package interp import ( "reflect" "strconv" ) // tcat defines interpreter type categories type tcat uint // Types for go language const ( nilT tcat = iota aliasT arrayT binT binPkgT boolT builtinT chanT complex64T complex128T errorT float32T float64T funcT interfaceT intT int8T int16T int32T int64T mapT ptrT srcPkgT stringT structT uintT uint8T uint16T uint32T uint64T uintptrT valueT variadicT maxT ) var cats = [...]string{ nilT: "nilT", aliasT: "aliasT", arrayT: "arrayT", binT: "binT", binPkgT: "binPkgT", boolT: "boolT", builtinT: "builtinT", chanT: "chanT", complex64T: "complex64T", complex128T: "complex128T", errorT: "errorT", float32T: "float32", float64T: "float64T", funcT: "funcT", interfaceT: "interfaceT", intT: "intT", int8T: "int8T", int16T: "int16T", int32T: "int32T", int64T: "int64T", mapT: "mapT", ptrT: "ptrT", srcPkgT: "srcPkgT", stringT: "stringT", structT: "structT", uintT: "uintT", uint8T: "uint8T", uint16T: "uint16T", uint32T: "uint32T", uint64T: "uint64T", uintptrT: "uintptrT", valueT: "valueT", variadicT: "variadicT", } func (c tcat) String() string { if c < tcat(len(cats)) { return cats[c] } return "Cat(" + strconv.Itoa(int(c)) + ")" } // structField type defines a field in a struct type structField struct { name string tag string embed bool typ *itype } // itype defines the internal representation of types in the interpreter type itype struct { cat tcat // Type category field []structField // Array of struct fields if structT or interfaceT key *itype // Type of key element if MapT or nil val *itype // Type of value element if chanT, mapT, ptrT, aliasT, arrayT or variadicT arg []*itype // Argument types if funcT or nil ret []*itype // Return types if funcT or nil method []*node // Associated methods or nil name string // name of type within its package for a defined type path string // for a defined type, the package import path size int // Size of array if ArrayT rtype reflect.Type // Reflection type if ValueT, or nil incomplete bool // true if type must be parsed again (out of order declarations) untyped bool // true for a literal value (string or number) sizedef bool // true if array size is computed from type definition isBinMethod bool // true if the type refers to a bin method function node *node // root AST node of type definition scope *scope // type declaration scope (in case of re-parse incomplete type) } // nodeType returns a type definition for the corresponding AST subtree func nodeType(interp *Interpreter, sc *scope, n *node) (*itype, error) { if n.typ != nil && !n.typ.incomplete { if n.kind == sliceExpr { n.typ.sizedef = false } return n.typ, nil } var t = &itype{node: n, scope: sc} if n.anc.kind == typeSpec { name := n.anc.child[0].ident if sym := sc.sym[name]; sym != nil { // recover previously declared methods t.method = sym.typ.method t.path = sym.typ.path t.name = name } } var err error switch n.kind { case addressExpr, starExpr: t.cat = ptrT if t.val, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } t.incomplete = t.val.incomplete case arrayType: t.cat = arrayT if len(n.child) > 1 { switch { case n.child[0].rval.IsValid(): // constant size t.size = int(n.child[0].rval.Int()) case n.child[0].kind == ellipsisExpr: // [...]T expression t.size = arrayTypeLen(n.anc) default: if sym, _, ok := sc.lookup(n.child[0].ident); ok { // Resolve symbol to get size value if sym.typ != nil && sym.typ.cat == intT { if v, ok := sym.rval.Interface().(int); ok { t.size = v } else { t.incomplete = true } } else { t.incomplete = true } } else { // Evaluate constant array size expression if _, err = interp.cfg(n.child[0], sc.pkgID); err != nil { return nil, err } t.incomplete = true } } if t.val, err = nodeType(interp, sc, n.child[1]); err != nil { return nil, err } t.sizedef = true t.incomplete = t.incomplete || t.val.incomplete } else { if t.val, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } t.incomplete = t.val.incomplete } case basicLit: switch v := n.rval.Interface().(type) { case bool: t.cat = boolT t.name = "bool" case byte: t.cat = uint8T t.name = "uint8" t.untyped = true case complex64: t.cat = complex64T t.name = "complex64" case complex128: t.cat = complex128T t.name = "complex128" t.untyped = true case float32: t.cat = float32T t.name = "float32" t.untyped = true case float64: t.cat = float64T t.name = "float64" t.untyped = true case int: t.cat = intT t.name = "int" t.untyped = true case uint: t.cat = uintT t.name = "uint" t.untyped = true case rune: t.cat = int32T t.name = "int32" t.untyped = true case string: t.cat = stringT t.name = "string" t.untyped = true default: err = n.cfgErrorf("missing support for type %T: %v", v, n.rval) } case unaryExpr: t, err = nodeType(interp, sc, n.child[0]) case binaryExpr: if a := n.anc; a.kind == defineStmt && len(a.child) > a.nleft+a.nright { t, err = nodeType(interp, sc, a.child[a.nleft]) } else { if t, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } // Shift operator type is inherited from first parameter only // For other operators, infer type in from 2nd parameter in case of untyped first if t.untyped && !isShiftNode(n) { var t1 *itype t1, err = nodeType(interp, sc, n.child[1]) if !(t1.untyped && isInt(t1.TypeOf()) && isFloat(t.TypeOf())) { t = t1 } } } case callExpr: if interp.isBuiltinCall(n) { // builtin types are special and may depend from their call arguments t.cat = builtinT switch n.child[0].ident { case "complex": var nt0, nt1 *itype if nt0, err = nodeType(interp, sc, n.child[1]); err != nil { return nil, err } if nt1, err = nodeType(interp, sc, n.child[2]); err != nil { return nil, err } if nt0.incomplete || nt1.incomplete { t.incomplete = true } else { switch t0, t1 := nt0.TypeOf(), nt1.TypeOf(); { case isFloat32(t0) && isFloat32(t1): t = sc.getType("complex64") case isFloat64(t0) && isFloat64(t1): t = sc.getType("complex128") case nt0.untyped && isNumber(t0) && nt1.untyped && isNumber(t1): t = &itype{cat: valueT, rtype: complexType} case nt0.untyped && isFloat32(t1) || nt1.untyped && isFloat32(t0): t = sc.getType("complex64") case nt0.untyped && isFloat64(t1) || nt1.untyped && isFloat64(t0): t = sc.getType("complex128") default: err = n.cfgErrorf("invalid types %s and %s", t0.Kind(), t1.Kind()) } if nt0.untyped && nt1.untyped { t.untyped = true } } case "real", "imag": if t, err = nodeType(interp, sc, n.child[1]); err != nil { return nil, err } if !t.incomplete { switch k := t.TypeOf().Kind(); { case k == reflect.Complex64: t = sc.getType("float32") case k == reflect.Complex128: t = sc.getType("float64") case t.untyped && isNumber(t.TypeOf()): t = &itype{cat: valueT, rtype: floatType, untyped: true} default: err = n.cfgErrorf("invalid complex type %s", k) } } case "cap", "copy", "len": t = sc.getType("int") case "append", "make": t, err = nodeType(interp, sc, n.child[1]) case "new": t, err = nodeType(interp, sc, n.child[1]) t = &itype{cat: ptrT, val: t, incomplete: t.incomplete} case "recover": t = sc.getType("interface{}") } if err != nil { return nil, err } } else { if t, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } switch t.cat { case valueT: if t.rtype.NumOut() == 1 { t = &itype{cat: valueT, rtype: t.rtype.Out(0)} } default: if len(t.ret) == 1 { t = t.ret[0] } } } case compositeLitExpr: t, err = nodeType(interp, sc, n.child[0]) case chanType: t.cat = chanT if t.val, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } t.incomplete = t.val.incomplete case ellipsisExpr: t.cat = variadicT if t.val, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } t.incomplete = t.val.incomplete case funcLit: t, err = nodeType(interp, sc, n.child[2]) case funcType: t.cat = funcT // Handle input parameters for _, arg := range n.child[0].child { cl := len(arg.child) - 1 typ, err := nodeType(interp, sc, arg.child[cl]) if err != nil { return nil, err } t.arg = append(t.arg, typ) for i := 1; i < cl; i++ { // Several arguments may be factorized on the same field type t.arg = append(t.arg, typ) } t.incomplete = t.incomplete || typ.incomplete } if len(n.child) == 2 { // Handle returned values for _, ret := range n.child[1].child { cl := len(ret.child) - 1 typ, err := nodeType(interp, sc, ret.child[cl]) if err != nil { return nil, err } t.ret = append(t.ret, typ) for i := 1; i < cl; i++ { // Several arguments may be factorized on the same field type t.ret = append(t.ret, typ) } t.incomplete = t.incomplete || typ.incomplete } } case identExpr: if sym, _, found := sc.lookup(n.ident); found { t = sym.typ if t.incomplete && t.node != n { m := t.method if t, err = nodeType(interp, sc, t.node); err != nil { return nil, err } t.method = m sym.typ = t } if t.node == nil { t.node = n } } else { t.incomplete = true sc.sym[n.ident] = &symbol{kind: typeSym, typ: t} } case indexExpr: var lt *itype if lt, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } if lt.incomplete { t.incomplete = true break } switch lt.cat { case arrayT, mapT: t = lt.val } case interfaceType: t.cat = interfaceT if sname := typeName(n); sname != "" { if sym, _, found := sc.lookup(sname); found && sym.kind == typeSym { sym.typ = t } } for _, field := range n.child[0].child { if len(field.child) == 1 { typ, err := nodeType(interp, sc, field.child[0]) if err != nil { return nil, err } t.field = append(t.field, structField{name: fieldName(field.child[0]), embed: true, typ: typ}) t.incomplete = t.incomplete || typ.incomplete } else { typ, err := nodeType(interp, sc, field.child[1]) if err != nil { return nil, err } t.field = append(t.field, structField{name: field.child[0].ident, typ: typ}) t.incomplete = t.incomplete || typ.incomplete } } case landExpr, lorExpr: t.cat = boolT case mapType: t.cat = mapT if t.key, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } if t.val, err = nodeType(interp, sc, n.child[1]); err != nil { return nil, err } t.incomplete = t.key.incomplete || t.val.incomplete case parenExpr: t, err = nodeType(interp, sc, n.child[0]) case selectorExpr: // Resolve the left part of selector, then lookup the right part on it var lt *itype if lt, err = nodeType(interp, sc, n.child[0]); err != nil { return nil, err } if lt.incomplete { t.incomplete = true break } name := n.child[1].ident switch lt.cat { case binPkgT: pkg := interp.binPkg[lt.path] if v, ok := pkg[name]; ok { t.cat = valueT t.rtype = v.Type() if isBinType(v) { // a bin type is encoded as a pointer on nil value t.rtype = t.rtype.Elem() } } else { err = n.cfgErrorf("undefined selector %s.%s", lt.path, name) panic(err) } case srcPkgT: pkg := interp.srcPkg[lt.path] if s, ok := pkg[name]; ok { t = s.typ } else { err = n.cfgErrorf("undefined selector %s.%s", lt.path, name) } default: if m, _ := lt.lookupMethod(name); m != nil { t, err = nodeType(interp, sc, m.child[2]) } else if bm, _, _, ok := lt.lookupBinMethod(name); ok { t = &itype{cat: valueT, rtype: bm.Type, isBinMethod: true} } else if ti := lt.lookupField(name); len(ti) > 0 { t = lt.fieldSeq(ti) } else if bs, _, ok := lt.lookupBinField(name); ok { t = &itype{cat: valueT, rtype: bs.Type} } else { err = lt.node.cfgErrorf("undefined selector %s", name) } } case sliceExpr: t, err = nodeType(interp, sc, n.child[0]) if t.cat == ptrT { t = t.val } if err == nil && t.size != 0 { t1 := *t t1.size = 0 t1.rtype = nil t = &t1 } case structType: t.cat = structT var incomplete bool if sname := typeName(n); sname != "" { if sym, _, found := sc.lookup(sname); found && sym.kind == typeSym { sym.typ = t } } for _, c := range n.child[0].child { switch { case len(c.child) == 1: typ, err := nodeType(interp, sc, c.child[0]) if err != nil { return nil, err } t.field = append(t.field, structField{name: fieldName(c.child[0]), embed: true, typ: typ}) incomplete = incomplete || typ.incomplete case len(c.child) == 2 && c.child[1].kind == basicLit: tag := c.child[1].rval.String() typ, err := nodeType(interp, sc, c.child[0]) if err != nil { return nil, err } t.field = append(t.field, structField{name: fieldName(c.child[0]), embed: true, typ: typ, tag: tag}) incomplete = incomplete || typ.incomplete default: var tag string l := len(c.child) if c.lastChild().kind == basicLit { tag = c.lastChild().rval.String() l-- } typ, err := nodeType(interp, sc, c.child[l-1]) if err != nil { return nil, err } incomplete = incomplete || typ.incomplete for _, d := range c.child[:l-1] { t.field = append(t.field, structField{name: d.ident, typ: typ, tag: tag}) } } } t.incomplete = incomplete default: err = n.cfgErrorf("type definition not implemented: %s", n.kind) } if err == nil && t.cat == nilT && !t.incomplete { err = n.cfgErrorf("use of untyped nil %s", t.name) } return t, err } func (interp *Interpreter) isBuiltinCall(n *node) bool { if n.kind != callExpr { return false } s := interp.universe.sym[n.child[0].ident] return s != nil && s.kind == bltnSym } // struct name returns the name of a struct type func typeName(n *node) string { if n.anc.kind == typeSpec { return n.anc.child[0].ident } return "" } // fieldName returns an implicit struct field name according to node kind func fieldName(n *node) string { switch n.kind { case selectorExpr: return fieldName(n.child[1]) case starExpr: return fieldName(n.child[0]) case identExpr: return n.ident default: return "" } } var zeroValues [maxT]reflect.Value func init() { zeroValues[boolT] = reflect.ValueOf(false) zeroValues[complex64T] = reflect.ValueOf(complex64(0)) zeroValues[complex128T] = reflect.ValueOf(complex128(0)) zeroValues[errorT] = reflect.ValueOf(new(error)).Elem() zeroValues[float32T] = reflect.ValueOf(float32(0)) zeroValues[float64T] = reflect.ValueOf(float64(0)) zeroValues[intT] = reflect.ValueOf(int(0)) zeroValues[int8T] = reflect.ValueOf(int8(0)) zeroValues[int16T] = reflect.ValueOf(int16(0)) zeroValues[int32T] = reflect.ValueOf(int32(0)) zeroValues[int64T] = reflect.ValueOf(int64(0)) zeroValues[stringT] = reflect.ValueOf("") zeroValues[uintT] = reflect.ValueOf(uint(0)) zeroValues[uint8T] = reflect.ValueOf(uint8(0)) zeroValues[uint16T] = reflect.ValueOf(uint16(0)) zeroValues[uint32T] = reflect.ValueOf(uint32(0)) zeroValues[uint64T] = reflect.ValueOf(uint64(0)) zeroValues[uintptrT] = reflect.ValueOf(uintptr(0)) } // if type is incomplete, re-parse it. func (t *itype) finalize() (*itype, error) { var err error if t.incomplete { sym, _, found := t.scope.lookup(t.name) if found && !sym.typ.incomplete { sym.typ.method = append(sym.typ.method, t.method...) t.method = sym.typ.method t.incomplete = false return sym.typ, nil } m := t.method if t, err = nodeType(t.node.interp, t.scope, t.node); err != nil { return nil, err } if t.incomplete { return nil, t.node.cfgErrorf("incomplete type %s", t.name) } t.method = m t.node.typ = t if sym != nil { sym.typ = t } } return t, err } // Equals returns true if the given type is identical to the receiver one. func (t *itype) equals(o *itype) bool { switch ti, oi := isInterface(t), isInterface(o); { case ti && oi: return t.methods().equals(o.methods()) case ti && !oi: return o.methods().contains(t.methods()) case oi && !ti: return t.methods().contains(o.methods()) default: return t.id() == o.id() } } // MethodSet defines the set of methods signatures as strings, indexed per method name. type methodSet map[string]string // Contains returns true if the method set m contains the method set n. func (m methodSet) contains(n methodSet) bool { for k, v := range n { if m[k] != v { return false } } return true } // Equal returns true if the method set m is equal to the method set n. func (m methodSet) equals(n methodSet) bool { return m.contains(n) && n.contains(m) } // Methods returns a map of method type strings, indexed by method names. func (t *itype) methods() methodSet { res := make(methodSet) switch t.cat { case interfaceT: // Get methods from recursive analysis of interface fields for _, f := range t.field { if f.typ.cat == funcT { res[f.name] = f.typ.TypeOf().String() } else { for k, v := range f.typ.methods() { res[k] = v } } } case valueT, errorT: // Get method from corresponding reflect.Type for i := t.rtype.NumMethod() - 1; i >= 0; i-- { m := t.rtype.Method(i) res[m.Name] = m.Type.String() } case ptrT: // Consider only methods where receiver is a pointer to type t for _, m := range t.val.method { if m.child[0].child[0].lastChild().typ.cat == ptrT { res[m.ident] = m.typ.TypeOf().String() } } default: for _, m := range t.method { res[m.ident] = m.typ.TypeOf().String() } } return res } // id returns a unique type identificator string func (t *itype) id() string { // TODO: if res is nil, build identity from String() res := "" switch t.cat { case valueT: res = t.rtype.PkgPath() + "." + t.rtype.Name() case ptrT: res = "*" + t.val.id() default: res = t.path + "." + t.name } return res } // zero instantiates and return a zero value object for the given type during execution func (t *itype) zero() (v reflect.Value, err error) { if t, err = t.finalize(); err != nil { return v, err } switch t.cat { case aliasT: v, err = t.val.zero() case arrayT, ptrT, structT: v = reflect.New(t.TypeOf()).Elem() case valueT: v = reflect.New(t.rtype).Elem() default: v = zeroValues[t.cat] } return v, err } // fieldIndex returns the field index from name in a struct, or -1 if not found func (t *itype) fieldIndex(name string) int { if t.cat == ptrT { return t.val.fieldIndex(name) } for i, field := range t.field { if name == field.name { return i } } return -1 } // fieldSeq returns the field type from the list of field indexes func (t *itype) fieldSeq(seq []int) *itype { ft := t for _, i := range seq { if ft.cat == ptrT { ft = ft.val } ft = ft.field[i].typ } return ft } // lookupField returns a list of indices, i.e. a path to access a field in a struct object func (t *itype) lookupField(name string) []int { if fi := t.fieldIndex(name); fi >= 0 { return []int{fi} } for i, f := range t.field { switch f.typ.cat { case ptrT, structT, interfaceT, aliasT: if index2 := f.typ.lookupField(name); len(index2) > 0 { return append([]int{i}, index2...) } } } return nil } // lookupBinField returns a structfield and a path to access an embedded binary field in a struct object func (t *itype) lookupBinField(name string) (s reflect.StructField, index []int, ok bool) { if t.cat == ptrT { return t.val.lookupBinField(name) } if !isStruct(t) { return } s, ok = t.TypeOf().FieldByName(name) if !ok { for i, f := range t.field { if f.embed { if s2, index2, ok2 := f.typ.lookupBinField(name); ok2 { index = append([]int{i}, index2...) return s2, index, ok2 } } } } return s, index, ok } // methodCallType returns a method function type without the receiver defined. // The input type must be a method function type with the receiver as the first input argument. func (t *itype) methodCallType() reflect.Type { it := []reflect.Type{} ni := t.rtype.NumIn() for i := 1; i < ni; i++ { it = append(it, t.rtype.In(i)) } ot := []reflect.Type{} no := t.rtype.NumOut() for i := 0; i < no; i++ { ot = append(ot, t.rtype.Out(i)) } return reflect.FuncOf(it, ot, t.rtype.IsVariadic()) } // getMethod returns a pointer to the method definition func (t *itype) getMethod(name string) *node { for _, m := range t.method { if name == m.ident { return m } } return nil } // lookupMethod returns a pointer to method definition associated to type t // and the list of indices to access the right struct field, in case of an embedded method func (t *itype) lookupMethod(name string) (*node, []int) { if t.cat == ptrT { return t.val.lookupMethod(name) } var index []int m := t.getMethod(name) if m == nil { for i, f := range t.field { if f.embed { if n, index2 := f.typ.lookupMethod(name); n != nil { index = append([]int{i}, index2...) return n, index } } } } return m, index } // lookupBinMethod returns a method and a path to access a field in a struct object (the receiver) func (t *itype) lookupBinMethod(name string) (reflect.Method, []int, bool, bool) { var isPtr bool if t.cat == ptrT { return t.val.lookupBinMethod(name) } var index []int m, ok := t.TypeOf().MethodByName(name) if !ok { m, ok = reflect.PtrTo(t.TypeOf()).MethodByName(name) isPtr = ok } if !ok { for i, f := range t.field { if f.embed { if m2, index2, isPtr2, ok2 := f.typ.lookupBinMethod(name); ok2 { index = append([]int{i}, index2...) return m2, index, isPtr2, ok2 } } } } return m, index, isPtr, ok } func exportName(s string) string { if canExport(s) { return s } return "X" + s } var interf = reflect.TypeOf(new(interface{})).Elem() func (t *itype) refType(defined map[string]bool) reflect.Type { if t.rtype != nil { return t.rtype } if t.incomplete || t.cat == nilT { var err error if t, err = t.finalize(); err != nil { panic(err) } } if t.val != nil && defined[t.val.name] && !t.val.incomplete && t.val.rtype == nil { // Replace reference to self (direct or indirect) by an interface{} to handle // recursive types with reflect. t.val.rtype = interf } switch t.cat { case aliasT: t.rtype = t.val.refType(defined) case arrayT, variadicT: if t.sizedef { t.rtype = reflect.ArrayOf(t.size, t.val.refType(defined)) } else { t.rtype = reflect.SliceOf(t.val.refType(defined)) } case chanT: t.rtype = reflect.ChanOf(reflect.BothDir, t.val.refType(defined)) case errorT: t.rtype = reflect.TypeOf(new(error)).Elem() case funcT: in := make([]reflect.Type, len(t.arg)) out := make([]reflect.Type, len(t.ret)) for i, v := range t.arg { in[i] = v.refType(defined) } for i, v := range t.ret { out[i] = v.refType(defined) } t.rtype = reflect.FuncOf(in, out, false) case interfaceT: t.rtype = interf case mapT: t.rtype = reflect.MapOf(t.key.refType(defined), t.val.refType(defined)) case ptrT: t.rtype = reflect.PtrTo(t.val.refType(defined)) case structT: if t.name != "" { defined[t.name] = true } var fields []reflect.StructField for _, f := range t.field { field := reflect.StructField{Name: exportName(f.name), Type: f.typ.refType(defined), Tag: reflect.StructTag(f.tag)} fields = append(fields, field) } t.rtype = reflect.StructOf(fields) default: if z, _ := t.zero(); z.IsValid() { t.rtype = z.Type() } } return t.rtype } // TypeOf returns the reflection type of dynamic interpreter type t. func (t *itype) TypeOf() reflect.Type { return t.refType(map[string]bool{}) } func (t *itype) frameType() (r reflect.Type) { var err error if t, err = t.finalize(); err != nil { panic(err) } switch t.cat { case aliasT: r = t.val.frameType() case arrayT, variadicT: if t.sizedef { r = reflect.ArrayOf(t.size, t.val.frameType()) } else { r = reflect.SliceOf(t.val.frameType()) } case funcT: r = reflect.TypeOf((*node)(nil)) case interfaceT: r = reflect.TypeOf((*valueInterface)(nil)).Elem() default: r = t.TypeOf() } return r } func (t *itype) implements(it *itype) bool { if t.cat == valueT { return t.TypeOf().Implements(it.TypeOf()) } // TODO: implement method check for interpreted types return true } func defRecvType(n *node) *itype { if n.kind != funcDecl || len(n.child[0].child) == 0 { return nil } if r := n.child[0].child[0].lastChild(); r != nil { return r.typ } return nil } func isShiftNode(n *node) bool { switch n.action { case aShl, aShr, aShlAssign, aShrAssign: return true } return false } func isInterfaceSrc(t *itype) bool { return t.cat == interfaceT || (t.cat == aliasT && isInterfaceSrc(t.val)) } func isInterface(t *itype) bool { return isInterfaceSrc(t) || t.TypeOf().Kind() == reflect.Interface } func isStruct(t *itype) bool { // Test first for a struct category, because a recursive interpreter struct may be // represented by an interface{} at reflect level. switch t.cat { case structT: return true case aliasT, ptrT: return isStruct(t.val) case valueT: k := t.rtype.Kind() return k == reflect.Struct || (k == reflect.Ptr && t.rtype.Elem().Kind() == reflect.Struct) default: return false } } func isBool(t *itype) bool { return t.TypeOf().Kind() == reflect.Bool } func isInt(t reflect.Type) bool { switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return true } return false } func isUint(t reflect.Type) bool { switch t.Kind() { case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return true } return false } func isComplex(t reflect.Type) bool { switch t.Kind() { case reflect.Complex64, reflect.Complex128: return true } return false } func isFloat(t reflect.Type) bool { switch t.Kind() { case reflect.Float32, reflect.Float64: return true } return false } func isByteArray(t reflect.Type) bool { k := t.Kind() return (k == reflect.Array || k == reflect.Slice) && t.Elem().Kind() == reflect.Uint8 } func isFloat32(t reflect.Type) bool { return t.Kind() == reflect.Float32 } func isFloat64(t reflect.Type) bool { return t.Kind() == reflect.Float64 } func isNumber(t reflect.Type) bool { return isInt(t) || isFloat(t) || isComplex(t) } func isString(t reflect.Type) bool { return t.Kind() == reflect.String }