Files
moxa/interp/run.go
mpl 662838fd80 interp: fix and refactor typeAssertStatus in
typeAssertStatus deals with the 3rd form of type assertion ("_, ok"), for
when one does not care about the result of the assertion itself.
Some cases for it, which are already fixed for the two other forms of
type assertions, had not been fixed for this form yet.

Therefore, this change fixes such cases for this form, while integrating
typeAssertStatus to the same code path as for the two other forms.
2020-12-07 15:58:04 +01:00

3407 lines
80 KiB
Go

package interp
//go:generate go run ../internal/cmd/genop/genop.go
import (
"errors"
"fmt"
"go/constant"
"log"
"reflect"
"regexp"
"sync"
"unsafe"
)
// bltn type defines functions which run at CFG execution.
type bltn func(f *frame) bltn
// bltnGenerator type defines a builtin generator function.
type bltnGenerator func(n *node)
var builtin = [...]bltnGenerator{
aNop: nop,
aAddr: addr,
aAssign: assign,
aAdd: add,
aAddAssign: addAssign,
aAnd: and,
aAndAssign: andAssign,
aAndNot: andNot,
aAndNotAssign: andNotAssign,
aBitNot: bitNot,
aCall: call,
aCallSlice: call,
aCase: _case,
aCompositeLit: arrayLit,
aDec: dec,
aEqual: equal,
aGetFunc: getFunc,
aGreater: greater,
aGreaterEqual: greaterEqual,
aInc: inc,
aLand: land,
aLor: lor,
aLower: lower,
aLowerEqual: lowerEqual,
aMul: mul,
aMulAssign: mulAssign,
aNeg: neg,
aNot: not,
aNotEqual: notEqual,
aOr: or,
aOrAssign: orAssign,
aPos: pos,
aQuo: quo,
aQuoAssign: quoAssign,
aRange: _range,
aRecv: recv,
aRem: rem,
aRemAssign: remAssign,
aReturn: _return,
aSend: send,
aShl: shl,
aShlAssign: shlAssign,
aShr: shr,
aShrAssign: shrAssign,
aSlice: slice,
aSlice0: slice0,
aStar: deref,
aSub: sub,
aSubAssign: subAssign,
aTypeAssert: typeAssertShort,
aXor: xor,
aXorAssign: xorAssign,
}
var receiverStripperRxp *regexp.Regexp
func init() {
re := `func\(((.*?(, |\)))(.*))`
var err error
receiverStripperRxp, err = regexp.Compile(re)
if err != nil {
panic(err)
}
}
type valueInterface struct {
node *node
value reflect.Value
}
var floatType, complexType reflect.Type
func init() {
floatType = reflect.ValueOf(0.0).Type()
complexType = reflect.ValueOf(complex(0, 0)).Type()
}
func (interp *Interpreter) run(n *node, cf *frame) {
if n == nil {
return
}
var f *frame
if cf == nil {
f = interp.frame
} else {
f = newFrame(cf, len(n.types), interp.runid())
}
interp.mutex.RLock()
c := reflect.ValueOf(interp.done)
interp.mutex.RUnlock()
f.mutex.Lock()
f.done = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: c}
f.mutex.Unlock()
for i, t := range n.types {
f.data[i] = reflect.New(t).Elem()
}
runCfg(n.start, f)
}
// originalExecNode looks in the tree of nodes for the node which has exec,
// aside from n, in order to know where n "inherited" that exec from.
func originalExecNode(n *node, exec bltn) *node {
execAddr := reflect.ValueOf(exec).Pointer()
var originalNode *node
seen := make(map[int64]struct{})
root := n
for {
root = root.anc
if root == nil {
break
}
if _, ok := seen[root.index]; ok {
continue
}
root.Walk(func(wn *node) bool {
if _, ok := seen[wn.index]; ok {
return true
}
seen[wn.index] = struct{}{}
if wn.index == n.index {
return true
}
if wn.exec == nil {
return true
}
if reflect.ValueOf(wn.exec).Pointer() == execAddr {
originalNode = wn
return false
}
return true
}, nil)
if originalNode != nil {
break
}
}
return originalNode
}
// Functions set to run during execution of CFG.
// runCfg executes a node AST by walking its CFG and running node builtin at each step.
func runCfg(n *node, f *frame) {
var exec bltn
defer func() {
f.mutex.Lock()
f.recovered = recover()
for _, val := range f.deferred {
val[0].Call(val[1:])
}
if f.recovered != nil {
oNode := originalExecNode(n, exec)
if oNode == nil {
oNode = n
}
fmt.Println(oNode.cfgErrorf("panic"))
f.mutex.Unlock()
panic(f.recovered)
}
f.mutex.Unlock()
}()
for exec = n.exec; exec != nil && f.runid() == n.interp.runid(); {
exec = exec(f)
}
}
func stripReceiverFromArgs(signature string) (string, error) {
fields := receiverStripperRxp.FindStringSubmatch(signature)
if len(fields) < 5 {
return "", errors.New("error while matching method signature")
}
if fields[3] == ")" {
return fmt.Sprintf("func()%s", fields[4]), nil
}
return fmt.Sprintf("func(%s", fields[4]), nil
}
func typeAssertShort(n *node) {
typeAssert(n, true, false)
}
func typeAssertLong(n *node) {
typeAssert(n, true, true)
}
func typeAssertStatus(n *node) {
typeAssert(n, false, true)
}
func typeAssert(n *node, withResult, withOk bool) {
c0, c1 := n.child[0], n.child[1]
value := genValue(c0) // input value
var value0, value1 func(*frame) reflect.Value
setStatus := false
switch {
case withResult && withOk:
value0 = genValue(n.anc.child[0]) // returned result
value1 = genValue(n.anc.child[1]) // returned status
setStatus = n.anc.child[1].ident != "_" // do not assign status to "_"
case withResult && !withOk:
value0 = genValue(n) // returned result
case !withResult && withOk:
value1 = genValue(n.anc.child[1]) // returned status
setStatus = n.anc.child[1].ident != "_" // do not assign status to "_"
}
typ := c1.typ // type to assert or convert to
typID := typ.id()
rtype := typ.rtype // type to assert
next := getExec(n.tnext)
switch {
case isInterfaceSrc(typ):
n.exec = func(f *frame) bltn {
valf := value(f)
v, ok := valf.Interface().(valueInterface)
if setStatus {
defer func() {
value1(f).SetBool(ok)
}()
}
if !ok {
if !withOk {
panic(n.cfgErrorf("interface conversion: nil is not %v", typID))
}
return next
}
if v.node.typ.id() == typID {
if withResult {
value0(f).Set(valf)
}
return next
}
m0 := v.node.typ.methods()
m1 := typ.methods()
if len(m0) < len(m1) {
ok = false
if !withOk {
panic(n.cfgErrorf("interface conversion: %v is not %v", v.node.typ.id(), typID))
}
return next
}
for k, meth1 := range m1 {
var meth0 string
meth0, ok = m0[k]
if !ok {
return next
}
// As far as we know this equality check can fail because they are two ways to
// represent the signature of a method: one where the receiver appears before the
// func keyword, and one where it is just a func signature, and the receiver is
// seen as the first argument. That's why if that equality fails, we try harder to
// compare them afterwards. Hopefully that is the only reason this equality can fail.
if meth0 == meth1 {
continue
}
tm := lookupFieldOrMethod(v.node.typ, k)
if tm == nil {
ok = false
return next
}
var err error
meth0, err = stripReceiverFromArgs(meth0)
if err != nil {
ok = false
return next
}
if meth0 != meth1 {
ok = false
return next
}
}
if withResult {
value0(f).Set(valf)
}
return next
}
case isInterface(typ):
n.exec = func(f *frame) bltn {
var leftType reflect.Type
v := value(f)
val, ok := v.Interface().(valueInterface)
if setStatus {
defer func() {
value1(f).SetBool(ok)
}()
}
if ok && val.node.typ.cat != valueT {
m0 := val.node.typ.methods()
m1 := typ.methods()
if len(m0) < len(m1) {
ok = false
return next
}
for k, meth1 := range m1 {
var meth0 string
meth0, ok = m0[k]
if !ok {
return next
}
if meth0 != meth1 {
ok = false
return next
}
}
if withResult {
value0(f).Set(genInterfaceWrapper(val.node, rtype)(f))
}
ok = true
return next
}
if ok {
v = val.value
leftType = val.node.typ.rtype
} else {
v = v.Elem()
leftType = v.Type()
ok = true
}
ok = v.IsValid()
if !ok {
if !withOk {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", rtype.String()))
}
return next
}
ok = canAssertTypes(leftType, rtype)
if !ok {
if !withOk {
method := firstMissingMethod(leftType, rtype)
panic(fmt.Sprintf("interface conversion: %s is not %s: missing method %s", leftType.String(), rtype.String(), method))
}
return next
}
if withResult {
value0(f).Set(v)
}
return next
}
case n.child[0].typ.cat == valueT || n.child[0].typ.cat == errorT:
n.exec = func(f *frame) bltn {
v := value(f).Elem()
ok := v.IsValid()
if setStatus {
defer func() {
value1(f).SetBool(ok)
}()
}
if !ok {
if !withOk {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", rtype.String()))
}
return next
}
ok = canAssertTypes(v.Type(), rtype)
if !ok {
if !withOk {
method := firstMissingMethod(v.Type(), rtype)
panic(fmt.Sprintf("interface conversion: %s is not %s: missing method %s", v.Type().String(), rtype.String(), method))
}
return next
}
if withResult {
value0(f).Set(v)
}
return next
}
default:
n.exec = func(f *frame) bltn {
v, ok := value(f).Interface().(valueInterface)
if setStatus {
defer func() {
value1(f).SetBool(ok)
}()
}
if !ok || !v.value.IsValid() {
ok = false
if !withOk {
panic(fmt.Sprintf("interface conversion: interface {} is nil, not %s", rtype.String()))
}
return next
}
ok = canAssertTypes(v.value.Type(), rtype)
if !ok {
if !withOk {
panic(fmt.Sprintf("interface conversion: interface {} is %s, not %s", v.value.Type().String(), rtype.String()))
}
return next
}
if withResult {
value0(f).Set(v.value)
}
return next
}
}
}
func canAssertTypes(src, dest reflect.Type) bool {
if dest == nil {
return false
}
if src == dest {
return true
}
if dest.Kind() == reflect.Interface && src.Implements(dest) {
return true
}
if src.AssignableTo(dest) {
return true
}
return false
}
func firstMissingMethod(src, dest reflect.Type) string {
for i := 0; i < dest.NumMethod(); i++ {
m := dest.Method(i).Name
if _, ok := src.MethodByName(m); !ok {
return m
}
}
return ""
}
func convert(n *node) {
dest := genValue(n)
c := n.child[1]
typ := n.child[0].typ.TypeOf()
next := getExec(n.tnext)
if c.isNil() { // convert nil to type
if n.child[0].typ.cat == interfaceT {
typ = reflect.TypeOf((*valueInterface)(nil)).Elem()
}
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.New(typ).Elem())
return next
}
return
}
if n.child[0].typ.cat == funcT && c.typ.cat == funcT {
value := genValue(c)
n.exec = func(f *frame) bltn {
n, ok := value(f).Interface().(*node)
if !ok || !n.typ.convertibleTo(c.typ) {
panic("cannot convert")
}
n1 := *n
n1.typ = c.typ
dest(f).Set(reflect.ValueOf(&n1))
return next
}
return
}
doConvert := true
var value func(*frame) reflect.Value
switch {
case c.typ.cat == funcT:
value = genFunctionWrapper(c)
case n.child[0].typ.cat == funcT && c.typ.cat == valueT:
doConvert = false
value = genValueNode(c)
default:
value = genValue(c)
}
for _, con := range n.interp.hooks.convert {
if c.typ.rtype == nil {
continue
}
fn := con(c.typ.rtype, typ)
if fn == nil {
continue
}
n.exec = func(f *frame) bltn {
fn(value(f), dest(f))
return next
}
return
}
n.exec = func(f *frame) bltn {
if doConvert {
dest(f).Set(value(f).Convert(typ))
} else {
dest(f).Set(value(f))
}
return next
}
}
func isRecursiveType(t *itype, rtype reflect.Type) bool {
if t.cat == structT && rtype.Kind() == reflect.Interface {
return true
}
switch t.cat {
case ptrT, arrayT, mapT:
return isRecursiveType(t.val, t.val.rtype)
default:
return false
}
}
func assign(n *node) {
next := getExec(n.tnext)
dvalue := make([]func(*frame) reflect.Value, n.nleft)
ivalue := make([]func(*frame) reflect.Value, n.nleft)
svalue := make([]func(*frame) reflect.Value, n.nleft)
var sbase int
if n.nright > 0 {
sbase = len(n.child) - n.nright
}
for i := 0; i < n.nleft; i++ {
dest, src := n.child[i], n.child[sbase+i]
switch {
case dest.typ.cat == interfaceT:
svalue[i] = genValueInterface(src)
case (dest.typ.cat == valueT || dest.typ.cat == errorT) && dest.typ.rtype.Kind() == reflect.Interface:
svalue[i] = genInterfaceWrapper(src, dest.typ.rtype)
case src.typ.cat == funcT && dest.typ.cat == valueT:
svalue[i] = genFunctionWrapper(src)
case src.typ.cat == funcT && isField(dest):
svalue[i] = genFunctionWrapper(src)
case dest.typ.cat == funcT && src.typ.cat == valueT:
svalue[i] = genValueNode(src)
case src.kind == basicLit && src.val == nil:
t := dest.typ.TypeOf()
svalue[i] = func(*frame) reflect.Value { return reflect.New(t).Elem() }
case isRecursiveType(dest.typ, dest.typ.rtype):
svalue[i] = genValueRecursiveInterface(src, dest.typ.rtype)
case isRecursiveType(src.typ, src.typ.rtype):
svalue[i] = genValueRecursiveInterfacePtrValue(src)
case src.typ.untyped && isComplex(dest.typ.TypeOf()):
svalue[i] = genValueComplex(src)
case src.typ.untyped && !dest.typ.untyped:
svalue[i] = genValueAs(src, dest.typ.TypeOf())
default:
svalue[i] = genValue(src)
}
if isMapEntry(dest) {
if dest.child[1].typ.cat == interfaceT { // key
ivalue[i] = genValueInterface(dest.child[1])
} else {
ivalue[i] = genValue(dest.child[1])
}
dvalue[i] = genValue(dest.child[0])
} else {
dvalue[i] = genValue(dest)
}
}
if n.nleft == 1 {
switch s, d, i := svalue[0], dvalue[0], ivalue[0]; {
case n.child[0].ident == "_":
n.exec = func(f *frame) bltn {
return next
}
case i != nil:
n.exec = func(f *frame) bltn {
d(f).SetMapIndex(i(f), s(f))
return next
}
default:
n.exec = func(f *frame) bltn {
d(f).Set(s(f))
return next
}
}
} else {
types := make([]reflect.Type, n.nright)
for i := range types {
var t reflect.Type
switch typ := n.child[sbase+i].typ; typ.cat {
case funcT:
t = reflect.TypeOf((*node)(nil))
case interfaceT:
t = reflect.TypeOf((*valueInterface)(nil)).Elem()
default:
t = typ.TypeOf()
}
types[i] = t
}
// To handle swap in multi-assign:
// evaluate and copy all values in assign right hand side into temporary
// then evaluate assign left hand side and copy temporary into it
n.exec = func(f *frame) bltn {
t := make([]reflect.Value, len(svalue))
for i, s := range svalue {
if n.child[i].ident == "_" {
continue
}
t[i] = reflect.New(types[i]).Elem()
t[i].Set(s(f))
}
for i, d := range dvalue {
if n.child[i].ident == "_" {
continue
}
if j := ivalue[i]; j != nil {
d(f).SetMapIndex(j(f), t[i]) // Assign a map entry
} else {
d(f).Set(t[i]) // Assign a var or array/slice entry
}
}
return next
}
}
}
func not(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
tnext := getExec(n.tnext)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if !value(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(!value(f).Bool())
return tnext
}
}
}
func addr(n *node) {
dest := genValue(n)
next := getExec(n.tnext)
c0 := n.child[0]
value := genValue(c0)
switch c0.typ.cat {
case interfaceT:
i := n.findex
l := n.level
n.exec = func(f *frame) bltn {
v := value(f).Interface().(valueInterface).value
getFrame(f, l).data[i] = reflect.ValueOf(v.Interface())
return next
}
default:
n.exec = func(f *frame) bltn {
dest(f).Set(value(f).Addr())
return next
}
}
}
func deref(n *node) {
value := genValue(n.child[0])
tnext := getExec(n.tnext)
i := n.findex
l := n.level
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value(f).Elem()
if r.Bool() {
getFrame(f, l).data[i] = r
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem()
return tnext
}
}
}
func _print(n *node) {
child := n.child[1:]
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
values[i] = genValue(c)
}
out := n.interp.stdout
genBuiltinDeferWrapper(n, values, nil, func(args []reflect.Value) []reflect.Value {
for i, value := range args {
if i > 0 {
fmt.Fprintf(out, " ")
}
fmt.Fprintf(out, "%v", value)
}
return nil
})
}
func _println(n *node) {
child := n.child[1:]
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
values[i] = genValue(c)
}
out := n.interp.stdout
genBuiltinDeferWrapper(n, values, nil, func(args []reflect.Value) []reflect.Value {
for i, value := range args {
if i > 0 {
fmt.Fprintf(out, " ")
}
fmt.Fprintf(out, "%v", value)
}
fmt.Fprintln(out, "")
return nil
})
}
func _recover(n *node) {
tnext := getExec(n.tnext)
dest := genValue(n)
n.exec = func(f *frame) bltn {
if f.anc.recovered == nil {
dest(f).Set(reflect.ValueOf(valueInterface{}))
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, reflect.ValueOf(f.anc.recovered)}))
f.anc.recovered = nil
}
return tnext
}
}
func _panic(n *node) {
value := genValue(n.child[1])
n.exec = func(f *frame) bltn {
panic(value(f))
}
}
func genBuiltinDeferWrapper(n *node, in, out []func(*frame) reflect.Value, fn func([]reflect.Value) []reflect.Value) {
next := getExec(n.tnext)
if n.anc.kind == deferStmt {
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(in)+1)
inTypes := make([]reflect.Type, len(in))
for i, v := range in {
val[i+1] = v(f)
inTypes[i] = val[i+1].Type()
}
outTypes := make([]reflect.Type, len(out))
for i, v := range out {
outTypes[i] = v(f).Type()
}
funcType := reflect.FuncOf(inTypes, outTypes, false)
val[0] = reflect.MakeFunc(funcType, fn)
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return next
}
return
}
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(in))
for i, v := range in {
val[i] = v(f)
}
dests := fn(val)
for i, dest := range dests {
out[i](f).Set(dest)
}
return next
}
}
func genFunctionWrapper(n *node) func(*frame) reflect.Value {
var def *node
var ok bool
if n.kind == basicLit {
return func(f *frame) reflect.Value { return n.rval }
}
if def, ok = n.val.(*node); !ok {
return genValueAsFunctionWrapper(n)
}
start := def.child[3].start
numRet := len(def.typ.ret)
var rcvr func(*frame) reflect.Value
if n.recv != nil {
if n.recv.node.typ.cat != defRecvType(def).cat {
rcvr = genValueRecvIndirect(n)
} else {
rcvr = genValueRecv(n)
}
}
funcType := n.typ.TypeOf()
return func(f *frame) reflect.Value {
if n.frame != nil { // Use closure context if defined
f = n.frame
}
return reflect.MakeFunc(funcType, func(in []reflect.Value) []reflect.Value {
// Allocate and init local frame. All values to be settable and addressable.
fr := newFrame(f, len(def.types), f.runid())
d := fr.data
for i, t := range def.types {
d[i] = reflect.New(t).Elem()
}
// Copy method receiver as first argument, if defined
if rcvr != nil {
src, dest := rcvr(f), d[numRet]
if src.Type().Kind() != dest.Type().Kind() {
dest.Set(src.Addr())
} else {
if wrappedSrc, ok := src.Interface().(valueInterface); ok {
src = wrappedSrc.value
}
dest.Set(src)
}
d = d[numRet+1:]
} else {
d = d[numRet:]
}
// Copy function input arguments in local frame
for i, arg := range in {
typ := def.typ.arg[i]
switch {
case typ.cat == interfaceT:
d[i].Set(reflect.ValueOf(valueInterface{value: arg.Elem()}))
case typ.cat == funcT && arg.Kind() == reflect.Func:
d[i].Set(reflect.ValueOf(genFunctionNode(arg)))
default:
d[i].Set(arg)
}
}
// Interpreter code execution
runCfg(start, fr)
result := fr.data[:numRet]
for i, r := range result {
if v, ok := r.Interface().(*node); ok {
result[i] = genFunctionWrapper(v)(f)
}
if def.typ.ret[i].cat == interfaceT {
x := result[i].Interface().(valueInterface).value
result[i] = reflect.New(reflect.TypeOf((*interface{})(nil)).Elem()).Elem()
result[i].Set(x)
}
}
return result
})
}
}
func genFunctionNode(v reflect.Value) *node {
return &node{kind: funcType, action: aNop, rval: v, typ: &itype{cat: valueT, rtype: v.Type()}}
}
func genInterfaceWrapper(n *node, typ reflect.Type) func(*frame) reflect.Value {
value := genValue(n)
if typ == nil || typ.Kind() != reflect.Interface || typ.NumMethod() == 0 || n.typ.cat == valueT {
return value
}
if nt := n.typ.TypeOf(); nt != nil && nt.Kind() == reflect.Interface {
return value
}
mn := typ.NumMethod()
names := make([]string, mn)
methods := make([]*node, mn)
indexes := make([][]int, mn)
for i := 0; i < mn; i++ {
names[i] = typ.Method(i).Name
methods[i], indexes[i] = n.typ.lookupMethod(names[i])
if methods[i] == nil && n.typ.cat != nilT {
// interpreted method not found, look for binary method, possibly embedded
_, indexes[i], _, _ = n.typ.lookupBinMethod(names[i])
}
}
wrap := n.interp.getWrapper(typ)
return func(f *frame) reflect.Value {
v := value(f)
vv := v
switch v.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
if v.IsNil() {
return reflect.New(typ).Elem()
}
if v.Kind() == reflect.Ptr {
vv = v.Elem()
}
}
w := reflect.New(wrap).Elem()
for i, m := range methods {
if m == nil {
if r := v.MethodByName(names[i]); r.IsValid() {
w.Field(i).Set(r)
continue
}
o := vv.FieldByIndex(indexes[i])
if r := o.MethodByName(names[i]); r.IsValid() {
w.Field(i).Set(r)
} else {
log.Println(n.cfgErrorf("genInterfaceWrapper error, no method %s", names[i]))
}
continue
}
nod := *m
nod.recv = &receiver{n, v, indexes[i]}
w.Field(i).Set(genFunctionWrapper(&nod)(f))
}
return w
}
}
func call(n *node) {
goroutine := n.anc.kind == goStmt
var method bool
value := genValue(n.child[0])
var values []func(*frame) reflect.Value
recvIndexLater := false
switch {
case n.child[0].recv != nil:
// Compute method receiver value.
if isRecursiveType(n.child[0].recv.node.typ, n.child[0].recv.node.typ.rtype) {
values = append(values, genValueRecvInterfacePtr(n.child[0]))
} else {
values = append(values, genValueRecv(n.child[0]))
}
method = true
case len(n.child[0].child) > 0 && n.child[0].child[0].typ != nil && n.child[0].child[0].typ.cat == interfaceT:
recvIndexLater = true
values = append(values, genValueBinRecv(n.child[0], &receiver{node: n.child[0].child[0]}))
value = genValueBinMethodOnInterface(n, value)
method = true
case n.child[0].action == aMethod:
// Add a place holder for interface method receiver.
values = append(values, nil)
method = true
}
numRet := len(n.child[0].typ.ret)
variadic := variadicPos(n)
child := n.child[1:]
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
// Compute input argument value functions.
for i, c := range child {
switch {
case isBinCall(c):
// Handle nested function calls: pass returned values as arguments.
numOut := c.child[0].typ.rtype.NumOut()
for j := 0; j < numOut; j++ {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
case isRegularCall(c):
// Arguments are return values of a nested function call.
for j := range c.child[0].typ.ret {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
default:
var arg *itype
if variadic >= 0 && i >= variadic {
arg = n.child[0].typ.arg[variadic].val
} else {
arg = n.child[0].typ.arg[i]
}
if c.kind == basicLit || c.rval.IsValid() {
argType := arg.TypeOf()
convertLiteralValue(c, argType)
}
switch {
case arg.cat == interfaceT:
values = append(values, genValueInterface(c))
case isRecursiveType(c.typ, c.typ.rtype):
values = append(values, genValueRecursiveInterfacePtrValue(c))
default:
values = append(values, genValue(c))
}
}
}
// Compute output argument value functions.
rtypes := n.child[0].typ.ret
rvalues := make([]func(*frame) reflect.Value, len(rtypes))
switch n.anc.kind {
case defineXStmt, assignXStmt:
for i := range rvalues {
c := n.anc.child[i]
switch {
case c.ident == "_":
// Skip assigning return value to blank var.
case c.typ.cat == interfaceT && rtypes[i].cat != interfaceT:
rvalues[i] = genValueInterfaceValue(c)
default:
rvalues[i] = genValue(c)
}
}
case returnStmt:
// Function call from a return statement: forward return values (always at frame start).
for i := range rtypes {
j := n.findex + i
ret := n.child[0].typ.ret[i]
callret := n.anc.val.(*node).typ.ret[i]
if callret.cat == interfaceT && ret.cat != interfaceT {
// Wrap the returned value in a valueInterface in caller frame.
rvalues[i] = func(f *frame) reflect.Value {
v := reflect.New(ret.rtype).Elem()
f.data[j].Set(reflect.ValueOf(valueInterface{n, v}))
return v
}
} else {
// Set the return value location in return value of caller frame.
rvalues[i] = func(f *frame) reflect.Value { return f.data[j] }
}
}
default:
// Multiple return values frame index are indexed from the node frame index.
l := n.level
for i := range rtypes {
j := n.findex + i
rvalues[i] = func(f *frame) reflect.Value { return getFrame(f, l).data[j] }
}
}
if n.anc.kind == deferStmt {
// Store function call in frame for deferred execution.
value = genFunctionWrapper(n.child[0])
if method {
// The receiver is already passed in the function wrapper, skip it.
values = values[1:]
}
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, len(values)+1)
val[0] = value(f)
for i, v := range values {
val[i+1] = v(f)
}
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return tnext
}
return
}
n.exec = func(f *frame) bltn {
var def *node
var ok bool
bf := value(f)
if def, ok = bf.Interface().(*node); ok {
bf = def.rval
}
// Call bin func if defined
if bf.IsValid() {
in := make([]reflect.Value, len(values))
for i, v := range values {
in[i] = v(f)
}
if goroutine {
go bf.Call(in)
return tnext
}
out := bf.Call(in)
for i, v := range rvalues {
if v != nil {
v(f).Set(out[i])
}
}
if fnext != nil && !out[0].Bool() {
return fnext
}
return tnext
}
anc := f
// Get closure frame context (if any)
if def.frame != nil {
anc = def.frame
}
nf := newFrame(anc, len(def.types), anc.runid())
var vararg reflect.Value
// Init return values
for i, v := range rvalues {
if v != nil {
nf.data[i] = v(f)
} else {
nf.data[i] = reflect.New(def.types[i]).Elem()
}
}
// Init local frame values
for i, t := range def.types[numRet:] {
nf.data[numRet+i] = reflect.New(t).Elem()
}
// Init variadic argument vector
varIndex := variadic
if variadic >= 0 {
if method {
vararg = nf.data[numRet+variadic+1]
varIndex++
} else {
vararg = nf.data[numRet+variadic]
}
}
// Copy input parameters from caller
if dest := nf.data[numRet:]; len(dest) > 0 {
for i, v := range values {
switch {
case method && i == 0:
// compute receiver
var src reflect.Value
if v == nil {
src = def.recv.val
} else {
src = v(f)
}
if recvIndexLater && def.recv != nil && len(def.recv.index) > 0 {
if src.Kind() == reflect.Ptr {
src = src.Elem().FieldByIndex(def.recv.index)
} else {
src = src.FieldByIndex(def.recv.index)
}
}
// Accommodate to receiver type
d := dest[0]
if ks, kd := src.Kind(), d.Kind(); ks != kd {
if kd == reflect.Ptr {
d.Set(src.Addr())
} else {
d.Set(src.Elem())
}
} else {
d.Set(src)
}
case variadic >= 0 && i >= varIndex:
if v(f).Type() == vararg.Type() {
vararg.Set(v(f))
} else {
vararg.Set(reflect.Append(vararg, v(f)))
}
default:
val := v(f)
if !val.IsZero() {
dest[i].Set(val)
}
}
}
}
// Execute function body
if goroutine {
go runCfg(def.child[3].start, nf)
return tnext
}
runCfg(def.child[3].start, nf)
// Handle branching according to boolean result
if fnext != nil && !nf.data[0].Bool() {
return fnext
}
return tnext
}
}
func getFrame(f *frame, l int) *frame {
switch l {
case 0:
return f
case 1:
return f.anc
case 2:
return f.anc.anc
}
for ; l > 0; l-- {
f = f.anc
}
return f
}
// Callbin calls a function from a bin import, accessible through reflect.
func callBin(n *node) {
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
child := n.child[1:]
value := genValue(n.child[0])
var values []func(*frame) reflect.Value
funcType := n.child[0].typ.rtype
variadic := -1
if funcType.IsVariadic() {
variadic = funcType.NumIn() - 1
}
// A method signature obtained from reflect.Type includes receiver as 1st arg, except for interface types.
rcvrOffset := 0
if recv := n.child[0].recv; recv != nil && !isInterface(recv.node.typ) {
if variadic > 0 || funcType.NumIn() > len(child) {
rcvrOffset = 1
}
}
// Determine if we should use `Call` or `CallSlice` on the function Value.
callFn := func(v reflect.Value, in []reflect.Value) []reflect.Value { return v.Call(in) }
if n.action == aCallSlice {
callFn = func(v reflect.Value, in []reflect.Value) []reflect.Value { return v.CallSlice(in) }
}
for i, c := range child {
var defType reflect.Type
if variadic >= 0 && i >= variadic {
defType = funcType.In(variadic)
} else {
defType = funcType.In(rcvrOffset + i)
}
switch {
case isBinCall(c):
// Handle nested function calls: pass returned values as arguments
numOut := c.child[0].typ.rtype.NumOut()
for j := 0; j < numOut; j++ {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
case isRegularCall(c):
// Handle nested function calls: pass returned values as arguments
for j := range c.child[0].typ.ret {
ind := c.findex + j
values = append(values, func(f *frame) reflect.Value { return f.data[ind] })
}
default:
if c.kind == basicLit || c.rval.IsValid() {
// Convert literal value (untyped) to function argument type (if not an interface{})
var argType reflect.Type
if variadic >= 0 && i >= variadic {
argType = funcType.In(variadic).Elem()
} else {
argType = funcType.In(i + rcvrOffset)
}
convertLiteralValue(c, argType)
if !reflect.ValueOf(c.val).IsValid() { // Handle "nil"
c.val = reflect.Zero(argType)
}
}
switch c.typ.cat {
case funcT:
values = append(values, genFunctionWrapper(c))
case interfaceT:
values = append(values, genValueInterfaceValue(c))
case arrayT, variadicT:
switch c.typ.val.cat {
case interfaceT:
values = append(values, genValueInterfaceArray(c))
default:
values = append(values, genInterfaceWrapper(c, defType))
}
case ptrT:
if c.typ.val.cat == valueT {
values = append(values, genValue(c))
} else {
values = append(values, genInterfaceWrapper(c, defType))
}
case valueT:
values = append(values, genValue(c))
default:
values = append(values, genInterfaceWrapper(c, defType))
}
}
}
l := len(values)
switch {
case n.anc.kind == deferStmt:
// Store function call in frame for deferred execution.
n.exec = func(f *frame) bltn {
val := make([]reflect.Value, l+1)
val[0] = value(f)
for i, v := range values {
val[i+1] = v(f)
}
f.deferred = append([][]reflect.Value{val}, f.deferred...)
return tnext
}
case n.anc.kind == goStmt:
// Execute function in a goroutine, discard results.
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
go callFn(value(f), in)
return tnext
}
case fnext != nil:
// Handle branching according to boolean result.
index := n.findex
level := n.level
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
res := callFn(value(f), in)
b := res[0].Bool()
getFrame(f, level).data[index].SetBool(b)
if b {
return tnext
}
return fnext
}
default:
switch n.anc.action {
case aAssignX:
// The function call is part of an assign expression, store results direcly
// to assigned location, to avoid an additional frame copy.
// The optimization of aAssign is handled in assign(), and should not
// be handled here.
rvalues := make([]func(*frame) reflect.Value, funcType.NumOut())
for i := range rvalues {
c := n.anc.child[i]
if c.ident != "_" {
rvalues[i] = genValue(c)
}
}
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i, v := range rvalues {
if v != nil {
v(f).Set(out[i])
}
}
return tnext
}
case aReturn:
// The function call is part of a return statement, store output results
// directly in the frame location of outputs of the current function.
b := childPos(n)
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i, v := range out {
f.data[b+i].Set(v)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
in := make([]reflect.Value, l)
for i, v := range values {
in[i] = v(f)
}
out := callFn(value(f), in)
for i := 0; i < len(out); i++ {
getFrame(f, n.level).data[n.findex+i].Set(out[i])
}
return tnext
}
}
}
}
func getIndexBinMethod(n *node) {
// dest := genValue(n)
i := n.findex
l := n.level
m := n.val.(int)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
// Can not use .Set() because dest type contains the receiver and source not
// dest(f).Set(value(f).Method(m))
getFrame(f, l).data[i] = value(f).Method(m)
return next
}
}
func getIndexBinPtrMethod(n *node) {
i := n.findex
l := n.level
m := n.val.(int)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
// Can not use .Set() because dest type contains the receiver and source not
getFrame(f, l).data[i] = value(f).Addr().Method(m)
return next
}
}
// getIndexArray returns array value from index.
func getIndexArray(n *node) {
tnext := getExec(n.tnext)
value0 := genValueArray(n.child[0]) // array
i := n.findex
l := n.level
if n.child[1].rval.IsValid() { // constant array index
ai := int(vInt(n.child[1].rval))
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value0(f).Index(ai)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value0(f).Index(ai)
return tnext
}
}
} else {
value1 := genValueInt(n.child[1]) // array index
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
_, vi := value1(f)
r := value0(f).Index(int(vi))
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
_, vi := value1(f)
getFrame(f, l).data[i] = value0(f).Index(int(vi))
return tnext
}
}
}
}
// valueInterfaceType is the reflection type of valueInterface.
var valueInterfaceType = reflect.TypeOf((*valueInterface)(nil)).Elem()
// getIndexMap retrieves map value from index.
func getIndexMap(n *node) {
dest := genValue(n)
value0 := genValue(n.child[0]) // map
tnext := getExec(n.tnext)
z := reflect.New(n.child[0].typ.frameType().Elem()).Elem()
if n.child[1].rval.IsValid() { // constant map index
mi := n.child[1].rval
switch {
case n.fnext != nil:
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() && v.Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).Set(z)
return fnext
}
case n.typ.cat == interfaceT:
z = reflect.New(n.child[0].typ.val.frameType()).Elem()
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
} else {
dest(f).Set(z)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(mi); v.IsValid() {
dest(f).Set(v)
} else {
dest(f).Set(z)
}
return tnext
}
}
} else {
value1 := genValue(n.child[1]) // map index
switch {
case n.fnext != nil:
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() && v.Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).Set(z)
return fnext
}
case n.typ.cat == interfaceT:
z = reflect.New(n.child[0].typ.val.frameType()).Elem()
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
} else {
dest(f).Set(z)
}
return tnext
}
default:
n.exec = func(f *frame) bltn {
if v := value0(f).MapIndex(value1(f)); v.IsValid() {
dest(f).Set(v)
} else {
dest(f).Set(z)
}
return tnext
}
}
}
}
// getIndexMap2 retrieves map value from index and set status.
func getIndexMap2(n *node) {
dest := genValue(n.anc.child[0]) // result
value0 := genValue(n.child[0]) // map
value2 := genValue(n.anc.child[1]) // status
next := getExec(n.tnext)
typ := n.anc.child[0].typ
doValue := n.anc.child[0].ident != "_"
doStatus := n.anc.child[1].ident != "_"
if !doValue && !doStatus {
nop(n)
return
}
if n.child[1].rval.IsValid() { // constant map index
mi := n.child[1].rval
switch {
case !doValue:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
value2(f).SetBool(v.IsValid())
return next
}
case typ.cat == interfaceT:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
if v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
default:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(mi)
if v.IsValid() {
dest(f).Set(v)
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
}
} else {
value1 := genValue(n.child[1]) // map index
switch {
case !doValue:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
value2(f).SetBool(v.IsValid())
return next
}
case typ.cat == interfaceT:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
if v.IsValid() {
if e := v.Elem(); e.Type().AssignableTo(valueInterfaceType) {
dest(f).Set(e)
} else {
dest(f).Set(reflect.ValueOf(valueInterface{n, e}))
}
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
default:
n.exec = func(f *frame) bltn {
v := value0(f).MapIndex(value1(f))
if v.IsValid() {
dest(f).Set(v)
}
if doStatus {
value2(f).SetBool(v.IsValid())
}
return next
}
}
}
}
func getFunc(n *node) {
dest := genValue(n)
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
fr := f.clone()
nod := *n
nod.val = &nod
nod.frame = fr
dest(f).Set(reflect.ValueOf(&nod))
return next
}
}
func getMethod(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
fr := f.clone()
nod := *(n.val.(*node))
nod.val = &nod
nod.recv = n.recv
nod.frame = fr
getFrame(f, l).data[i] = reflect.ValueOf(&nod)
return next
}
}
func getMethodByName(n *node) {
next := getExec(n.tnext)
value0 := genValue(n.child[0])
name := n.child[1].ident
i := n.findex
l := n.level
n.exec = func(f *frame) bltn {
val := value0(f).Interface().(valueInterface)
typ := val.node.typ
if typ.node == nil && typ.cat == valueT {
// happens with a var of empty interface type, that has value of concrete type
// from runtime, being asserted to "user-defined" interface.
if _, ok := typ.rtype.MethodByName(name); !ok {
panic(fmt.Sprintf("method %s not found", name))
}
return next
}
m, li := val.node.typ.lookupMethod(name)
fr := f.clone()
nod := *m
nod.val = &nod
nod.recv = &receiver{nil, val.value, li}
nod.frame = fr
getFrame(f, l).data[i] = reflect.ValueOf(&nod)
return next
}
}
func getIndexSeq(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
tnext := getExec(n.tnext)
i := n.findex
l := n.level
// Note:
// Here we have to store the result using
// f.data[i] = value(...)
// instead of normal
// dest(f).Set(value(...)
// because the value returned by FieldByIndex() must be preserved
// for possible future Set operations on the struct field (avoid a
// dereference from Set, resulting in setting a copy of the
// original field).
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
v := value(f)
if v.Type().Kind() == reflect.Interface && n.child[0].typ.recursive {
v = writableDeref(v)
}
r := v.FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
v := value(f)
if v.Type().Kind() == reflect.Interface && n.child[0].typ.recursive {
v = writableDeref(v)
}
getFrame(f, l).data[i] = v.FieldByIndex(index)
return tnext
}
}
}
//go:nocheckptr
func writableDeref(v reflect.Value) reflect.Value {
// Here we have an interface to a struct. Any attempt to dereference it will
// make a copy of the struct. We need to get a Value to the actual struct.
// TODO: using unsafe is a temporary measure. Rethink this.
return reflect.NewAt(v.Elem().Type(), unsafe.Pointer(v.InterfaceData()[1])).Elem() //nolint:govet
}
func getPtrIndexSeq(n *node) {
index := n.val.([]int)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if isRecursiveType(n.child[0].typ, n.child[0].typ.rtype) {
v := genValue(n.child[0])
value = func(f *frame) reflect.Value { return v(f).Elem().Elem() }
} else {
value = genValue(n.child[0])
}
i := n.findex
l := n.level
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
r := value(f).Elem().FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(index)
return tnext
}
}
}
func getIndexSeqField(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
i := n.findex
l := n.level
tnext := getExec(n.tnext)
if n.fnext != nil {
fnext := getExec(n.fnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
r := value(f).Elem().FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
r := value(f).FieldByIndex(index)
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
}
} else {
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(index)
return tnext
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(index)
return tnext
}
}
}
}
func getIndexSeqPtrMethod(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
fi := index[1:]
mi := index[0]
i := n.findex
l := n.level
next := getExec(n.tnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(fi).Addr().Method(mi)
return next
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(fi).Addr().Method(mi)
return next
}
}
}
func getIndexSeqMethod(n *node) {
value := genValue(n.child[0])
index := n.val.([]int)
fi := index[1:]
mi := index[0]
i := n.findex
l := n.level
next := getExec(n.tnext)
if n.child[0].typ.TypeOf().Kind() == reflect.Ptr {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).Elem().FieldByIndex(fi).Method(mi)
return next
}
} else {
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i] = value(f).FieldByIndex(fi).Method(mi)
return next
}
}
}
func neg(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
switch n.typ.TypeOf().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n.exec = func(f *frame) bltn {
dest(f).SetInt(-value(f).Int())
return next
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n.exec = func(f *frame) bltn {
dest(f).SetUint(-value(f).Uint())
return next
}
case reflect.Float32, reflect.Float64:
n.exec = func(f *frame) bltn {
dest(f).SetFloat(-value(f).Float())
return next
}
case reflect.Complex64, reflect.Complex128:
n.exec = func(f *frame) bltn {
dest(f).SetComplex(-value(f).Complex())
return next
}
}
}
func pos(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).Set(value(f))
return next
}
}
func bitNot(n *node) {
dest := genValue(n)
value := genValue(n.child[0])
next := getExec(n.tnext)
typ := n.typ.TypeOf()
switch typ.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n.exec = func(f *frame) bltn {
dest(f).SetInt(^value(f).Int())
return next
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n.exec = func(f *frame) bltn {
dest(f).SetUint(^value(f).Uint())
return next
}
}
}
func land(n *node) {
value0 := genValue(n.child[0])
value1 := genValue(n.child[1])
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if value0(f).Bool() && value1(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value0(f).Bool() && value1(f).Bool())
return tnext
}
}
}
func lor(n *node) {
value0 := genValue(n.child[0])
value1 := genValue(n.child[1])
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if value0(f).Bool() || value1(f).Bool() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value0(f).Bool() || value1(f).Bool())
return tnext
}
}
}
func nop(n *node) {
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
return next
}
}
func branch(n *node) {
tnext := getExec(n.tnext)
fnext := getExec(n.fnext)
value := genValue(n)
n.exec = func(f *frame) bltn {
if value(f).Bool() {
return tnext
}
return fnext
}
}
func _return(n *node) {
child := n.child
def := n.val.(*node)
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
switch t := def.typ.ret[i]; t.cat {
case errorT:
values[i] = genInterfaceWrapper(c, t.TypeOf())
case aliasT:
if isInterfaceSrc(t) {
values[i] = genValueInterface(c)
} else {
values[i] = genValue(c)
}
case funcT:
values[i] = genValue(c)
case interfaceT:
values[i] = genValueInterface(c)
case valueT:
if t.rtype.Kind() == reflect.Interface {
values[i] = genInterfaceWrapper(c, t.rtype)
break
}
fallthrough
default:
if c.typ.untyped {
values[i] = genValueAs(c, def.typ.ret[i].TypeOf())
} else {
values[i] = genValue(c)
}
}
}
switch len(child) {
case 0:
n.exec = nil
case 1:
// This is an optimisation that is applied for binary expressions or function
// calls, but not for (binary) expressions involving const, as the values are not
// stored in the frame in that case.
if !child[0].rval.IsValid() && child[0].kind == binaryExpr || isCall(child[0]) {
n.exec = nil
} else {
v := values[0]
n.exec = func(f *frame) bltn {
f.data[0].Set(v(f))
return nil
}
}
case 2:
v0, v1 := values[0], values[1]
n.exec = func(f *frame) bltn {
f.data[0].Set(v0(f))
f.data[1].Set(v1(f))
return nil
}
default:
n.exec = func(f *frame) bltn {
for i, value := range values {
f.data[i].Set(value(f))
}
return nil
}
}
}
func arrayLit(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
values := make([]func(*frame) reflect.Value, len(child))
index := make([]int, len(child))
rtype := n.typ.val.TypeOf()
var max, prev int
for i, c := range child {
if c.kind == keyValueExpr {
convertLiteralValue(c.child[1], rtype)
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
index[i] = int(vInt(c.child[0].rval))
} else {
convertLiteralValue(c, rtype)
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c)
} else {
values[i] = genValue(c)
}
index[i] = prev
}
prev = index[i] + 1
if prev > max {
max = prev
}
}
typ := n.typ.frameType()
n.exec = func(f *frame) bltn {
var a reflect.Value
if n.typ.sizedef {
a, _ = n.typ.zero()
} else {
a = reflect.MakeSlice(typ, max, max)
}
for i, v := range values {
a.Index(index[i]).Set(v(f))
}
value(f).Set(a)
return next
}
}
func mapLit(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
typ := n.typ.TypeOf()
keys := make([]func(*frame) reflect.Value, len(child))
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
convertLiteralValue(c.child[0], n.typ.key.TypeOf())
convertLiteralValue(c.child[1], n.typ.val.TypeOf())
if n.typ.key.cat == interfaceT {
keys[i] = genValueInterface(c.child[0])
} else {
keys[i] = genValue(c.child[0])
}
if n.typ.val.cat == interfaceT {
values[i] = genValueInterface(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
}
n.exec = func(f *frame) bltn {
m := reflect.MakeMap(typ)
for i, k := range keys {
m.SetMapIndex(k(f), values[i](f))
}
value(f).Set(m)
return next
}
}
func compositeBinMap(n *node) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
child := n.child
if n.nleft == 1 {
child = n.child[1:]
}
typ := n.typ.TypeOf()
keys := make([]func(*frame) reflect.Value, len(child))
values := make([]func(*frame) reflect.Value, len(child))
for i, c := range child {
convertLiteralValue(c.child[0], typ.Key())
convertLiteralValue(c.child[1], typ.Elem())
keys[i] = genValue(c.child[0])
values[i] = genValue(c.child[1])
}
n.exec = func(f *frame) bltn {
m := reflect.MakeMap(typ)
for i, k := range keys {
m.SetMapIndex(k(f), values[i](f))
}
value(f).Set(m)
return next
}
}
// doCompositeBinStruct creates and populates a struct object from a binary type.
func doCompositeBinStruct(n *node, hasType bool) {
next := getExec(n.tnext)
value := valueGenerator(n, n.findex)
typ := n.typ.rtype
if n.typ.cat == ptrT || n.typ.cat == aliasT {
typ = n.typ.val.rtype
}
child := n.child
if hasType {
child = n.child[1:]
}
values := make([]func(*frame) reflect.Value, len(child))
fieldIndex := make([][]int, len(child))
for i, c := range child {
if c.kind == keyValueExpr {
if sf, ok := typ.FieldByName(c.child[0].ident); ok {
fieldIndex[i] = sf.Index
convertLiteralValue(c.child[1], sf.Type)
if c.child[1].typ.cat == funcT {
values[i] = genFunctionWrapper(c.child[1])
} else {
values[i] = genValue(c.child[1])
}
}
} else {
fieldIndex[i] = []int{i}
if c.typ.cat == funcT && len(c.child) > 1 {
convertLiteralValue(c.child[1], typ.Field(i).Type)
values[i] = genFunctionWrapper(c.child[1])
} else {
convertLiteralValue(c, typ.Field(i).Type)
values[i] = genValue(c)
}
}
}
n.exec = func(f *frame) bltn {
s := reflect.New(typ).Elem()
for i, v := range values {
s.FieldByIndex(fieldIndex[i]).Set(v(f))
}
d := value(f)
switch {
case d.Type().Kind() == reflect.Ptr:
d.Set(s.Addr())
default:
d.Set(s)
}
return next
}
}
func compositeBinStruct(n *node) { doCompositeBinStruct(n, true) }
func compositeBinStructNotype(n *node) { doCompositeBinStruct(n, false) }
func destType(n *node) *itype {
switch n.anc.kind {
case assignStmt, defineStmt:
return n.anc.child[0].typ
default:
return n.typ
}
}
func doComposite(n *node, hasType bool, keyed bool) {
value := valueGenerator(n, n.findex)
next := getExec(n.tnext)
typ := n.typ
if typ.cat == ptrT || typ.cat == aliasT {
typ = typ.val
}
var mu sync.Mutex
typ.mu = &mu
child := n.child
if hasType {
child = n.child[1:]
}
destInterface := destType(n).cat == interfaceT
values := make(map[int]func(*frame) reflect.Value)
for i, c := range child {
var val *node
var fieldIndex int
if keyed {
val = c.child[1]
fieldIndex = typ.fieldIndex(c.child[0].ident)
} else {
val = c
fieldIndex = i
}
ft := typ.field[fieldIndex].typ
rft := ft.TypeOf()
convertLiteralValue(val, rft)
switch {
case val.typ.cat == nilT:
values[fieldIndex] = func(*frame) reflect.Value { return reflect.New(rft).Elem() }
case val.typ.cat == funcT:
values[fieldIndex] = genFunctionWrapper(val)
case isArray(val.typ) && val.typ.val != nil && val.typ.val.cat == interfaceT:
values[fieldIndex] = genValueInterfaceArray(val)
case isRecursiveType(ft, rft):
values[fieldIndex] = genValueRecursiveInterface(val, rft)
case isInterface(ft):
values[fieldIndex] = genInterfaceWrapper(val, rft)
default:
values[fieldIndex] = genValue(val)
}
}
frameIndex := n.findex
l := n.level
n.exec = func(f *frame) bltn {
typ.mu.Lock()
// No need to call zero() as doComposite is only called for a structT
a := reflect.New(typ.TypeOf()).Elem()
typ.mu.Unlock()
for i, v := range values {
a.Field(i).Set(v(f))
}
d := value(f)
switch {
case d.Type().Kind() == reflect.Ptr:
d.Set(a.Addr())
case destInterface:
d.Set(reflect.ValueOf(valueInterface{n, a}))
default:
getFrame(f, l).data[frameIndex] = a
}
return next
}
}
// doCompositeLit creates and populates a struct object.
func doCompositeLit(n *node, hasType bool) {
doComposite(n, hasType, false)
}
func compositeLit(n *node) { doCompositeLit(n, true) }
func compositeLitNotype(n *node) { doCompositeLit(n, false) }
// doCompositeLitKeyed creates a struct Object, filling fields from sparse key-values.
func doCompositeLitKeyed(n *node, hasType bool) {
doComposite(n, hasType, true)
}
func compositeLitKeyed(n *node) { doCompositeLitKeyed(n, true) }
func compositeLitKeyedNotype(n *node) { doCompositeLitKeyed(n, false) }
func empty(n *node) {}
var rat = reflect.ValueOf((*[]rune)(nil)).Type().Elem() // runes array type
func _range(n *node) {
index0 := n.child[0].findex // array index location in frame
index2 := index0 - 1 // shallow array for range, always just behind index0
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if len(n.child) == 4 {
an := n.child[2]
index1 := n.child[1].findex // array value location in frame
if isString(an.typ.TypeOf()) {
value = genValueAs(an, rat) // range on string iterates over runes
} else {
value = genValueRangeArray(an)
}
n.exec = func(f *frame) bltn {
a := f.data[index2]
v0 := f.data[index0]
v0.SetInt(v0.Int() + 1)
i := int(v0.Int())
if i >= a.Len() {
return fnext
}
f.data[index1].Set(a.Index(i))
return tnext
}
} else {
an := n.child[1]
if isString(an.typ.TypeOf()) {
value = genValueAs(an, rat) // range on string iterates over runes
} else {
value = genValueRangeArray(an)
}
n.exec = func(f *frame) bltn {
v0 := f.data[index0]
v0.SetInt(v0.Int() + 1)
if int(v0.Int()) >= f.data[index2].Len() {
return fnext
}
return tnext
}
}
// Init sequence
next := n.exec
n.child[0].exec = func(f *frame) bltn {
f.data[index2] = value(f) // set array shallow copy for range
f.data[index0].SetInt(-1) // assing index value
return next
}
}
func rangeChan(n *node) {
i := n.child[0].findex // element index location in frame
value := genValue(n.child[1]) // chan
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
n.exec = func(f *frame) bltn {
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, ok := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: value(f)}})
if chosen == 0 {
return nil
}
if !ok {
return fnext
}
f.data[i].Set(v)
return tnext
}
}
func rangeMap(n *node) {
index0 := n.child[0].findex // map index location in frame
index2 := index0 - 1 // iterator for range, always just behind index0
fnext := getExec(n.fnext)
tnext := getExec(n.tnext)
var value func(*frame) reflect.Value
if len(n.child) == 4 {
index1 := n.child[1].findex // map value location in frame
value = genValue(n.child[2]) // map
if n.child[1].typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
if e := iter.Value().Elem(); e.Type().AssignableTo(valueInterfaceType) {
f.data[index1].Set(e)
} else {
f.data[index1].Set(reflect.ValueOf(valueInterface{n, e}))
}
return tnext
}
} else {
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
f.data[index1].Set(iter.Value())
return tnext
}
}
} else {
value = genValue(n.child[1]) // map
n.exec = func(f *frame) bltn {
iter := f.data[index2].Interface().(*reflect.MapIter)
if !iter.Next() {
return fnext
}
f.data[index0].Set(iter.Key())
return tnext
}
}
// Init sequence
next := n.exec
n.child[0].exec = func(f *frame) bltn {
f.data[index2].Set(reflect.ValueOf(value(f).MapRange()))
return next
}
}
func _case(n *node) {
tnext := getExec(n.tnext)
switch {
case n.anc.anc.kind == typeSwitch:
fnext := getExec(n.fnext)
sn := n.anc.anc // switch node
types := make([]*itype, len(n.child)-1)
for i := range types {
types[i] = n.child[i].typ
}
srcValue := genValue(sn.child[1].lastChild().child[0])
if len(sn.child[1].child) == 2 {
// assign in switch guard
destValue := genValue(n.lastChild().child[0])
switch len(types) {
case 0:
// default clause: assign var to interface value
n.exec = func(f *frame) bltn {
destValue(f).Set(srcValue(f))
return tnext
}
case 1:
// match against 1 type: assign var to concrete value
typ := types[0]
n.exec = func(f *frame) bltn {
v := srcValue(f)
if !v.IsValid() {
// match zero value against nil
if typ.cat == nilT {
return tnext
}
return fnext
}
if t := v.Type(); t.Kind() == reflect.Interface {
if typ.cat == nilT && v.IsNil() {
return tnext
}
if typ.TypeOf().String() == t.String() {
destValue(f).Set(v.Elem())
return tnext
}
return fnext
}
vi := v.Interface().(valueInterface)
if vi.node == nil {
if typ.cat == nilT {
return tnext
}
return fnext
}
if vi.node.typ.id() == typ.id() {
destValue(f).Set(vi.value)
return tnext
}
return fnext
}
default:
// match against multiple types: assign var to interface value
n.exec = func(f *frame) bltn {
val := srcValue(f)
if v := srcValue(f).Interface().(valueInterface).node; v != nil {
for _, typ := range types {
if v.typ.id() == typ.id() {
destValue(f).Set(val)
return tnext
}
}
}
return fnext
}
}
} else {
// no assign in switch guard
if len(n.child) <= 1 {
n.exec = func(f *frame) bltn { return tnext }
} else {
n.exec = func(f *frame) bltn {
if v := srcValue(f).Interface().(valueInterface).node; v != nil {
for _, typ := range types {
if v.typ.id() == typ.id() {
return tnext
}
}
}
return fnext
}
}
}
case len(n.child) <= 1: // default clause
n.exec = func(f *frame) bltn { return tnext }
default:
fnext := getExec(n.fnext)
l := len(n.anc.anc.child)
value := genValue(n.anc.anc.child[l-2])
values := make([]func(*frame) reflect.Value, len(n.child)-1)
for i := range values {
values[i] = genValue(n.child[i])
}
n.exec = func(f *frame) bltn {
v0 := value(f)
for _, v := range values {
v1 := v(f)
if !v0.Type().AssignableTo(v1.Type()) {
v0 = v0.Convert(v1.Type())
}
if v0.Interface() == v1.Interface() {
return tnext
}
}
return fnext
}
}
}
func appendSlice(n *node) {
dest := genValueOutput(n, n.typ.rtype)
next := getExec(n.tnext)
value := genValue(n.child[1])
value0 := genValue(n.child[2])
if isString(n.child[2].typ.TypeOf()) {
typ := reflect.TypeOf([]byte{})
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.AppendSlice(value(f), value0(f).Convert(typ)))
return next
}
} else {
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.AppendSlice(value(f), value0(f)))
return next
}
}
}
func _append(n *node) {
if len(n.child) == 3 {
c1, c2 := n.child[1], n.child[2]
if (c1.typ.cat == valueT || c2.typ.cat == valueT) && c1.typ.rtype == c2.typ.rtype ||
c2.typ.cat == arrayT && c2.typ.val.id() == n.typ.val.id() ||
isByteArray(c1.typ.TypeOf()) && isString(c2.typ.TypeOf()) {
appendSlice(n)
return
}
}
dest := genValueOutput(n, n.typ.rtype)
value := genValue(n.child[1])
next := getExec(n.tnext)
if len(n.child) > 3 {
args := n.child[2:]
l := len(args)
values := make([]func(*frame) reflect.Value, l)
for i, arg := range args {
switch {
case n.typ.val.cat == interfaceT:
values[i] = genValueInterface(arg)
case isRecursiveType(n.typ.val, n.typ.val.rtype):
values[i] = genValueRecursiveInterface(arg, n.typ.val.rtype)
case arg.typ.untyped:
values[i] = genValueAs(arg, n.child[1].typ.TypeOf().Elem())
default:
values[i] = genValue(arg)
}
}
n.exec = func(f *frame) bltn {
sl := make([]reflect.Value, l)
for i, v := range values {
sl[i] = v(f)
}
dest(f).Set(reflect.Append(value(f), sl...))
return next
}
} else {
var value0 func(*frame) reflect.Value
switch {
case n.typ.val.cat == interfaceT:
value0 = genValueInterface(n.child[2])
case isRecursiveType(n.typ.val, n.typ.val.rtype):
value0 = genValueRecursiveInterface(n.child[2], n.typ.val.rtype)
case n.child[2].typ.untyped:
value0 = genValueAs(n.child[2], n.child[1].typ.TypeOf().Elem())
default:
value0 = genValue(n.child[2])
}
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.Append(value(f), value0(f)))
return next
}
}
}
func _cap(n *node) {
dest := genValueOutput(n, reflect.TypeOf(int(0)))
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetInt(int64(value(f).Cap()))
return next
}
}
func _copy(n *node) {
in := []func(*frame) reflect.Value{genValueArray(n.child[1]), genValue(n.child[2])}
out := []func(*frame) reflect.Value{genValueOutput(n, reflect.TypeOf(0))}
genBuiltinDeferWrapper(n, in, out, func(args []reflect.Value) []reflect.Value {
cnt := reflect.Copy(args[0], args[1])
return []reflect.Value{reflect.ValueOf(cnt)}
})
}
func _close(n *node) {
in := []func(*frame) reflect.Value{genValue(n.child[1])}
genBuiltinDeferWrapper(n, in, nil, func(args []reflect.Value) []reflect.Value {
args[0].Close()
return nil
})
}
func _complex(n *node) {
dest := genValueOutput(n, reflect.TypeOf(complex(0, 0)))
c1, c2 := n.child[1], n.child[2]
convertLiteralValue(c1, floatType)
convertLiteralValue(c2, floatType)
value0 := genValue(c1)
value1 := genValue(c2)
next := getExec(n.tnext)
if typ := n.typ.TypeOf(); isComplex(typ) {
n.exec = func(f *frame) bltn {
dest(f).SetComplex(complex(value0(f).Float(), value1(f).Float()))
return next
}
} else {
// Not a complex type: ignore imaginary part
n.exec = func(f *frame) bltn {
dest(f).Set(value0(f).Convert(typ))
return next
}
}
}
func _imag(n *node) {
dest := genValueOutput(n, reflect.TypeOf(float64(0)))
convertLiteralValue(n.child[1], complexType)
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetFloat(imag(value(f).Complex()))
return next
}
}
func _real(n *node) {
dest := genValueOutput(n, reflect.TypeOf(float64(0)))
convertLiteralValue(n.child[1], complexType)
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetFloat(real(value(f).Complex()))
return next
}
}
func _delete(n *node) {
value0 := genValue(n.child[1]) // map
value1 := genValue(n.child[2]) // key
in := []func(*frame) reflect.Value{value0, value1}
var z reflect.Value
genBuiltinDeferWrapper(n, in, nil, func(args []reflect.Value) []reflect.Value {
args[0].SetMapIndex(args[1], z)
return nil
})
}
func _len(n *node) {
dest := genValueOutput(n, reflect.TypeOf(int(0)))
value := genValue(n.child[1])
next := getExec(n.tnext)
n.exec = func(f *frame) bltn {
dest(f).SetInt(int64(value(f).Len()))
return next
}
}
func _new(n *node) {
next := getExec(n.tnext)
typ := n.child[1].typ.TypeOf()
dest := genValueOutput(n, reflect.PtrTo(typ))
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.New(typ))
return next
}
}
// _make allocates and initializes a slice, a map or a chan.
func _make(n *node) {
next := getExec(n.tnext)
typ := n.child[1].typ.frameType()
dest := genValueOutput(n, typ)
switch typ.Kind() {
case reflect.Array, reflect.Slice:
value := genValue(n.child[2])
switch len(n.child) {
case 3:
n.exec = func(f *frame) bltn {
len := int(vInt(value(f)))
dest(f).Set(reflect.MakeSlice(typ, len, len))
return next
}
case 4:
value1 := genValue(n.child[3])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeSlice(typ, int(vInt(value(f))), int(vInt(value1(f)))))
return next
}
}
case reflect.Chan:
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeChan(typ, 0))
return next
}
case 3:
value := genValue(n.child[2])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeChan(typ, int(vInt(value(f)))))
return next
}
}
case reflect.Map:
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeMap(typ))
return next
}
case 3:
value := genValue(n.child[2])
n.exec = func(f *frame) bltn {
dest(f).Set(reflect.MakeMapWithSize(typ, int(vInt(value(f)))))
return next
}
}
}
}
func reset(n *node) {
next := getExec(n.tnext)
switch l := len(n.child) - 1; l {
case 1:
typ := n.child[0].typ.frameType()
i := n.child[0].findex
n.exec = func(f *frame) bltn {
f.data[i] = reflect.New(typ).Elem()
return next
}
case 2:
c0, c1 := n.child[0], n.child[1]
i0, i1 := c0.findex, c1.findex
t0, t1 := c0.typ.frameType(), c1.typ.frameType()
n.exec = func(f *frame) bltn {
f.data[i0] = reflect.New(t0).Elem()
f.data[i1] = reflect.New(t1).Elem()
return next
}
default:
types := make([]reflect.Type, l)
index := make([]int, l)
for i, c := range n.child[:l] {
index[i] = c.findex
types[i] = c.typ.frameType()
}
n.exec = func(f *frame) bltn {
for i, ind := range index {
f.data[ind] = reflect.New(types[i]).Elem()
}
return next
}
}
}
// recv reads from a channel.
func recv(n *node) {
value := genValue(n.child[0])
tnext := getExec(n.tnext)
i := n.findex
l := n.level
if n.interp.cancelChan {
// Cancellable channel read
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
// Fast: channel read doesn't block
ch := value(f)
if r, ok := ch.TryRecv(); ok {
getFrame(f, l).data[i] = r
if r.Bool() {
return tnext
}
return fnext
}
// Slow: channel read blocks, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, _ := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
if v.Bool() {
return tnext
}
return fnext
}
} else {
n.exec = func(f *frame) bltn {
// Fast: channel read doesn't block
ch := value(f)
if r, ok := ch.TryRecv(); ok {
getFrame(f, l).data[i] = r
return tnext
}
// Slow: channel is blocked, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
var chosen int
chosen, getFrame(f, l).data[i], _ = reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
return tnext
}
}
} else {
// Blocking channel read (less overhead)
if n.fnext != nil {
fnext := getExec(n.fnext)
n.exec = func(f *frame) bltn {
if r, _ := value(f).Recv(); r.Bool() {
getFrame(f, l).data[i] = r
return tnext
}
return fnext
}
} else {
i := n.findex
n.exec = func(f *frame) bltn {
getFrame(f, l).data[i], _ = value(f).Recv()
return tnext
}
}
}
}
func recv2(n *node) {
vchan := genValue(n.child[0]) // chan
vres := genValue(n.anc.child[0]) // result
vok := genValue(n.anc.child[1]) // status
tnext := getExec(n.tnext)
if n.interp.cancelChan {
// Cancellable channel read
n.exec = func(f *frame) bltn {
ch, result, status := vchan(f), vres(f), vok(f)
// Fast: channel read doesn't block
if v, ok := ch.TryRecv(); ok {
result.Set(v)
status.SetBool(true)
return tnext
}
// Slow: channel is blocked, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, v, ok := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectRecv, Chan: ch}})
if chosen == 0 {
return nil
}
result.Set(v)
status.SetBool(ok)
return tnext
}
} else {
// Blocking channel read (less overhead)
n.exec = func(f *frame) bltn {
v, ok := vchan(f).Recv()
vres(f).Set(v)
vok(f).SetBool(ok)
return tnext
}
}
}
func convertLiteralValue(n *node, t reflect.Type) {
switch {
case n.typ.cat == nilT:
// Create a zero value of target type.
n.rval = reflect.New(t).Elem()
case !(n.kind == basicLit || n.rval.IsValid()) || t == nil || t.Kind() == reflect.Interface || t.Kind() == reflect.Slice && t.Elem().Kind() == reflect.Interface:
// Skip non-constant values, undefined target type or interface target type.
case n.rval.IsValid():
// Convert constant value to target type.
convertConstantValue(n)
n.rval = n.rval.Convert(t)
default:
// Create a zero value of target type.
n.rval = reflect.New(t).Elem()
}
}
func convertConstantValue(n *node) {
if !n.rval.IsValid() {
return
}
c, ok := n.rval.Interface().(constant.Value)
if !ok {
return
}
var v reflect.Value
switch c.Kind() {
case constant.Bool:
v = reflect.ValueOf(constant.BoolVal(c))
case constant.String:
v = reflect.ValueOf(constant.StringVal(c))
case constant.Int:
i, x := constant.Int64Val(c)
if !x {
panic(fmt.Sprintf("constant %s overflows int64", c.ExactString()))
}
v = reflect.ValueOf(int(i))
case constant.Float:
f, _ := constant.Float64Val(c)
v = reflect.ValueOf(f)
case constant.Complex:
r, _ := constant.Float64Val(constant.Real(c))
i, _ := constant.Float64Val(constant.Imag(c))
v = reflect.ValueOf(complex(r, i))
}
n.rval = v.Convert(n.typ.TypeOf())
}
// Write to a channel.
func send(n *node) {
next := getExec(n.tnext)
value0 := genValue(n.child[0]) // channel
convertLiteralValue(n.child[1], n.child[0].typ.val.TypeOf())
value1 := genValue(n.child[1]) // value to send
if n.interp.cancelChan {
// Cancellable send
n.exec = func(f *frame) bltn {
ch, data := value0(f), value1(f)
// Fast: send on channel doesn't block
if ok := ch.TrySend(data); ok {
return next
}
// Slow: send on channel blocks, allow cancel
f.mutex.RLock()
done := f.done
f.mutex.RUnlock()
chosen, _, _ := reflect.Select([]reflect.SelectCase{done, {Dir: reflect.SelectSend, Chan: ch, Send: data}})
if chosen == 0 {
return nil
}
return next
}
} else {
// Blocking send (less overhead)
n.exec = func(f *frame) bltn {
value0(f).Send(value1(f))
return next
}
}
}
func clauseChanDir(n *node) (*node, *node, *node, reflect.SelectDir) {
dir := reflect.SelectDefault
var nod, assigned, ok *node
var stop bool
n.Walk(func(m *node) bool {
switch m.action {
case aRecv:
dir = reflect.SelectRecv
nod = m.child[0]
switch m.anc.action {
case aAssign:
assigned = m.anc.child[0]
case aAssignX:
assigned = m.anc.child[0]
ok = m.anc.child[1]
}
stop = true
case aSend:
dir = reflect.SelectSend
nod = m.child[0]
assigned = m.child[1]
stop = true
}
return !stop
}, nil)
return nod, assigned, ok, dir
}
func _select(n *node) {
nbClause := len(n.child)
chans := make([]*node, nbClause)
assigned := make([]*node, nbClause)
ok := make([]*node, nbClause)
clause := make([]bltn, nbClause)
chanValues := make([]func(*frame) reflect.Value, nbClause)
assignedValues := make([]func(*frame) reflect.Value, nbClause)
okValues := make([]func(*frame) reflect.Value, nbClause)
cases := make([]reflect.SelectCase, nbClause+1)
next := getExec(n.tnext)
for i := 0; i < nbClause; i++ {
cl := n.child[i]
if cl.kind == commClauseDefault {
cases[i].Dir = reflect.SelectDefault
if len(cl.child) == 0 {
clause[i] = func(*frame) bltn { return next }
} else {
clause[i] = getExec(cl.child[0].start)
}
continue
}
// The comm clause is in send or recv direction.
switch c0 := cl.child[0]; {
case len(cl.child) > 1:
// The comm clause contains a channel operation and a clause body.
clause[i] = getExec(cl.child[1].start)
chans[i], assigned[i], ok[i], cases[i].Dir = clauseChanDir(c0)
chanValues[i] = genValue(chans[i])
if assigned[i] != nil {
assignedValues[i] = genValue(assigned[i])
}
if ok[i] != nil {
okValues[i] = genValue(ok[i])
}
case c0.kind == exprStmt && len(c0.child) == 1 && c0.child[0].action == aRecv:
// The comm clause has an empty body clause after channel receive.
chanValues[i] = genValue(c0.child[0].child[0])
cases[i].Dir = reflect.SelectRecv
clause[i] = func(*frame) bltn { return next }
case c0.kind == sendStmt:
// The comm clause as an empty body clause after channel send.
chanValues[i] = genValue(c0.child[0])
cases[i].Dir = reflect.SelectSend
assignedValues[i] = genValue(c0.child[1])
clause[i] = func(*frame) bltn { return next }
}
}
n.exec = func(f *frame) bltn {
f.mutex.RLock()
cases[nbClause] = f.done
f.mutex.RUnlock()
for i := range cases[:nbClause] {
switch cases[i].Dir {
case reflect.SelectRecv:
cases[i].Chan = chanValues[i](f)
case reflect.SelectSend:
cases[i].Chan = chanValues[i](f)
cases[i].Send = assignedValues[i](f)
case reflect.SelectDefault:
// Keep zero values for comm clause
}
}
j, v, s := reflect.Select(cases)
if j == nbClause {
return nil
}
if cases[j].Dir == reflect.SelectRecv && assignedValues[j] != nil {
assignedValues[j](f).Set(v)
if ok[j] != nil {
okValues[j](f).SetBool(s)
}
}
return clause[j]
}
}
// slice expression: array[low:high:max].
func slice(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
value0 := genValueArray(n.child[0]) // array
value1 := genValue(n.child[1]) // low (if 2 or 3 args) or high (if 1 arg)
switch len(n.child) {
case 2:
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(int(vInt(value1(f))), a.Len())
return next
}
case 3:
value2 := genValue(n.child[2]) // max
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(int(vInt(value1(f))), int(vInt(value2(f))))
return next
}
case 4:
value2 := genValue(n.child[2])
value3 := genValue(n.child[3])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice3(int(vInt(value1(f))), int(vInt(value2(f))), int(vInt(value3(f))))
return next
}
}
}
// slice expression, no low value: array[:high:max].
func slice0(n *node) {
i := n.findex
l := n.level
next := getExec(n.tnext)
value0 := genValueArray(n.child[0])
switch len(n.child) {
case 1:
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(0, a.Len())
return next
}
case 2:
value1 := genValue(n.child[1])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice(0, int(vInt(value1(f))))
return next
}
case 3:
value1 := genValue(n.child[1])
value2 := genValue(n.child[2])
n.exec = func(f *frame) bltn {
a := value0(f)
getFrame(f, l).data[i] = a.Slice3(0, int(vInt(value1(f))), int(vInt(value2(f))))
return next
}
}
}
func isNil(n *node) {
var value func(*frame) reflect.Value
c0 := n.child[0]
if c0.typ.cat == funcT {
value = genValueAsFunctionWrapper(c0)
} else {
value = genValue(c0)
}
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
v := value(f)
vi, ok := v.Interface().(valueInterface)
if ok && (vi == valueInterface{} || vi.node.kind == basicLit && vi.node.typ.cat == nilT) || v.IsNil() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
} else {
n.exec = func(f *frame) bltn {
if value(f).IsNil() {
dest(f).SetBool(true)
return tnext
}
dest(f).SetBool(false)
return fnext
}
}
} else {
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
v := value(f)
if vi, ok := v.Interface().(valueInterface); ok {
dest(f).SetBool(vi == valueInterface{} || vi.node.kind == basicLit && vi.node.typ.cat == nilT)
} else {
dest(f).SetBool(v.IsNil())
}
return tnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(value(f).IsNil())
return tnext
}
}
}
}
func isNotNil(n *node) {
var value func(*frame) reflect.Value
c0 := n.child[0]
if c0.typ.cat == funcT {
value = genValueAsFunctionWrapper(c0)
} else {
value = genValue(c0)
}
tnext := getExec(n.tnext)
dest := genValue(n)
if n.fnext != nil {
fnext := getExec(n.fnext)
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
v := value(f)
vi, ok := v.Interface().(valueInterface)
if ok && (vi == valueInterface{} || vi.node.kind == basicLit && vi.node.typ.cat == nilT) || v.IsNil() {
dest(f).SetBool(false)
return fnext
}
dest(f).SetBool(true)
return tnext
}
} else {
n.exec = func(f *frame) bltn {
if value(f).IsNil() {
dest(f).SetBool(false)
return fnext
}
dest(f).SetBool(true)
return tnext
}
}
} else {
if c0.typ.cat == interfaceT {
n.exec = func(f *frame) bltn {
v := value(f)
if vi, ok := v.Interface().(valueInterface); ok {
dest(f).SetBool(!(vi == valueInterface{} || vi.node.kind == basicLit && vi.node.typ.cat == nilT))
} else {
dest(f).SetBool(!v.IsNil())
}
return tnext
}
} else {
n.exec = func(f *frame) bltn {
dest(f).SetBool(!value(f).IsNil())
return tnext
}
}
}
}
func complexConst(n *node) {
if v0, v1 := n.child[1].rval, n.child[2].rval; v0.IsValid() && v1.IsValid() {
n.rval = reflect.ValueOf(complex(vFloat(v0), vFloat(v1)))
n.gen = nop
}
}
func imagConst(n *node) {
if v := n.child[1].rval; v.IsValid() {
n.rval = reflect.ValueOf(imag(v.Complex()))
n.gen = nop
}
}
func realConst(n *node) {
if v := n.child[1].rval; v.IsValid() {
n.rval = reflect.ValueOf(real(v.Complex()))
n.gen = nop
}
}