/*********************************************************************** * Copyright (c) Pieter Wuille, Gregory Maxwell, Peter Dettman * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H #define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H #include "ecmult_gen_compute_table.h" #include "group_impl.h" #include "field_impl.h" #include "scalar_impl.h" #include "ecmult_gen.h" #include "util.h" static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int blocks, int teeth, int spacing) { size_t points = ((size_t)1) << (teeth - 1); size_t points_total = points * blocks; secp256k1_ge* prec = checked_malloc(&default_error_callback, points_total * sizeof(*prec)); secp256k1_gej* ds = checked_malloc(&default_error_callback, teeth * sizeof(*ds)); secp256k1_gej* vs = checked_malloc(&default_error_callback, points_total * sizeof(*vs)); secp256k1_gej u; size_t vs_pos = 0; secp256k1_scalar half; int block, i; VERIFY_CHECK(points_total > 0); /* u is the running power of two times gen we're working with, initially gen/2. */ secp256k1_scalar_half(&half, &secp256k1_scalar_one); secp256k1_gej_set_infinity(&u); for (i = 255; i >= 0; --i) { /* Use a very simple multiplication ladder to avoid dependency on ecmult. */ secp256k1_gej_double_var(&u, &u, NULL); if (secp256k1_scalar_get_bits_limb32(&half, i, 1)) { secp256k1_gej_add_ge_var(&u, &u, gen, NULL); } } #ifdef VERIFY { /* Verify that u*2 = gen. */ secp256k1_gej double_u; secp256k1_gej_double_var(&double_u, &u, NULL); VERIFY_CHECK(secp256k1_gej_eq_ge_var(&double_u, gen)); } #endif for (block = 0; block < blocks; ++block) { int tooth; /* Here u = 2^(block*teeth*spacing) * gen/2. */ secp256k1_gej sum; secp256k1_gej_set_infinity(&sum); for (tooth = 0; tooth < teeth; ++tooth) { /* Here u = 2^((block*teeth + tooth)*spacing) * gen/2. */ /* Make sum = sum(2^((block*teeth + t)*spacing), t=0..tooth) * gen/2. */ secp256k1_gej_add_var(&sum, &sum, &u, NULL); /* Make u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */ secp256k1_gej_double_var(&u, &u, NULL); /* Make ds[tooth] = u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */ ds[tooth] = u; /* Make u = 2^((block*teeth + tooth + 1)*spacing) * gen/2, unless at the end. */ if (block + tooth != blocks + teeth - 2) { int bit_off; for (bit_off = 1; bit_off < spacing; ++bit_off) { secp256k1_gej_double_var(&u, &u, NULL); } } } /* Now u = 2^((block*teeth + teeth)*spacing) * gen/2 * = 2^((block+1)*teeth*spacing) * gen/2 */ /* Next, compute the table entries for block number block in Jacobian coordinates. * The entries will occupy vs[block*points + i] for i=0..points-1. * We start by computing the first (i=0) value corresponding to all summed * powers of two times G being negative. */ secp256k1_gej_neg(&vs[vs_pos++], &sum); /* And then teeth-1 times "double" the range of i values for which the table * is computed: in each iteration, double the table by taking an existing * table entry and adding ds[tooth]. */ for (tooth = 0; tooth < teeth - 1; ++tooth) { size_t stride = ((size_t)1) << tooth; size_t index; for (index = 0; index < stride; ++index, ++vs_pos) { secp256k1_gej_add_var(&vs[vs_pos], &vs[vs_pos - stride], &ds[tooth], NULL); } } } VERIFY_CHECK(vs_pos == points_total); /* Convert all points simultaneously from secp256k1_gej to secp256k1_ge. */ secp256k1_ge_set_all_gej_var(prec, vs, points_total); /* Convert all points from secp256k1_ge to secp256k1_ge_storage output. */ for (block = 0; block < blocks; ++block) { size_t index; for (index = 0; index < points; ++index) { VERIFY_CHECK(!secp256k1_ge_is_infinity(&prec[block * points + index])); secp256k1_ge_to_storage(&table[block * points + index], &prec[block * points + index]); } } /* Free memory. */ free(vs); free(ds); free(prec); } #endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H */