem()
}
}
func convertConstantValue(n *node) {
if !n.rval.IsValid() {
return
}
c, ok := n.rval.Interface().(constant.Value)
if !ok {
return
}
var v reflect.Value
switch c.Kind() {
case constant.Bool:
v = reflect.ValueOf(constant.BoolVal(c))
case constant.String:
v = reflect.ValueOf(constant.StringVal(c))
case constant.Int:
i, x := constant.Int64Val(c)
if !x {
panic(fmt.Sprintf("constant %s overflows int64", c.ExactString()))
}
v = reflect.ValueOf(int(i))
case constant.Float:
f, _ := constant.Float64Val(c)
v = reflect.ValueOf(f)
case constant.Complex:
r, _ := constant.Float64Val(constant.Real(c))
i, _ := constant.Float64Val(constant.Imag(c))
v = reflect.ValueOf(complex(r, i))
}
n.rval = v.Convert(n.typ.TypeOf())
}
// Write to a channel.
func send(n *node) {
next := getExec(n.tnext)
value0 := genValue(n.child[0]) // channel
convertLiteralValue(n.child[1], n.child[0].typ.val.TypeOf())
value1 := genValue(n.child[1]) // value to send
if n.interp.cancelChan {
// Cancellable send
n.exec = func(f *frame) bltn {
ch, data := value0(f), value1(f)
// Fast: send on channel doesn't block
if ok := ch.TrySend(data); ok {
return next
}
// Slow: send on channel blocks, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, _, _ := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectSend, Chan: ch, Send: data}})
if chosen == 0 {
return nil
}
return next
}
} else {
// Blocking send (less overhead)
n.exec = func(f *frame) bltn {
value0(f).Send(value1(f))
return next
}
}
}
func clauseChanDir(n *node) (*node, *node, *node, reflect.SelectDir) {
dir := reflect.SelectDefault
var nod, assigned, ok *node
var stop bool
n.Walk(func(m *node) bool {
switch m.action {
case aRecv:
dir = reflect.SelectRecv
nod = m.child[0]
switch m.anc.action {
case aAssign:
assigned = m.anc.child[0]
case aAssignX:
assigned = m.anc.child[0]
ok = m.anc.child[1]
}
stop = true
case aSend:
dir = reflect.SelectSend
nod = m.child[0]
assigned = m.child[1]
stop = true
}
return !stop
}, nil)
return nod, assigned, ok, dir
}
func _select(n *node) {
nbClause := len(n.child)
chans := make([]*node, nbClause)
assigned := make([]*node, nbClause)
ok := make([]*node, nbClause)
clause := make([]bltn, nbClause)
chanValues := make([]func(*frame) reflect.Value, nbClause)
assignedValues := make([]func(*frame) reflect.Value, nbClause)
okValues := make([]func(*frame) reflect.Value, nbClause)
cases := make([]reflect.SelectCase, nbClause+1)
next := getExec(n.tnext)
for i := 0; i < nbClause; i++ {
cl := n.child[i]
if cl.kind == commClauseDefault {
cases[i].Dir = reflect.SelectDefault
if len(cl.child) == 0 {
clause[i] = func(*frame) bltn { return next }
} else {
clause[i] = getExec(cl.child[0].start)
}
continue
}
// The comm clause is in send or recv direction.
switch c0 := cl.child[0]; {
case len(cl.child) > 1:
// The comm clause contains a channel operation and a clause body.
clause[i] = getExec(cl.child[1].start)
chans[i], assigned[i], ok[i], cases[i].Dir = clauseChanDir(c0)
chanValues[i] = genValue(chans[i])
if assigned[i] != nil {
assignedValues[i] = genValue(assigned[i])
}
if ok[i] != nil {
okValues[i] = genValue(ok[i])
}
case c0.kind == exprStmt && len(c0.child) == 1 && c0.child[0].action == aRecv:
// The comm clause has an empty body clause after channel receive.
chanValues[i] = genValue(c0.child[0].child[0])
cases[i].Dir = reflect.SelectRecv
clause[i] = func(*frame) bltn { return next }
case c0.kind == sendStmt:
// The comm clause as an empty body clause after channel send.
chanValues[i] = genValue(c0.child[0])
cases[i].Dir = reflect.SelectSend
assignedValues[i] = genValue(c0.child[1])
clause[i] = func(*frame) bltn { return next }
}
}
n.exec = func(f *frame) bltn {
f.mutex.RLock()
cases[nbClause] = f.done
f.mutex.RUnlock()
for i := range cases[:nbClause] {
switch cases[i].Dir {
case reflect.SelectRecv:
cases[i].Chan = chanValues[i](f)
case reflect.SelectSend:
cases[i].Chan = chanValues[i](f)
cases[i].Send = assignedValues[i](f)
case reflect.SelectDefault:
// Keep zero values for comm clause
}
}
j, v, s := reflect.Select(cases)
if j == nbClause {
return nil
}
if cases[j].Dir == reflect.SelectRecv && assignedValues[j] != nil {
assignedValues[j](f).Set(v)
if ok[j] != nil {
okValues[j](f).SetBool(s)
}
}
return clause[j]
}
}
// slice expression: array[low:high:max].
func slice(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
value0 := genValueArray(n.child[0]) // array
value1 := genValue(n.child[1]) // low (if 2 or 3 args) or high (if 1 arg)
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(int(vInt(value1(f))), a.Len())
return next
}
case 3:
value2 := genValue(n.child[2]) // max
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(int(vInt(value1(f))), int(vInt(value2(f))))
return next
}
case 4:
value2 := genValue(n.child[2])
value3 := genValue(n.child[3])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice3(int(vInt(value1(f))), int(vInt(value2(f))), int(vInt(value3(f))))
return next
}
}
}
// slice expression, no low value: array[:high:max].
func slice0(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
value0 := genValueArray(n.child[0])
switch len(n.child) {
case 1:
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(0, a.Len())
return next
}
case 2:
value1 := genValue(n.child[1])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(0, int(vInt(value1(f))))
return next
}
case 3:
value1 := genValue(n.child[1])
value2 := genValue(n.child[2])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice3(0, int(vInt(value1(f))), int(vInt(value2(f))))
return next
}
}
}
func isNil(n *node) {
var value func(*frame) reflect.Value
c0 := n.child[0]
if c0.typ.cat == funcT {
value = genValueAsFunctionWrapper(c0)
} else {
value = genValue(c0)
}
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
vi := value(f).Interface().(valueInterface)
if (vi == valueInterface{} ||
vi.node.kind == basicLit && vi.node.typ.cat == nilT) {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
if value(f).IsNil() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
}
} else {
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value(f).Interface().(valueInterface) == valueInterface{})
return tnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value(f).IsNil())
return tnext
}
}
}
}
func isNotNil(n *node) {
var value func(*frame) reflect.Value
c0 := n.child[0]
if c0.typ.cat == funcT {
value = genValueAsFunctionWrapper(c0)
} else {
value = genValue(c0)
}
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
vi := value(f).Interface().(valueInterface)
if (vi == valueInterface{} ||
vi.node.kind == basicLit && vi.node.typ.cat == nilT) {
dest(f).SetBool(false)
return fnext
}
dest(f).SetBool(true)
return tnext
}
} else {
n.exec = func(f *frame) bltn {
if value(f).IsNil() {
dest(f).SetBool(false)
return fnext
}
dest(f).SetBool(true)
return tnext
}
}
} else {
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
dest(f).SetBool(!(value(f).Interface().(valueInterface) == valueInterface{}))
return tnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(!value(f).IsNil())
return tnext
}
}
}
}
func complexConst(n *node) {
if v0, v1 := n.child[1].rval, n.child[2].rval; v0.IsValid() && v1.IsValid() {
n.rval = reflect.ValueOf(complex(vFloat(v0), vFloat(v1)))
n.gen = nop
}
}
func imagConst(n *node) {
if v := n.child[1].rval; v.IsValid() {
n.rval = reflect.ValueOf(imag(v.Complex()))
n.gen = nop
}
}
func realConst(n *node) {
if v := n.child[1].rval; v.IsValid() {
n.rval = reflect.ValueOf(real(v.Complex()))
n.gen = nop
}
}