Files
indra/pkg/message/message.go

175 lines
5.2 KiB
Go

// Package message provides a standard message binary serialised data format and
// message segmentation scheme which includes address.Sender cloaked public
// key and address.Receiver private keys for generating a shared cipher and applying
// to messages/message segments.
package message
import (
"crypto/cipher"
"fmt"
"github.com/Indra-Labs/indra"
"github.com/Indra-Labs/indra/pkg/ciph"
"github.com/Indra-Labs/indra/pkg/key/address"
"github.com/Indra-Labs/indra/pkg/key/prv"
"github.com/Indra-Labs/indra/pkg/key/pub"
"github.com/Indra-Labs/indra/pkg/nonce"
"github.com/Indra-Labs/indra/pkg/sha256"
"github.com/Indra-Labs/indra/pkg/slice"
log2 "github.com/cybriq/proc/pkg/log"
)
var (
log = log2.GetLogger(indra.PathBase)
check = log.E.Chk
)
// Message is the standard format for an encrypted, possibly segmented message
// container with parameters for Reed Solomon Forward Error Correction and
// contains previously seen cipher keys so the correspondent can free them.
type Message struct {
// Seq specifies the segment number of the message, 4 bytes long.
Seq uint16
// Length is the number of segments in the batch
Length uint32
// Parity is the ratio of redundancy. In each 256 segment
Parity byte
// Data is the message.
Data []byte
}
// GetOverhead returns the packet frame overhead given the settings found in the
// packet.
func (p *Message) GetOverhead() int {
return Overhead
}
// Overhead is the base overhead on a packet, use GetOverhead to add any extra
// as found in a Message.
const Overhead = slice.Uint16Len +
slice.Uint32Len + 1 + KeyEnd
type Addresses struct {
To *address.Sender
From *prv.Key
}
func Address(To *address.Sender, From *prv.Key) *Addresses {
return &Addresses{To: To, From: From}
}
const (
CheckEnd = 4
NonceEnd = CheckEnd + nonce.IVLen
AddressEnd = NonceEnd + address.Len
KeyEnd = AddressEnd + pub.KeyLen
)
// Encode creates a Message, encrypts the payload using the given private from
// key and the public to key, serializes the form, signs the bytes and appends
// the signature to the end.
func Encode(To *address.Sender, From *prv.Key, d []byte) (pkt []byte,
e error) {
var blk cipher.Block
if blk = ciph.GetBlock(From, To.Key); check(e) {
return
}
nonc := nonce.New()
var to address.Cloaked
to, e = To.GetCloak()
Length := slice.NewUint32()
slice.EncodeUint32(Length, len(d))
// Concatenate the message pieces together into a single byte slice.
pkt = slice.Cat(
// f.Nonce[:], // 16 bytes \
// f.To[:], // 8 bytes |
make([]byte, KeyEnd),
Length, // 4 bytes
d,
)
// Encrypt the encrypted part of the data.
ciph.Encipher(blk, nonc, pkt[KeyEnd:])
// Sign the packet.
var pubKey pub.Bytes
pubKey = pub.Derive(From).ToBytes()
// Copy nonce, address, check and signature over top of the header.
copy(pkt[CheckEnd:NonceEnd], nonc[:])
copy(pkt[NonceEnd:AddressEnd], to[:])
copy(pkt[AddressEnd:KeyEnd], pubKey[:])
// last bot not least, the packet check header, which protects the
// entire packet.
checkBytes := sha256.Single(pkt[CheckEnd:])
copy(pkt[:CheckEnd], checkBytes[:CheckEnd])
return
}
// GetKeys returns the To field of the message in order, checks the packet
// checksum and recovers the public key signing it.
//
// After this, if the matching private key to the cloaked address returned is
// found, it is combined with the public key to generate the cipher and the
// entire packet should then be decrypted, and the Decode function will then
// decode a Message.
func GetKeys(d []byte) (to address.Cloaked, from *pub.Key, e error) {
pktLen := len(d)
if pktLen < Overhead {
// If this isn't checked the slice operations later can
// hit bounds errors.
e = fmt.Errorf("packet too small, min %d, got %d",
Overhead, pktLen)
log.E.Ln(e)
return
}
copy(to[:], d[NonceEnd:AddressEnd])
// split off the signature and recover the public key
var chek []byte
chek = d[:CheckEnd]
checkHash := sha256.Single(d[CheckEnd:])
if string(chek) != string(checkHash[:4]) {
e = fmt.Errorf("check failed: got '%v', expected '%v'",
chek, checkHash[:4])
return
}
if from, e = pub.FromBytes(d[AddressEnd:KeyEnd]); check(e) {
return
}
return
}
// Decode a packet and return the Message with encrypted payload and signer's
// public key. This assumes GetKeys succeeded and the matching private key was
// found.
func Decode(d []byte, from *pub.Key, to *prv.Key) (f *Message, e error) {
pktLen := len(d)
if pktLen < Overhead {
// If this isn't checked the slice operations later can
// hit bounds errors.
e = fmt.Errorf("packet too small, min %d, got %d",
Overhead, pktLen)
log.E.Ln(e)
return
}
// Trim off the signature and hash, we already have the key and have
// validated the checksum.
f = &Message{}
// copy the nonce
var nonc nonce.IV
copy(nonc[:], d[CheckEnd:NonceEnd])
var blk cipher.Block
if blk = ciph.GetBlock(to, from); check(e) {
return
}
// This decrypts the rest of the packet, which is encrypted for
// security.
data := d[KeyEnd:]
ciph.Encipher(blk, nonc, data)
var length slice.Size32
length, data = slice.Cut(data, slice.Uint32Len)
f.Length = uint32(slice.DecodeUint32(length))
f.Data = data
// log.I.Ln("decode length", len(data), "length prefix", f.Length)
return
}